1
|
Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J. A Burkholderia cenocepacia-like environmental isolate strongly inhibits the plant fungal pathogen Zymoseptoria tritici. Appl Environ Microbiol 2024; 90:e0222223. [PMID: 38624199 PMCID: PMC11107150 DOI: 10.1128/aem.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.
Collapse
Affiliation(s)
- Tingting Song
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suyash Gupta
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yael Sorokin
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Frenkel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Seibold PS, Dörner S, Fricke J, Schäfer T, Beemelmanns C, Hoffmeister D. Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. Fungal Biol Biotechnol 2024; 11:4. [PMID: 38664850 PMCID: PMC11046786 DOI: 10.1186/s40694-024-00173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. RESULTS A comparative transcriptomic approach of gene expression in P. mexicana psilocybin non-producing vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis genes. The shikimate pathway genes trpE1, trpD, and trpB (encoding anthranilate synthase, anthranilate phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast, genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e., gateway enzymes for L-tryptophan-consuming pathways, were massively downregulated. Subsequently, IasA was heterologously produced in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior data of Psilocybe cubensis showed species-specific differences in how L-tryptophan metabolism genes are regulated, despite the close taxonomic relationship. CONCLUSIONS The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first time, insight in the coordination of mushroom primary and secondary metabolism.
Collapse
Affiliation(s)
- Paula Sophie Seibold
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Sebastian Dörner
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Janis Fricke
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Tim Schäfer
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christine Beemelmanns
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Saarland University, 66123, Saarbrücken, Germany
| | - Dirk Hoffmeister
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany.
| |
Collapse
|
3
|
Barreiro C, Albillos SM, García-Estrada C. Penicillium chrysogenum: Beyond the penicillin. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:143-221. [PMID: 38763527 DOI: 10.1016/bs.aambs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.
Collapse
Affiliation(s)
- Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica y Biología Molecular, Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain; Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| |
Collapse
|
4
|
Schoppel K, Trachtmann N, Korzin EJ, Tzanavari A, Sprenger GA, Weuster-Botz D. Metabolic control analysis enables rational improvement of E. coli L-tryptophan producers but methylglyoxal formation limits glycerol-based production. Microb Cell Fact 2022; 21:201. [PMID: 36195869 PMCID: PMC9531422 DOI: 10.1186/s12934-022-01930-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although efficient L-tryptophan production using engineered Escherichia coli is established from glucose, the use of alternative carbon sources is still very limited. Through the application of glycerol as an alternate, a more sustainable substrate (by-product of biodiesel preparation), the well-studied intracellular glycolytic pathways are rerouted, resulting in the activity of different intracellular control sites and regulations, which are not fully understood in detail. Metabolic analysis was applied to well-known engineered E. coli cells with 10 genetic modifications. Cells were withdrawn from a fed-batch production process with glycerol as a carbon source, followed by metabolic control analysis (MCA). This resulted in the identification of several additional enzymes controlling the carbon flux to L-tryptophan. RESULTS These controlling enzyme activities were addressed stepwise by the targeted overexpression of 4 additional enzymes (trpC, trpB, serB, aroB). Their efficacy regarding L-tryptophan productivity was evaluated under consistent fed-batch cultivation conditions. Although process comparability was impeded by process variances related to a temporal, unpredictable break-off in L-tryptophan production, process improvements of up to 28% with respect to the L-tryptophan produced were observed using the new producer strains. The intracellular effects of these targeted genetic modifications were revealed by metabolic analysis in combination with MCA and expression analysis. Furthermore, it was discovered that the E. coli cells produced the highly toxic metabolite methylglyoxal (MGO) during the fed-batch process. A closer look at the MGO production and detoxification on the metabolome, fluxome, and transcriptome level of the engineered E. coli indicated that the highly toxic metabolite plays a critical role in the production of aromatic amino acids with glycerol as a carbon source. CONCLUSIONS A detailed process analysis of a new L-tryptophan producer strain revealed that several of the 4 targeted genetic modifications of the E. coli L-tryptophan producer strain proved to be effective, and, for others, new engineering approaches could be derived from the results. As a starting point for further strain and process optimization, the up-regulation of MGO detoxifying enzymes and a lowering of the feeding rate during the last third of the cultivation seems reasonable.
Collapse
Affiliation(s)
- Kristin Schoppel
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching, Germany
| | - Natalia Trachtmann
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Emil J Korzin
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching, Germany
| | - Angelina Tzanavari
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching, Germany
| | - Georg A Sprenger
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748, Garching, Germany.
| |
Collapse
|
5
|
Huang Y, Zou K, Qing T, Feng B, Zhang P. Metagenomics and metatranscriptomics analyses of antibiotic synthesis in activated sludge. ENVIRONMENTAL RESEARCH 2022; 213:113741. [PMID: 35750126 DOI: 10.1016/j.envres.2022.113741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The generic of antibiotics is considered to be a main reason for the generation of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). However, little has been reported about the antibiotic biosynthesis by activated sludge. In this study, the distribution and expression of antibiotic biosynthetic genes (ABGs) in the floc sludge and biofilm from two WWTPs were deciphered using metagenomics and metatranscriptomics. The results showed that 2% of the community were in general well-linked to antibiotic production, indicating a non-negligible antibiotic synthetic ability of WWTPs. 93 ABGs belonging to 26 antibiotics were determined, among which aminoglycosides, β-lactams, ansamycins, peptides, macrolides were majority. The relative abundances of detected ABGs had a large interval, ranging from 0.000006% to 0.042%. The predominant antibiotic types of synthetic genes with higher relative expression levels were monobactams, penicillin & cephalosporins and streptomycin, primarily belonging to β-lactams and aminoglycosides. The hypothetical synthetic pathways of streptomycin synthesis and penicillin & cephalosporin synthesis were proposed. And the coexistence of ABGs and ARGs for these two antibiotics was also pronounced in activated sludge from meta-omics data. These findings for the first time demonstrated the antibiotic synthetic potential in activated sludges, revealing new sources of antibiotics and resistance genes in WWTPs, and thereby aggravating environmental pollution.
