Callon M, Luder D, Malär AA, Wiegand T, Římal V, Lecoq L, Böckmann A, Samoson A, Meier BH. High and fast: NMR protein-proton side-chain assignments at 160 kHz and 1.2 GHz.
Chem Sci 2023;
14:10824-10834. [PMID:
37829013 PMCID:
PMC10566471 DOI:
10.1039/d3sc03539e]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The NMR spectra of side-chain protons in proteins provide important information, not only about their structure and dynamics, but also about the mechanisms that regulate interactions between macromolecules. However, in the solid-state, these resonances are particularly difficult to resolve, even in relatively small proteins. We show that magic-angle-spinning (MAS) frequencies of 160 kHz, combined with a high magnetic field of 1200 MHz proton Larmor frequency, significantly improve their spectral resolution. We investigate in detail the gain for MAS frequencies between 110 and 160 kHz MAS for a model sample as well as for the hepatitis B viral capsid assembled from 120 core-protein (Cp) dimers. For both systems, we found a significantly improved spectral resolution of the side-chain region in the 1H-13C 2D spectra. The combination of 160 kHz MAS frequency with a magnetic field of 1200 MHz, allowed us to assign 61% of the aliphatic protons of Cp. The side-chain proton assignment opens up new possibilities for structural studies and further characterization of protein-protein or protein-nucleic acid interactions.
Collapse