1
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024:10.1007/s12012-024-09924-8. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
2
|
Yan N, Wang X, Xu Z, Zhong L, Yang J. Apigenin Attenuates Transverse Aortic Constriction-Induced Myocardial Hypertrophy: The Key Role of miR-185-5p/SREBP2-Mediated Autophagy. Drug Des Devel Ther 2024; 18:3841-3851. [PMID: 39219698 PMCID: PMC11365498 DOI: 10.2147/dddt.s464004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Apigenin is a natural flavonoid compound with promising potential for the attenuation of myocardial hypertrophy (MH). The compound can also modulate the expression of miR-185-5p that both promote MH and suppress autophagy. The current attempts to explain the anti-MH effect of apigenin by focusing on changes in miR-185-5p-mediated autophagy. Methods Hypertrophic symptoms were induced in rats using transverse aortic constriction (TAC) method and in cardiomyocytes using Ang II and then handled with apigenin. Changes in myocardial function and structure and cell viability and surface area were measured. The role of miR-185-5p in the anti-MH function of apigenin was explored by detecting changes in autophagic processes and miR-185-5p/SREBP2 axis. Results TAC surgery induced weight increase, structure destruction, and collagen deposition in hearts of model rats. Ang II suppresses cardiomyocyte viability and increased cell surface area. All these impairments were attenuated by apigenin and were associated with the restored level of autophagy. At the molecular level, the expression of miR-185-5p was up-regulated by TAC, while the expression of SREBP2 was down-regulated, which was reserved by apigenin both in vivo and in vitro. The induction of miR-185-5p in cardiomyocytes could counteracted the protective effects of apigenin. Discussion Collectively, the findings outlined in the current study highlighted that apigenin showed anti-MH effects. The effects were related to the inhibition of miR-185-5p and activation of SREBP, which contributed to the increased autophagy.
Collapse
Affiliation(s)
- Na Yan
- Department of Vasculocardiology, Ganzhou People’s Hospital, Ganzhou, People’s Republic of China
| | - Xianggui Wang
- Department of Vasculocardiology, Ganzhou People’s Hospital, Ganzhou, People’s Republic of China
| | - Zufang Xu
- Department of Vasculocardiology, Ganzhou People’s Hospital, Ganzhou, People’s Republic of China
| | - Linling Zhong
- Department of Vasculocardiology, Ganzhou People’s Hospital, Ganzhou, People’s Republic of China
| | - Jiangyong Yang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
| |
Collapse
|
3
|
Suominen A, Saldo Rubio G, Ruohonen S, Szabó Z, Pohjolainen L, Ghimire B, Ruohonen ST, Saukkonen K, Ijas J, Skarp S, Kaikkonen L, Cai M, Wardlaw SL, Ruskoaho H, Talman V, Savontaus E, Kerkelä R, Rinne P. α-Melanocyte-stimulating hormone alleviates pathological cardiac remodeling via melanocortin 5 receptor. EMBO Rep 2024; 25:1987-2014. [PMID: 38454158 PMCID: PMC11014855 DOI: 10.1038/s44319-024-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.
Collapse
Affiliation(s)
- Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Guillem Saldo Rubio
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saku Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karla Saukkonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jani Ijas
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eriika Savontaus
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
4
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
5
|
Ma GB, Chen WX, Zhan FJ, Xie WJ, Chen RW, Chen H, Ye WL, Jiang Y, Xu JP. Circ_0002295 facilitated myocardial fibrosis progression through the miR-1287/CXCR2 axis. Clin Exp Pharmacol Physiol 2023; 50:944-953. [PMID: 37688444 DOI: 10.1111/1440-1681.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Myocardial fibrosis (MF) is involved in hypertension, myocardial infarction and heart failure. It has been reported that circular RNA (circRNA) is a key regulatory factor of MF progression. In this study, we revealed that circ_0002295 and CXCR2 were elevated, and miR-1287 was reduced in MF patients. Knockdown of circ_0002295 effectively suppressed the proliferation, migration and MF progression. Circ_0002295 was the molecular sponge of miR-12878, and miR-1287 inhibitor reversed the biological functions of circ_0002295 on the myocardial fibrosis. CXCR2 was a target gene of miR-1287, and CXCR2 silencing relieved the impacts of miR-1287 inhibitor on cardiac myofibroblasts. Circ_0002295 promoted MF progression by regulating the miR-1287/CXCR2 axis, providing a possible circRNA-targeted therapy for MF.