Collapse
Affiliation(s)
- Yu Huang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
6
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
7
|
Biosynthetic process and strain improvement approaches for industrial penicillin production. Biotechnol Lett 2022; 44:179-192. [PMID: 35000028 DOI: 10.1007/s10529-022-03222-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/01/2022] [Indexed: 11/02/2022]
Abstract
Penicillins and cephalosporins are the most important class of beta (β) lactam antibiotics, accounting for 65% total antibiotic market. Penicillins are produced by Penicillium rubens (popularly known as P. chrysogenum) were used to synthesize the active pharmaceutical intermediate (API), 6-aminopenicillinic acid (6-APA) employed in semisynthetic antibiotic production. The wild strains produce a negligible amount of penicillin (Pen). High antibiotic titre-producing P. chrysogenum strains are necessitating for industrial Pen production to meet global demand at lower prices. Classical strain improvement (CSI) approaches such as random mutagenesis, medium engineering, and fermentation are the cornerstones for high-titer Pen production. Since, Sir Alexander Fleming Discovery of Pen, great efforts are expanded to develop at a commercial scale antibiotics producing strains. Breakthroughs in genetic engineering, heterologous expression and CRISPR/Cas9 genome editing tools opened a new window for Pen production at a commercial scale to assure health crisis. The current state of knowledge, limitations of CSI and genetic engineering approaches to Pen production are discussed in this review.
Collapse
|
8
|
Schoppel K, Trachtmann N, Mittermeier F, Sprenger GA, Weuster-Botz D. Metabolic control analysis of L-tryptophan producing Escherichia coli applying targeted perturbation with shikimate. Bioprocess Biosyst Eng 2021; 44:2591-2613. [PMID: 34519841 PMCID: PMC8536597 DOI: 10.1007/s00449-021-02630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
L-tryptophan production from glycerol with Escherichia coli was analysed by perturbation studies and metabolic control analysis. The insertion of a non-natural shikimate transporter into the genome of an Escherichia coli L-tryptophan production strain enabled targeted perturbation within the product pathway with shikimate during parallelised short-term perturbation experiments with cells withdrawn from a 15 L fed-batch production process. Expression of the shikimate/H+-symporter gene (shiA) from Corynebacterium glutamicum did not alter process performance within the estimation error. Metabolic analyses and subsequent extensive data evaluation were performed based on the data of the parallel analysis reactors and the production process. Extracellular rates and intracellular metabolite concentrations displayed evident deflections in cell metabolism and particularly in chorismate biosynthesis due to the perturbations with shikimate. Intracellular flux distributions were estimated using a thermodynamics-based flux analysis method, which integrates thermodynamic constraints and intracellular metabolite concentrations to restrain the solution space. Feasible flux distributions, Gibbs reaction energies and concentration ranges were computed simultaneously for the genome-wide metabolic model, with minimum bias in relation to the direction of metabolic reactions. Metabolic control analysis was applied to estimate elasticities and flux control coefficients, predicting controlling sites for L-tryptophan biosynthesis. The addition of shikimate led to enhanced deviations in chorismate biosynthesis, revealing a so far not observed control of 3-dehydroquinate synthase on L-tryptophan formation. The relative expression of the identified target genes was analysed with RT-qPCR. Transcriptome analysis revealed disparities in gene expression and the localisation of target genes to further improve the microbial L-tryptophan producer by metabolic engineering.
Collapse
Affiliation(s)
- Kristin Schoppel
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Natalia Trachtmann
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Fabian Mittermeier
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Georg A Sprenger
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
9
|
García-Estrada C, Martín JF, Cueto L, Barreiro C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes (Basel) 2020; 11:E712. [PMID: 32604893 PMCID: PMC7348727 DOI: 10.3390/genes11060712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Penicillin biosynthesis by Penicillium chrysogenum is one of the best-characterized biological processes from the genetic, molecular, biochemical, and subcellular points of view. Several omics studies have been carried out in this filamentous fungus during the last decade, which have contributed to gathering a deep knowledge about the molecular mechanisms underlying improved productivity in industrial strains. The information provided by these studies is extremely useful for enhancing the production of penicillin or other bioactive secondary metabolites by means of Biotechnology or Synthetic Biology.
