1
|
Razmilic V, Asenjo JA, Martínez I. Predictions to Increase Lasso Peptide Production in the Heterologous Host Streptomyces coelicolor M1152. Biotechnol Bioeng 2024. [PMID: 39734270 DOI: 10.1002/bit.28917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Production of specialized metabolites are restricted to the metabolic capabilities of the organisms. Genome-scale models (GEM)s are useful to study the whole metabolism and to find metabolic engineering targets to increase the yield of a target compound. In this work we use a modified model of Streptomyces coelicolor M145 to simulate the production of lagmysin A (LP4) and the novel lagmysin B (LP2) lasso peptide, in the heterologous host Streptomyces coelicolor M1152. Overexpression targets were identified using the flux scanning based on enforced objective flux (FSEOF) algorithm and flux variability analysis (FVA), considering growth in minimum and in complex medium. Thirteen reactions were found as candidate metabolic engineering targets for both lasso peptides considering both settings. We propose the overexpression of enzymes of the glycolysis pathway (GAPD, PGK, PGM and ENO) and leucine biosynthesis (IPPS, IPPMIb, IPPMIa, IPMD and OMCDC) to enhance the production of either lagmysin A or B.
Collapse
Affiliation(s)
- Valeria Razmilic
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Irene Martínez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Janzing NBM, Niehoff M, Sander W, Senges CHR, Schäkermann S, Bandow JE. A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS E-based molecular networking. Microbiol Spectr 2024; 12:e0042324. [PMID: 38864648 PMCID: PMC11218499 DOI: 10.1128/spectrum.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Clorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways. IMPORTANCE The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.
Collapse
Affiliation(s)
- Niklas B. M. Janzing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Maurice Niehoff
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Wolfram Sander
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
4
|
Cinar B, Demir Z, Tunca S. Heterologous expression of 8-demethyl-tetracenomycin (8-dmtc) affected Streptomyces coelicolor life cycle. Braz J Microbiol 2021; 52:1107-1118. [PMID: 33876406 DOI: 10.1007/s42770-021-00499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022] Open
Abstract
Heterologous hosts are highly important to detect the expression of biosynthetic gene clusters that are cryptic or poorly expressed in their natural hosts. To investigate whether actinorhodin-overproducer Streptomyces coelicolor ∆ppk mutant strain could be a possible prototype as a heterologous expression host, a cosmid containing most of the elm gene cluster of Streptomyces olivaceus Tü2353 was integrated into chromosomes of both S. coelicolor A3(2) and ∆ppk strains. Interestingly, it was found that the production of tetracyclic polyketide 8-demethyl-tetracenomycin (8-DMTC) by recombinant strains caused significant changes in the morphology of cells. All the pellets and clumps were disentangled and mycelia were fragmented in the recombinant strains. Moreover, they produce neither pigmented antibiotics nor agarase and did not sporulate. By eliminating the elm biosynthesis genes from the cosmid, we showed that the morphological properties of recombinants were caused by the production of 8-DMTC. Extracellular application of 8-DMTC on S. coelicolor wild-type cells caused a similar phenotype with the 8-DMTC-producing recombinant strains. The results of this study may contribute to the understanding of the effect of 8-DMTC in Streptomyces since the morphological changes that we have observed have not been reported before. It is also valuable in that it provides useful information about the use of Streptomyces as hosts for the heterologous expression of 8-DMTC.