Collapse
Affiliation(s)
- Guo-Bin Ma
- Department of Cardiology, Fuzhou Second Hospital, Fuzhou, China
| | - Wen-Xu Chen
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Fang-Jie Zhan
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Wen-Jing Xie
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Rong-Wei Chen
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Hong Chen
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Wei-Lin Ye
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Yu Jiang
- Department of Clinical Laboratory, Fuzhou Second Hospital, Fuzhou, China
| | - Jian-Ping Xu
- Department of Clinical Laboratory Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Arias C, Salazar LA. Ethanolic Extract of Propolis Modulates Autophagy-Related microRNAs in Osteoarthritic Chondrocytes. Int J Mol Sci 2023; 24:14767. [PMID: 37834215 PMCID: PMC10573165 DOI: 10.3390/ijms241914767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced by aging and closely linked to cartilage health. This correlation between autophagy, cell death, and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably, the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate through in silico analysis and postulate five microRNAs that could regulate autophagy proteins (AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a, miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted to substantiate these promising observations.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
8
|
Chen W, Ma L, Shao J, Bi C, Li J, Yang W. miR-185-5p / ATG101 axis alleviated intestinal barrier damage in intestinal ischemia reperfusion through autophagy. Heliyon 2023; 9:e18325. [PMID: 37539299 PMCID: PMC10395547 DOI: 10.1016/j.heliyon.2023.e18325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Intestinal ischemia-reperfusion (II/R) is a common pathological injury in clinic, and the systemic inflammatory response it causes will lead to multiple organ damage and functional failure. miR-185-5p has been reported to be a regulator of inflammatory response and autophagy, but whether it participates in the regulation of autophagy in II/R is still unclear. Therefore, we aimed to explore the mechanism of miR-185-5p regulating intestinal barrier injury in (II/R). Methods Caco-2 cells was induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to establish II/R model. The superior mesenteric artery of C57BL/6 mice was clamped for 45 min and then subjected to reperfusion for 4 h for the establishment of II/R mice model. miR-185-5p mimic, miR-185-5p inhibitor, pcDNA-autophagy-related 101 (ATG101) were respectively transfected into Caco-2 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to assess miR-185-5p expression. Western blot detected the level of ATG101 and tight junction-associated proteins ZO1, Occludin, E-cadherin, β-catenin, as well as autophagy markers ATG5, ATG12, LC3Ⅰ/Ⅱ, Beclin1 and SQSTM1. Transepithelial electrical resistance (TEER) values was detected by a resistance meter. FITC-Dextran was performed to measure cell permeability. 5-ethynyl-2'-deoxyuridine (EDU) staining measured cell proliferation. Transmission electron microscope was conducted to observe autophagosomes. Hematoxylin & eosin (H&E) staining observed the damage of mice intestinal. Immunohistochemistry (IHC) measured the percentage of ki67 positive cells. TdT-mediated dUTP nick-end labeling (TUNEL) assay assessed cell apoptosis in intestinal tissues of II/R. Dual-luciferase assay verified the targeting relationship between miR-185-5p and ATG101.Results miR-185-5p was overexpressed in OGD/R-induced Caco-2 cells and intestinal tissues of II/R mice. Knocking down miR-185-5p markedly promoted autophagy and TEER values, reduced cell permeability, and alleviated intestinal barrier damage. ATG101 was a target of miR-185-5p, and overexpression of ATG101 promoted autophagy and dampened OGD/R-induced intestinal barrier damage. Overexpression of miR-185-5p reversed the effect of overexpressed ATG101 on OGD/R-induced Caco-2 cells. Conclusion Knockdown of miR-185-5p enhanced autophagy and alleviated II/R intestinal barrier damage by targeting ATG101.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yang
- Corresponding author. Department of Anesthesiology, The first affiliated hospital of Kunming medical University, No.295 Xichang Rd, Kunming 650032, Yunnan Province, China
| |
Collapse
|
9
|
Zhang L, Zhang G, Lu Y, Gao J, Qin Z, Xu S, Wang Z, Xu Y, Yang Y, Zhang J, Tang J. Differential expression profiles of plasma exosomal microRNAs in dilated cardiomyopathy with chronic heart failure. J Cell Mol Med 2023. [PMID: 37243441 DOI: 10.1111/jcmm.17789] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