Collapse
Affiliation(s)
- Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Juan F. Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain;
| | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain
| |
Collapse
|
10
|
Wang G, Haringa C, Tang W, Noorman H, Chu J, Zhuang Y, Zhang S. Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses. Biotechnol Bioeng 2019; 117:844-867. [PMID: 31814101 DOI: 10.1002/bit.27243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and fluxomics within the goal of synthetic biology has arrived at generating the desired bioproducts with improved bioconversion efficiency. Absolute metabolite quantification by isotope dilution mass spectrometry represents a functional readout of cellular biochemistry and contributes to the establishment of metabolic (structured) models required in systems metabolic engineering. In industrial practices, population heterogeneity arising from fluctuating nutrient availability frequently leads to performance losses, that is reduced commercial metrics (titer, rate, and yield). Hence, the development of more stable producers and more predictable bioprocesses can benefit from a quantitative understanding of spatial and temporal cell-to-cell heterogeneity within industrial bioprocesses. Quantitative metabolomics analysis and metabolic modeling applied in computational fluid dynamics (CFD)-assisted scale-down simulators that mimic industrial heterogeneity such as fluctuations in nutrients, dissolved gases, and other stresses can procure informative clues for coping with issues during bioprocessing scale-up. In previous studies, only limited insights into the hydrodynamic conditions inside the industrial-scale bioreactor have been obtained, which makes case-by-case scale-up far from straightforward. Tracking the flow paths of cells circulating in large-scale bioreactors is a highly valuable tool for evaluating cellular performance in production tanks. The "lifelines" or "trajectories" of cells in industrial-scale bioreactors can be captured using Euler-Lagrange CFD simulation. This novel methodology can be further coupled with metabolic (structured) models to provide not only a statistical analysis of cell lifelines triggered by the environmental fluctuations but also a global assessment of the metabolic response to heterogeneity inside an industrial bioreactor. For the future, the industrial design should be dependent on the computational framework, and this integration work will allow bioprocess scale-up to the industrial scale with an end in mind.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Cees Haringa
- Transport Phenomena, Chemical Engineering Department, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Wenjun Tang
- DSM Biotechnology Center, Delft, The Netherlands
| | - Henk Noorman
- DSM Biotechnology Center, Delft, The Netherlands.,Bioprocess Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Tröndle J, Schoppel K, Bleidt A, Trachtmann N, Sprenger GA, Weuster-Botz D. Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments. J Biotechnol 2019; 307:15-28. [PMID: 31639341 DOI: 10.1016/j.jbiotec.2019.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
E. coli strain NT1259 /pF112aroFBLkan was able to produce 14.3 g L-1 L-tryptophan within 68 h in a fed-batch process from glycerol on a 15 L scale. To gain detailed insight into metabolism of this E. coli strain in the fed-batch process, a sample of L-tryptophan producing cells was withdrawn after 47 h, was separated rapidly and then resuspended in four parallel stirred-tank bioreactors with fresh media. Four different carbon sources (glucose, glycerol, succinate, pyruvate) were supplied individually with varying feeding rates within 19 min and the metabolic reactions of the cells in the four parallel reactors were analyzed by quantification of extracellular and intracellular substrate, product and metabolite concentrations. Data analysis allowed the estimation of intracellular carbon fluxes and of thermodynamic limitations concerning intracellular concentrations and reaction energies. Carbon fluxes and intracellular metabolite concentrations enabled the estimation of elasticities and flux control coefficients by applying metabolic control analysis making use of a metabolic model considering 48 enzymatic reactions and 56 metabolites. As the flux control coefficients describe connections between enzyme activities and metabolic fluxes, they reveal genetic targets for strain improvement. Metabolic control analysis of the recombinant E. coli cells withdrawn from the fed-batch production process clearly indicated that (i) the supply of two precursors for L-tryptophan biosynthesis, L-serine and phosphoribosyl-pyrophosphate, as well as (ii) the formation of aromatic byproducts and (iii) the enzymatic steps of igps and trps2 within the L-tryptophan biosynthesis pathway have major impact on fed-batch production of L-tryptophan from glycerol and should be the targets for further strain improvements.
Collapse
Affiliation(s)
- Julia Tröndle
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Kristin Schoppel
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Arne Bleidt
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Natalia Trachtmann
- University of Stuttgart, Institute of Microbiology, Allmandring 31, 70569, Stuttgart, Germany
| | - Georg A Sprenger
- University of Stuttgart, Institute of Microbiology, Allmandring 31, 70569, Stuttgart, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
12
|
Deng X, Yang Z, Chen R. Study of characteristics on metabolism of Penicillium chrysogenum F1 during bioleaching of heavy metals from contaminated soil. Can J Microbiol 2019; 65:629-641. [DOI: 10.1139/cjm-2018-0624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Penicillium chrysogenum F1 is very efficient in bioleaching heavy metals from the soil and is used for that purpose. We found that F1 can extract 19.8 mg Cd, Cu, Pb, and Zn from 2.5 g soil; the total heavy metals’ bioleaching ratio was 60.4%. In this study, the bioleaching mechanism was investigated by means of metabonomics; different metabolite ions were screened (relative standard deviation >30%) and analyzed using clustering, univariate and multivariate analysis. Statistical analyses via Volcano Plot, principal component analysis, and partial least square discriminant analysis models revealed a difference between Ctrl 7 (the controls cultured and sampled on day 7) and Ctrl 15 (the controls cultured and sampled on day 15). Samp 15 (the samples cultured with heavy-metal-contaminated soil) was significantly different from Ctrl 7 and Ctrl 15. Analysis of the different ions demonstrated that the glucose catabolism pathways of glycolysis and the tricarboxylic acid (TCA) cycle were enhanced, and glucose anabolism through the pentose phosphate pathway was inhibited during bioleaching. At the same time, the metabolism of glutathione was also downregulated. Therefore, the catabolism of glucose was unaffected by the addition of heavy-metal-contaminated soil, and increasing glucose is beneficial to catabolism. The extraction of metals is mainly attributed to the metabolites of the TCA cycle.