Collapse
Affiliation(s)
- Buse Cinar
- Molecular Biology and Genetics Department, Faculty of Science, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.,Institute of Microbiology, Leibniz University Hannover, D-30419, Hannover, Germany
| | - Zeynep Demir
- Molecular Biology and Genetics Department, Faculty of Science, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Sedef Tunca
- Molecular Biology and Genetics Department, Faculty of Science, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
5
|
Kiske C, Erxleben A, Lucas X, Willmann L, Klementz D, Günther S, Römer W, Kammerer B. Metabolic pathway monitoring of phenalinolactone biosynthesis from Streptomyces sp. Tü6071 by liquid chromatography/mass spectrometry coupling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1459-1467. [PMID: 24861595 DOI: 10.1002/rcm.6920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE A rapid and precise analytical method for the investigation of natural products is required for pathway monitoring of the biosynthesis of secondary metabolites. Phenalinolactones, used in antibiotic research, are produced by Streptomyces sp. Tü6071. For the analysis of those compounds, prior to mass spectrometric analysis, an efficient separation technique is required. METHODS For the identification of phenalinolactones from liquid cultures of Streptomyces sp. Tü6071, a new method comprising the combination of solid-phase extraction (SPE) prior to liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was established. MS/MS product ion scans were applied for phenalinolactone detection and structure elucidation, performed in negative mode and optimized for sensitivity and specificity. For the discovery of new intermediates, a MS/MS precursor ion scan was applied. RESULTS Analysis of the extracts revealed that the Oasis® MAX cartridge, containing a quaternary amine functionality, is the most efficient SPE material for purification of phenalinolactones, since it allowed sufficient enrichment and detection of intermediates from the biosynthetic pathway by LC/ESI-MS/MS. Using the precursor ion scan technique, two new secondary metabolites, PL IM1 with m/z 672.6 and PL IM2 with m/z 433.3, have been detected. The structures of the new intermediates are postulated and arranged into the biosynthetic pathway of phenalinolactones. CONCLUSIONS A precise analytical method was established for the identification of phenalinolactones by combining purification from Streptomyces using SPE prior to LC/ESI-MS/MS. By optimising LC/ESI-MS/MS settings, this method has been successfully applied for pathway monitoring of secondary metabolites. Application of a precursor ion scan allowed for the identification of unknown intermediates in biosynthetic pathways.
Collapse
Affiliation(s)
- Christiane Kiske
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104, Freiburg i. Br., Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng 2013; 19:69-78. [DOI: 10.1016/j.ymben.2013.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/27/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022]
|
7
|
Zakrzewski P, Medema MH, Gevorgyan A, Kierzek AM, Breitling R, Takano E. MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models. PLoS One 2012; 7:e51511. [PMID: 23272111 PMCID: PMC3522732 DOI: 10.1371/journal.pone.0051511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/01/2012] [Indexed: 12/02/2022] Open
Abstract
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads.
Collapse
Affiliation(s)
- Piotr Zakrzewski
- Department of Microbial Physiology, University of Groningen, Groningen, The Netherlands
- Groningen Bioinformatics Centre, University of Groningen, Groningen, The Netherlands
| | - Marnix H. Medema
- Department of Microbial Physiology, University of Groningen, Groningen, The Netherlands
- Groningen Bioinformatics Centre, University of Groningen, Groningen, The Netherlands
| | - Albert Gevorgyan
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrzej M. Kierzek
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Rainer Breitling
- Groningen Bioinformatics Centre, University of Groningen, Groningen, The Netherlands
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (RB); (ET)
| | - Eriko Takano
- Department of Microbial Physiology, University of Groningen, Groningen, The Netherlands
- * E-mail: (RB); (ET)
| |
Collapse
|
8
|