As one of the most prevalent heritable cardiovascular diseases, dilated cardiomyopathy (DCM) induces cardiac insufficiency and dysfunction. Although genetic mutation has been identified one of the causes of DCM, the usage of genetic biomarkers such as RNAs for DCM early diagnosis is still being overlooked. In addition, the alternation of RNAs could reflect the progression of the diseases, as an indicator for the prognosis of patients. Therefore, it is beneficial to develop genetic based diagnostic tool for DCM. RNAs are often unstable within circulatory system, leading to the infeasibility for clinical application. Recently discovered exosomal miRNAs have the stability that is then need for diagnostic purpose. Hence, fully understanding of the exosomal miRNA within DCM patients is vital for clinical translation. In this study, we employed the next generation sequencing based on the plasma exosomal miRNAs to comprehensively characterize the miRNAs expression in plasma exosomes from DCM patients exhibiting chronic heart failure (CHF) compared to healthy individuals. A complex landscape of differential miRNAs and target genes in DCM with CHF patients were identified. More importantly, we discovered that 92 differentially expressed miRNAs in DCM patients undergoing CHF were correlated with several enriched pathways, including oxytocin signalling pathway, circadian entrainment, hippo signalling pathway-multiple species, ras signalling pathway and morphine addiction. This study reveals the miRNA expression profiles in plasma exosomes in DCM patients with CHF, and further reveal their potential roles in the pathogenesis of it, presenting a new direction for clinical diagnosis and management of DCM patients with CHF.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jiamin Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Shuai Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Zeyu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
10
|
Zhelankin AV, Iulmetova LN, Ahmetov II, Generozov EV, Sharova EI. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel) 2023; 13:659. [PMID: 36983815 PMCID: PMC10056610 DOI: 10.3390/life13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ratio of fast- and slow-twitch fibers in human skeletal muscle is variable and largely determined by genetic factors. In this study, we investigated the contribution of microRNA (miRNA) in skeletal muscle fiber type composition. The study involved biopsy samples of the vastus lateralis muscle from 24 male participants with distinct fiber type ratios. The miRNA study included samples from five endurance athletes and five power athletes with the predominance of slow-twitch (61.6-72.8%) and fast-twitch (69.3-80.7%) fibers, respectively. Total and small RNA were extracted from tissue samples. Total RNA sequencing (N = 24) revealed 352 differentially expressed genes between the groups with the predominance of fast- and slow-twitch muscle fibers. Small RNA sequencing showed upregulation of miR-206, miR-501-3p and miR-185-5p, and downregulation of miR-499a-5p and miR-208-5p in the group of power athletes with fast-twitch fiber predominance. Two miRtronic miRNAs, miR-208b-3p and miR-499a-5p, had strong correlations in expression with their host genes (MYH7 and MYH7B, respectively). Correlations between the expression of miRNAs and their experimentally validated messenger RNA (mRNA) targets were calculated, and 11 miRNA-mRNA interactions with strong negative correlations were identified. Two of them belonged to miR-208b-3p and miR-499a-5p, indicating their regulatory links with the expression of CDKN1A and FOXO4, respectively.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Liliia N. Iulmetova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
11
|
Molecular Approaches and Echocardiographic Deformation Imaging in Detecting Myocardial Fibrosis. Int J Mol Sci 2022; 23:ijms231810944. [PMID: 36142856 PMCID: PMC9501415 DOI: 10.3390/ijms231810944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022] Open
Abstract
The pathological remodeling of myocardial tissue is the main cause of heart diseases. Several processes are involved in the onset of heart failure, and the comprehension of the mechanisms underlying the pathological phenotype deserves special attention to find novel procedures to identify the site of injury and develop novel strategies, as well as molecular druggable pathways, to counteract the high degree of morbidity associated with it. Myocardial fibrosis (MF) is recognized as a critical trigger for disruption of heart functionality due to the excessive accumulation of extracellular matrix proteins, in response to an injury. Its diagnosis remains focalized on invasive techniques, such as endomyocardial biopsy (EMB), or may be noninvasively detected by cardiac magnetic resonance imaging (CMRI). The detection of MF by non-canonical markers remains a challenge in clinical practice. During the last two decades, two-dimensional (2D) speckle tracking echocardiography (STE) has emerged as a new non-invasive imaging modality, able to detect myocardial tissue abnormalities without specifying the causes of the underlying histopathological changes. In this review, we highlighted the clinical utility of 2D-STE deformation imaging for tissue characterization, and its main technical limitations and criticisms. Moreover, we focalized on the importance of coupling 2D-STE examination with the molecular approaches in the clinical decision-making processes, in particular when the 2D-STE does not reflect myocardial dysfunction directly. We also attempted to examine the roles of epigenetic markers of MF and hypothesized microRNA-based mechanisms aiming to understand how they match with the clinical utility of echocardiographic deformation imaging for tissue characterization and MF assessment.
Collapse
|