Collapse
Affiliation(s)
- Xinhui Deng
- College of Life Science and Chemistry of Hunan University of Technology, Hunan Zhuzhou 412007, China
| | - Zhihui Yang
- College of Metallurgy and Environment of Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hunan Changsha 410083, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry Science and Technology, Hunan Changsha 410007, China
| |
Collapse
|
13
|
Hammerl R, Frank O, Dietz M, Hirschmann J, Hofmann T. Tyrosine Induced Metabolome Alterations of Penicillium roqueforti and Quantitation of Secondary Key Metabolites in Blue-Mold Cheese. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8500-8509. [PMID: 31298534 DOI: 10.1021/acs.jafc.9b03237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To map qualitative and quantitative metabolome alterations when Penicillium roqueforti is grown in an environment where l-tyrosine levels are perturbed, the recently established differential off-line LC-NMR (DOLC-NMR) approach was successfully applied in connection with an absolute metabolite quantitation using a quantitative 1H NMR protocol following the ERETIC 2 (Electronic REference To access In vivo Concentrations) methodology. Among the 23 influenced metabolites, amino acid degradation products like 2-(4-hydroxyphenyl)acetic acid and 2-(3,4-dihydroxyphenyl)acetic acid underwent a tremendous upregulation in the amino acid perturbed approach. Moreover, the output of secondary metabolites like andrastin A, eremofortin B, and the tetrapeptide d-Phe-l-Val-d-Val-l-Tyr was affected in the case of the presence or absence of the added aromatic amino acid. Furthermore, the isolated secondary metabolites of P. roqueforti have been quantified for the first time in five divergent Penicillium isolates by means of a validated LC-ECHO-MS/MS method. This technique is used to compensate the effect of co-extracted matrix compounds during the analysis and to utilize quasi-internal standards to quantify all metabolites of interest accurately. This screening outlined the great variety between the different fungi of the same species. The metabolite spectra of wild-type fungi included more toxic intermediates compared to a selected fungi used as a starter culture for blue-mold cheese production. In addition, these secondary metabolites were quantified in commercially available white- and blue-mold cheese samples. The main differences between the analyte profiles of white and blue cheeses were linked to the impact of the used starter culture. Specific metabolites detected from P. roqueforti like andrastin A and B or roquefortine C could not be detected in white cheese. Among the blue cheese samples, different metabolite pattern could be observed regarding various P. roqueforti starter cultures.
Collapse
Affiliation(s)
- Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Maximilian Dietz
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Julia Hirschmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| |
Collapse
|
14
|
Wang G, Wang X, Wang T, Gulik W, Noorman HJ, Zhuang Y, Chu J, Zhang S. Comparative Fluxome and Metabolome Analysis of Formate as an Auxiliary Substrate for Penicillin Production in Glucose‐Limited Cultivation of
Penicillium chrysogenum. Biotechnol J 2019; 14:e1900009. [DOI: 10.1002/biot.201900009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Xinxin Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Tong Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Walter Gulik
- Cell Systems Engineering, Department of BiotechnologyDelft University of Technology Delft The Netherlands
| | - Henk J. Noorman
- DSM Biotechnology Center Delft The Netherlands
- Department of BiotechnologyDelft University of Technology Delft The Netherlands
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
15
|
Wang G, Chu J, Zhuang Y, van Gulik W, Noorman H. A dynamic model-based preparation of uniformly-13C-labeled internal standards facilitates quantitative metabolomics analysis of Penicillium chrysogenum. J Biotechnol 2019; 299:21-31. [DOI: 10.1016/j.jbiotec.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023]
|
16
|
Barreiro C, García-Estrada C. Proteomics and Penicillium chrysogenum: Unveiling the secrets behind penicillin production. J Proteomics 2018; 198:119-131. [PMID: 30414515 DOI: 10.1016/j.jprot.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 01/29/2023]
Abstract
Discovery, industrial production and clinical applications of penicillin, together with scientific findings on penicillin biosynthesis and its complex regulation, are model milestones of the historical evolution of the most recognized 'magic bullet' against microbial infections available in the worldwide market. Thousands of tons of penicillin produced nowadays are the result of a huge number of technical, industrial and scientific tackled and solved challenges. This combination of, sometimes unsuspected, findings has given Proteomics the chance to support the understanding of the physiology of the high-producing fungal strains and the development of enhanced mutants by means of inverse engineering. Thus, this review, which is part of the special issue entitled "A Tribute to J. Proteomics on its 10th Anniversary", describes how Proteomics has contributed to characterize different aspects related to penicillin production in Penicillium chrosogenum. It covers from global proteome characterizations (intracellular, extracellular and microbodies) to proteome-wide comparative analyses between different penicillin-producing mutant strains and conditions, paying special attention to the methodologies used, as well as to the most important outcomes. As a result, a guide of Proteomics approaches applied to the characterization of penicillin production by P. chrysogenum is detailed in the birthday of the Fleming's most relevant finding. SIGNIFICANCE: Although the discovery of penicillin is celebrating the 90th birthday and its clinical application is worldwide recognized, in fact, semisynthetic penicillins are still one of the most prescribed antibiotics, only the arrival of the post-genomic era during the first decade of the 21st century, and more precisely the Proteomics approaches, have contributed to unveil the industrial secrets behind penicillin production. This review provides relevant information, based on proteomics studies, about the molecular mechanisms responsible for increased penicillin titres, and therefore, may represent a clear model of inverse engineering in microorganisms.