Wang J, Xiong Z, Meng H, Wang Y, Wang Y. Synthetic biology triggers new era of antibiotics development. Subcell Biochem 2012; 64:95-114. [PMID: 23080247 DOI: 10.1007/978-94-007-5055-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a discipline to design and construct organisms with desired properties, synthetic biology has generated rapid progresses in the last decade. Combined synthetic biology with the traditional process, a new universal workflow for drug development has been becoming more and more attractive. The new methodology exhibits more efficient and inexpensive comparing to traditional methods in every aspect, such as new compounds discovery & screening, process design & drug manufacturing. This article reviews the application of synthetic biology in antibiotics development, including new drug discovery and screening, combinatorial biosynthesis to generate more analogues and heterologous expression of biosynthetic gene clusters with systematic engineering the recombinant microbial systems for large scale production.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
9
|
Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 2011; 13:414-25. [DOI: 10.1016/j.ymben.2011.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
10
|
Flinspach K, Westrich L, Kaysser L, Siebenberg S, Gomez-Escribano JP, Bibb M, Gust B, Heide L. Heterologous expression of the biosynthetic gene clusters of coumermycin A1, clorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strains. Biopolymers 2010; 93:823-32. [DOI: 10.1002/bip.21493] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Abstract
Many bioactive compounds contain as part of their molecules one or more deoxysugar units. Their presence in the final compound is generally necessary for biological activity. These sugars derive from common monosaccharides, like d-glucose, which have lost one or more hydroxyl groups (monodeoxysugars, dideoxysugars, trideoxysugars) during their biosynthesis. These deoxysugars are transferred to the final molecule by the action of a glycosyltransferase. Here, we first summarize the different biosynthetic steps required for the generation of the different families of deoxysugars, including those containing extra methyl or amino groups, or tailoring modifications of the glycosylated compounds. We then give examples of several strategies for modification of the glycosylation pattern of a given bioactive compound: inactivation of genes involved in the biosynthesis of deoxysugars; heterologous expression of genes for the biosynthesis or transfer of a specific deoxysugar; and combinatorial biosynthesis (including the use of gene cassette plasmids). Finally, we report techniques for the isolation and detection of the new glycosylated derivatives generated using these strategies.
Collapse
Affiliation(s)
- Felipe Lombó
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
12
|
Heide L. Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins. Biotechnol Adv 2009; 27:1006-1014. [PMID: 19463934 DOI: 10.1016/j.biotechadv.2009.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A(1) are inhibitors of gyrase and highly effective antibacterial agents. Their biosynthetic gene clusters have been cloned from the respective Streptomyces producer strains, and the function of nearly all genes contained therein has been elucidated by genetic and biochemical methods. Efficient methods have been developed for the genetic manipulation and the heterologous expression of the clusters, and more than 100 new derivatives of these antibiotics have been generated by metabolic engineering, mutasynthesis and chemoenzymatic synthesis, providing a model for the power of genetic and genomic methods for the generation of new bioactive compounds.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmaceutical Biology, Pharmaceutical Institute, Tübingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Caravano A, Field RA, Percy JM, Rinaudo G, Roig R, Singh K. Developing an asymmetric, stereodivergent route to selected 6-deoxy-6-fluoro-hexoses. Org Biomol Chem 2009; 7:996-1008. [PMID: 19225683 DOI: 10.1039/b815342f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free radical bromination and nucleophilic fluorination allows the conversion of methyl sorbate into the 6-fluoro analogue which undergoes sequential asymmetric dihydroxylation reactions. A range of 6-deoxy-6-fluorosugars were prepared by using different combinations of ligands. While the enantiomeric excesses obtained were comparable to those from other 6-substituted sorbates, the regioselectivity of dihydroxylation was moderate, with both 2,3- and 4,5-diols being obtained. A successful temporary persilylation strategy was evolved to convert the products of dihydroxylation rapidly to the fluorosugars 6-deoxy-6-fluoro-L-idose, 6-fluoro-L-fucose and 6-deoxy-6-fluoro-D-galactose, which were obtained in overall yields of 4%, 6% and 8% from methyl 6-fluoro-hexa-2E,4E-dienoate .