Collapse
Affiliation(s)
- Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain.
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
17
|
Li C, Shu W, Wang S, Liu P, Zhuang Y, Zhang S, Xia J. Dynamic metabolic response of Aspergillus niger to glucose perturbation: evidence of regulatory mechanism for reduced glucoamylase production. J Biotechnol 2018; 287:28-40. [PMID: 30134150 DOI: 10.1016/j.jbiotec.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/20/2018] [Accepted: 08/18/2018] [Indexed: 01/14/2023]
Abstract
Environmental gradient is an important common issue during scale-up process for protein production. To address the dynamic regulatory mechanism of Aspergillus niger being exposed to inhomogeneous glucose concentrations, glucose perturbation were experimented on the steady state of A. niger chemostat culture, and dynamic profiles of the intracellular metabolites in central carbon metabolism were tracked in a time scale of seconds. The upper glycolysis and pentose phosphate pathway showed sharp variations after glucose perturbation, while the lower glycolysis, TCA cycle and amino acid pools represented a moderate and prolonged response due to the allosteric regulation of enzymes and buffering function of metabolites with large pool sizes. Improved glucose-6-phosphate enhanced the metabolic flux to PP pathway remarkably, which provided not only more redox cofactors (NADPH) for protein synthesis but also more precursors (phosphoribosyl pyrophosphate and ribose-5-phosphate) for cell growth. Moreover, reduction of the total adenine nucleotides and major precursor amino acids indicated the upregulated RNA synthesis was required to produce stress proteins, and partially explained the drop of glucoamylase production when A. niger experienced a fluctuated glucose concentration environment. These findings would be valuable for improving bioreactor operation, design, and scale-up from engineering or genetic aspects.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Shu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingpping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Metabolite profiling coupled with metabolic flux analysis reveals physiological and metabolic impacts on Lactobacillus paracasei oxygen metabolism. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Atanasova-Penichon V, Legoahec L, Bernillon S, Deborde C, Maucourt M, Verdal-Bonnin MN, Pinson-Gadais L, Ponts N, Moing A, Richard-Forget F. Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure. Appl Environ Microbiol 2018; 84:e01705-17. [PMID: 29427428 PMCID: PMC5881057 DOI: 10.1128/aem.01705-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Fusarium graminearum is a major plant pathogen that causes devastating diseases of cereals and produces type B trichothecene (TCTB) mycotoxins in infected grains. A comprehensive understanding of the molecular and biochemical mechanisms underlying the regulation of TCTB biosynthesis is required for improving strategies to control the TCTB contamination of crops and ensuring that these strategies do not favor the production of other toxic metabolites by F. graminearum Elucidation of the association of TCTB biosynthesis with other central and specialized processes was the focus of this study. Combined 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analyses were used to compare the exo- and endometabolomes of F. graminearum grown under toxin-inducing and -repressing caffeic acid conditions. Ninety-five metabolites were putatively or unambiguously identified, including 26 primary and 69 specialized metabolites. Our data demonstrated that the inhibition of TCTB production induced by caffeic acid exposure was associated with significant changes in the secondary and primary metabolism of F. graminearum, although the fungal growth was not affected. The main metabolic changes were an increase in the accumulation of several polyketides, including toxic ones, alterations in the tricarboxylic organic acid cycle, and modifications in the metabolism of several amino acids and sugars. While these findings provide insights into the mechanisms that govern the inhibition of TCTB production by caffeic acid, they also demonstrate the interdependence between the biosynthetic pathway of TCTB and several primary and specialized metabolic pathways. These results provide further evidence of the multifaceted role of TCTB in the life cycle of F. graminearumIMPORTANCEFusarium graminearum is a major plant pathogen that causes devastating diseases of cereal crops and produces type B trichothecene (TCTB) mycotoxins in infected grains. The best way to restrict consumer exposure to TCTB is to limit their production before harvest, which requires increasing the knowledge on the mechanisms that regulate their biosynthesis. Using a metabolomics approach, we investigated the interconnection between the TCTB production pathway and several fungal metabolic pathways. We demonstrated that alteration in the TCTB biosynthetic pathway can have a significant impact on other metabolic pathways, including the biosynthesis of toxic polyketides, and vice versa. These findings open new avenues for identifying fungal targets for the design of molecules with antimycotoxin properties and therefore improving sustainable strategies to fight against diseases caused by F. graminearum Our data further demonstrate that analyses should consider all fungal toxic metabolites rather than the targeted family of mycotoxins when assessing the efficacy of control strategies.
Collapse
Affiliation(s)
| | - Laurie Legoahec
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | | | - Laetitia Pinson-Gadais
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Nadia Ponts
- UR1264 MycSA, INRA, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux Functional Genomics Center, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine-Bordeaux, Villenave d'Ornon, France
| | | |
Collapse
|
20
|
Ferreira-Guedes S, Leitão AL. Simultaneous removal of dihydroxybenzenes and toxicity reduction by Penicillium chrysogenum var. halophenolicum under saline conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:240-250. [PMID: 29288905 DOI: 10.1016/j.ecoenv.2017.12.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
The dihydroxybenzenes are widely found in wastewater and usually more than one of these aromatic compounds co-exist as pollutants of water resources. The current study investigated and compared the removal efficiency of hydroquinone, catechol and resorcinol in binary substrate systems under saline conditions by Penicillium chrysogenum var. halophenolicum, to clarify the potential of this fungal strain to degrade these aromatic compounds. Since P. chrysogenum is a known penicillin producer, biosynthetic penicillin genes were examined and antibiotic was quantified in mono and binary dihydroxybenzene systems to elucidate the carbon flux of dihydroxybenzenes metabolism in the P. chrysogenum var. halophenolicum to the secondary metabolism. In binary substrate systems, the three assayed dihydroxybenzene compounds were found to be co-metabolized by fungal strain. The fungal strain preferentially degraded hydroquinone and catechol. Resorcinol was degraded slower and supports higher antibiotic titers than either catechol or hydroquinone. Dihydroxybenzenes were faster removed in mixtures compared to mono substrate systems, except for the case of hydroquinone. In this context, the expression of penicillin biosynthetic gene cluster was not related to the removal of dihydroxybenzenes. Penicillin production was triggered simultaneously or after dihydroxybenzene degradation, but penicillin yields, under these conditions, did not compromise dihydroxybenzene biological treatment. To investigate the decrease in dihydroxybenzenes toxicity due to the fungal activity, viability tests with human colon cancer cells (HCT116) and DNA damage by alkaline comet assays were performed. For all the conditions assays, a decrease in saline medium toxicity was observed, indicating its potential as detoxification agent.
Collapse
Affiliation(s)
- Sumaya Ferreira-Guedes
- MEtRICs, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Lúcia Leitão
- MEtRICs, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
21
|
Wang G, Wu B, Zhao J, Haringa C, Xia J, Chu J, Zhuang Y, Zhang S, Heijnen JJ, van Gulik W, Deshmukh AT, Noorman HJ. Power input effects on degeneration in prolonged penicillin chemostat cultures: A systems analysis at flux, residual glucose, metabolite, and transcript levels. Biotechnol Bioeng 2017; 115:114-125. [DOI: 10.1002/bit.26447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/14/2017] [Accepted: 09/01/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Baofeng Wu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Junfei Zhao
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Cees Haringa
- Transport Phenomena, Chemical Engineering Department; Delft University of Technology; Delft The Netherlands
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology (ECUST); Shanghai People's Republic of China
| | - Joseph J. Heijnen
- Cell Systems Engineering, Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Walter van Gulik
- Cell Systems Engineering, Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | | | - Henk J. Noorman
- DSM Biotechnology Center; Delft The Netherlands
- Bio Process Engineering, Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| |
Collapse
|
22
|
Tang W, Deshmukh AT, Haringa C, Wang G, van Gulik W, van Winden W, Reuss M, Heijnen JJ, Xia J, Chu J, Noorman HJ. A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation byPenicillium chrysogenum. Biotechnol Bioeng 2017; 114:1733-1743. [DOI: 10.1002/bit.26294] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Wenjun Tang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | | | - Cees Haringa
- Cell Systems Engineering; Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | - Walter van Gulik
- Cell Systems Engineering; Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | | | - Matthias Reuss
- Institute of Biochemical Engineering; University of Stuttgart; Stuttgart Germany
| | - Joseph J. Heijnen
- Cell Systems Engineering; Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; P.O. Box 329#, No.130, Meilong Road Shanghai P.R. China
| | | |
Collapse
|
23
|
Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. J Proteomics 2017; 156:52-62. [DOI: 10.1016/j.jprot.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022]
|
24
|
Proteomic analysis of the signaling pathway mediated by the heterotrimeric Gα protein Pga1 of Penicillium chrysogenum. Microb Cell Fact 2016; 15:173. [PMID: 27716202 PMCID: PMC5053351 DOI: 10.1186/s12934-016-0564-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Background The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Results Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC–MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. Conclusions Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0564-x) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation. Appl Biochem Biotechnol 2016; 179:788-804. [DOI: 10.1007/s12010-016-2031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
26
|
Han S, Liu Y, Xie L, Zhu B, Hu Y. Comparative expression profiling of genes involved in primary metabolism in high-yield and wild-type strains of Acremonium chrysogenum. Antonie van Leeuwenhoek 2015; 109:357-69. [PMID: 26708072 DOI: 10.1007/s10482-015-0638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022]
Abstract
Cephalosporin C (CPC) productivity of Acremonium chrysogenum has been improved significantly through classical strain improvement programs. Here, we used transcription and metabolite profiling to address mechanisms underlying CPC production in a high yield (HY) strain. Transcription and metabolite profiling indicated that enzymes involved in amino acid production are higher in abundance in the HY strain. Moreover, results indicate a higher flow of precursors from the glycolysis and gluconeogenesis pathways to serine synthesis at the late stage of fermentation in the HY strain. In addition, less pyruvate would enter the TCA cycle thus favoring valine synthesis. Amino acid production would also benefit from a more active pentose phosphate pathway and γ-amino butyric acid shunt both generating NADPH. Moreover the glyoxylate pathway seems to be more active in the HY strain. These results may provide new leads for CPC strain improvement in industry.