Collapse
Affiliation(s)
- Audrey Caravano
- Department of Chemistry, University of Leicester, University Road, Leicester LE17RH, UK
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Wase NV, Wright PC. Systems biology of cyanobacterial secondary metabolite production and its role in drug discovery. Expert Opin Drug Discov 2008; 3:903-29. [DOI: 10.1517/17460441.3.8.903] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nishikant V Wase
- The University of Sheffield, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, Mappin St., Sheffield, S1 3JD, UK ;
| | - Phillip C Wright
- The University of Sheffield, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, Mappin St., Sheffield, S1 3JD, UK ;
| |
Collapse
|
16
|
Olano C, Lombó F, Méndez C, Salas JA. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 2008; 10:281-92. [PMID: 18674632 DOI: 10.1016/j.ymben.2008.07.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/25/2022]
Abstract
Production of secondary metabolites is a process influenced by several physico-chemical factors including nutrient supply, oxygenation, temperature and pH. These factors have been traditionally controlled and optimized in industrial fermentations in order to enhance metabolite production. In addition, traditional mutagenesis programs have been used by the pharmaceutical industry for strain and production yield improvement. In the last years, the development of recombinant DNA technology has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathways. These efforts are usually focused in redirecting precursor metabolic fluxes, deregulation of biosynthetic pathways and overexpression of specific enzymes involved in metabolic bottlenecks. In addition, efforts have been made for the heterologous expression of biosynthetic gene clusters in other organisms, looking not only for an increase of production levels but also to speed the process by using rapidly growing and easy to manipulate organisms compared to the producing organism. In this review, we will focus on these genetic approaches as applied to bioactive secondary metabolites produced by actinomycetes.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
17
|
Pageni BB, Oh TJ, Lee HC, Sohng JK. Metabolic engineering of noviose: heterologous expression of novWUS and generation of a new hybrid antibiotic, noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae YJ003-OTBP1. Biotechnol Lett 2008; 30:1609-15. [DOI: 10.1007/s10529-008-9733-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/16/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
|
18
|
King JD, Harmer NJ, Preston A, Palmer CM, Rejzek M, Field RA, Blundell TL, Maskell DJ. Predicting protein function from structure--the roles of short-chain dehydrogenase/reductase enzymes in Bordetella O-antigen biosynthesis. J Mol Biol 2007; 374:749-63. [PMID: 17950751 PMCID: PMC2279256 DOI: 10.1016/j.jmb.2007.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 11/16/2022]
Abstract
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Balibar CJ, Garneau-Tsodikova S, Walsh CT. Covalent CouN7 enzyme intermediate for acyl group shuttling in aminocoumarin biosynthesis. ACTA ACUST UNITED AC 2007; 14:679-90. [PMID: 17584615 DOI: 10.1016/j.chembiol.2007.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 05/01/2007] [Accepted: 05/17/2007] [Indexed: 11/20/2022]
Abstract
The last stages of assembly of the aminocoumarin antibiotics, clorobiocin and coumermycin A(1), which target the GyrB subunits of bacterial DNA gyrase, involve enzymatic transfer of the pyrrolyl-2-carbonyl acyl group from a carrier protein (CloN1/CouN1) to the 3'-OH of the noviosyl moiety of the antibiotic scaffold. The enzyme, CouN7, will catalyze both the forward and back reaction on both arms of the coumermycin scaffold. This occurs via an O-acyl-Ser(101)-CouN7 intermediate, as shown by transient labeling of the enzyme with [(14)C]acetyl-S-CouN1 as donor and by inactivating mutation of the active site, Ser(101), to Ala. The intermediacy of the pyrrolyl-2-carbonyl-O-CouN7 allows net pyrrole transfer between distinct aminocoumarin scaffolds, for example, between the descarbamoylnovobiocin scaffold and coumermycin A(1) and vice versa. CouN7 also allows shuttling of surrogate acyl groups between noviosyl-aminocoumarin scaffolds to generate new antibiotic variants.
Collapse
Affiliation(s)
- Carl J Balibar
- Department of Biological and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Salas JA, Méndez C. Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 2007; 15:219-32. [PMID: 17412593 DOI: 10.1016/j.tim.2007.03.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/22/2007] [Indexed: 11/24/2022]
Abstract
Bioactive natural products are frequently glycosylated with saccharide chains of different length, in which the sugars contribute to specific interactions with the biological target. Combinatorial biosynthesis approaches are being used in antibiotic-producing actinomycetes to generate derivatives with novel sugars in their architecture. Recent advances in this area indicate that glycosyltransferases involved in the biosynthesis of natural products have substrate flexibility regarding the sugar donor but also, less frequently, with respect to the aglycon acceptor. Therefore, the possibility exists of altering the glycosylation pattern of natural products, thus enabling an increase in the structural diversity of natural products.
Collapse
Affiliation(s)
- José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|