Collapse
Affiliation(s)
- Shu Han
- Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 285 Gebaini Road, Shanghai, 201203, China
| | - Yan Liu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 285 Gebaini Road, Shanghai, 201203, China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 285 Gebaini Road, Shanghai, 201203, China
| | - Baoquan Zhu
- Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 285 Gebaini Road, Shanghai, 201203, China.
| |
Collapse
|
27
|
In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments. Metab Eng 2015; 32:155-173. [DOI: 10.1016/j.ymben.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
28
|
Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 152:91-136. [PMID: 25981857 DOI: 10.1007/10_2015_326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.
Collapse
|
29
|
Wang G, Tang W, Xia J, Chu J, Noorman H, van Gulik WM. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400172] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | | | - Walter M. van Gulik
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation; Delft University of Technology; Delft The Netherlands
| |
Collapse
|
30
|
Weiner M, Tröndle J, Albermann C, Sprenger GA, Weuster-Botz D. Carbon storage in recombinantEscherichia coliduring growth on glycerol and lactic acid. Biotechnol Bioeng 2014; 111:2508-19. [DOI: 10.1002/bit.25306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Michael Weiner
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| | - Julia Tröndle
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| | | | - Georg A. Sprenger
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart Germany
| | - Dirk Weuster-Botz
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| |
Collapse
|
31
|
Wang FQ, Zhong J, Zhao Y, Xiao J, Liu J, Dai M, Zheng G, Zhang L, Yu J, Wu J, Duan B. Genome sequencing of high-penicillin producing industrial strain of Penicillium chrysogenum. BMC Genomics 2014; 15 Suppl 1:S11. [PMID: 24564352 PMCID: PMC4046689 DOI: 10.1186/1471-2164-15-s1-s11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Due to the importance of Penicillium chrysogenum holding in medicine, the genome of low-penicillin producing laboratorial strain Wisconsin54-1255 had been sequenced and fully annotated. Through classical mutagenesis of Wisconsin54-1255, product titers and productivities of penicillin have dramatically increased, but what underlying genome structural variations is still little known. Therefore, genome sequencing of a high-penicillin producing industrial strain is very meaningful. RESULTS To reveal more insights into the genome structural variations of high-penicillin producing strain, we sequenced an industrial strain P. chrysogenum NCPC10086. By whole genome comparative analysis, we observed a large number of mutations, insertions and deletions, and structural variations. There are 69 new genes that not exist in the genome sequence of Wisconsin54-1255 and some of them are involved in energy metabolism, nitrogen metabolism and glutathione metabolism. Most importantly, we discovered a 53.7 Kb "new shift fragment" in a seven copies of determinative penicillin biosynthesis cluster in NCPC10086 and the arrangement type of amplified region is unique. Moreover, we presented two large-scale translocations in NCPC10086, containing genes involved energy, nitrogen metabolism and peroxysome pathway. At last, we found some non-synonymous mutations in the genes participating in homogentisate pathway or working as regulators of penicillin biosynthesis. CONCLUSIONS We provided the first high-quality genome sequence of industrial high-penicillin strain of P. chrysogenum and carried out a comparative genome analysis with a low-producing experimental strain. The genomic variations we discovered are related with energy metabolism, nitrogen metabolism and so on. These findings demonstrate the potential information for insights into the high-penicillin yielding mechanism and metabolic engineering in the future.
Collapse
Affiliation(s)
- Fu-Qiang Wang
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| | - Jun Zhong
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ying Zhao
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| | - Jingfa Xiao
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jing Liu
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| | - Meng Dai
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| | - Guizhen Zheng
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| | - Li Zhang
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| | - Jun Yu
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jiayan Wu
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Baoling Duan
- />New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015 China
| |
Collapse
|
32
|
Wang G, Chu J, Noorman H, Xia J, Tang W, Zhuang Y, Zhang S. Prelude to rational scale-up of penicillin production: a scale-down study. Appl Microbiol Biotechnol 2014; 98:2359-69. [DOI: 10.1007/s00253-013-5497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 12/16/2022]
|
33
|
Workman M, Andersen MR, Thykaer J. Integrated Approaches for Assessment of Cellular Performance in Industrially Relevant Filamentous Fungi. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mhairi Workman
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Mikael R. Andersen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Jette Thykaer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
34
|
García-Estrada C, Barreiro C, Jami MS, Martín-González J, Martín JF. The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. J Proteomics 2013; 85:129-59. [DOI: 10.1016/j.jprot.2013.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
|
35
|
Meinert S, Rapp S, Schmitz K, Noack S, Kornfeld G, Hardiman T. Quantitative quenching evaluation and direct intracellular metabolite analysis in Penicillium chrysogenum. Anal Biochem 2013; 438:47-52. [PMID: 23541815 DOI: 10.1016/j.ab.2013.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 02/13/2013] [Accepted: 03/18/2013] [Indexed: 12/01/2022]
Abstract
Sustained progress in metabolic engineering methodologies has stimulated new efforts toward optimizing fungal production strains such as through metabolite analysis of Penicillium chrysogenum industrial-scale processes. Accurate intracellular metabolite quantification requires sampling procedures that rapidly stop metabolism (quenching) and avoid metabolite loss via the cell membrane (leakage). When sampling protocols are validated, the quenching efficiency is generally not quantitatively assessed. For fungal metabolomics, quantitative biomass separation using centrifugation is a further challenge. In this study, P. chrysogenum intracellular metabolites were quantified directly from biomass extracts using automated sampling and fast filtration. A master/slave bioreactor concept was applied to provide industrial production conditions. Metabolic activity during sampling was monitored by 13C tracing. Enzyme activities were efficiently stopped and metabolite leakage was absent. This work provides a reliable method for P. chrysogenum metabolomics and will be an essential base for metabolic engineering of industrial processes.
Collapse
Affiliation(s)
- Sabine Meinert
- SU Development Anti-Infectives, Sandoz GmbH, 6250 Kundl/Tyrol, Austria
| | | | | | | | | | | |
Collapse
|
36
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
37
|
Systematic applications of metabolomics in metabolic engineering. Metabolites 2012; 2:1090-122. [PMID: 24957776 PMCID: PMC3901235 DOI: 10.3390/metabo2041090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 02/05/2023] Open
Abstract
The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules) to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering.
Collapse
|
38
|
Zhao Z, Ten Pierick A, de Jonge L, Heijnen JJ, Wahl SA. Substrate cycles in Penicillium chrysogenum quantified by isotopic non-stationary flux analysis. Microb Cell Fact 2012; 11:140. [PMID: 23098235 PMCID: PMC3538697 DOI: 10.1186/1475-2859-11-140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 10/15/2012] [Indexed: 11/16/2022] Open
Abstract
Background Penicillium chrysogenum, the main production strain for penicillin-G, has a high content of intracellular carbohydrates, especially reduced sugars such as mannitol, arabitol, erythritol, as well as trehalose and glycogen. In previous steady state 13C wash-in experiments a delay of labeling enrichments in glycolytic intermediates was observed, which suggests turnover of storage carbohydrates. The turnover of storage pools consumes ATP which is expected to reduce the product yield for energy demanding production pathways like penicillin-G. Results In this study, a 13C labeling wash-in experiment of 1 hour was performed to systematically quantify the intracellular flux distribution including eight substrate cycles. The experiments were performed using a mixed carbon source of 85% CmolGlc/CmolGlc+EtOH labeled glucose (mixture of 90% [1-13C1] and 10% [U-13C6]) and 15% ethanol [U-13C2]. It was found, that (1) also several extracellular pools are enriched with 13C labeling rapidly (trehalose, mannitol, and others), (2) the intra- to extracellular metabolite concentration ratios were comparable for a large set of metabolites while for some carbohydrates (mannitol, trehalose, and glucose) the measured ratios were much higher. Conclusions The fast enrichment of several extracellular carbohydrates and a concentration ratio higher than the ratio expected from cell lysis (2%) indicate active (e.g. ATP consuming) transport cycles over the cellular membrane. The flux estimation indicates, that substrate cycles account for about 52% of the gap in the ATP balance based on metabolic flux analysis.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, Netherlands
| | | | | | | | | |
Collapse
|
39
|
Comparative Metabolomic Study of Penicillium chrysogenum During Pilot and Industrial Penicillin Fermentations. Appl Biochem Biotechnol 2012; 168:1223-38. [DOI: 10.1007/s12010-012-9852-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/20/2012] [Indexed: 01/26/2023]
|
40
|
Veiga T, Gombert AK, Landes N, Verhoeven MD, Kiel JA, Krikken AM, Nijland JG, Touw H, Luttik MA, van der Toorn JC, Driessen AJ, Bovenberg RA, van den Berg MA, van der Klei IJ, Pronk JT, Daran JM. Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis. Metab Eng 2012; 14:437-48. [DOI: 10.1016/j.ymben.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/13/2012] [Accepted: 02/13/2012] [Indexed: 11/25/2022]
|
41
|
Yang Y, Lu H, Ding MZ, Jiang J, Chen Y, Yuan YJ. Comparative analysis of intracellular metabolites of Cephalosporium acremonium in pilot and industrial fermentation processes. Biotechnol Appl Biochem 2012; 59:228-37. [DOI: 10.1002/bab.1019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 03/19/2012] [Indexed: 11/09/2022]
|
42
|
Duan S, Yuan G, Zhao Y, Li H, Ni W, Sang M, Liu L, Shi Z. Enhanced cephalosporin C production with a combinational ammonium sulfate and DO-Stat based soybean oil feeding strategy. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012; 2012:105109. [PMID: 22318718 PMCID: PMC3270403 DOI: 10.1155/2012/105109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022] Open
Abstract
Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.
Collapse
|
44
|
Abstract
Metabolism can be defined as the complete set of chemical reactions that occur in living organisms in order to maintain life. Enzymes are the main players in this process as they are responsible for catalyzing the chemical reactions. The enzyme-reaction relationships can be used for the reconstruction of a network of reactions, which leads to a metabolic model of metabolism. A genome-scale metabolic network of chemical reactions that take place inside a living organism is primarily reconstructed from the information that is present in its genome and the literature and involves steps such as functional annotation of the genome, identification of the associated reactions and determination of their stoichiometry, assignment of localization, determination of the biomass composition, estimation of energy requirements, and definition of model constraints. This information can be integrated into a stoichiometric model of metabolism that can be used for detailed analysis of the metabolic potential of the organism using constraint-based modeling approaches and hence is valuable in understanding its metabolic capabilities.
Collapse
Affiliation(s)
- Gino J E Baart
- VIB Department of Plant Systems Biology/Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
45
|
Douma RD, Deshmukh AT, de Jonge LP, de Jong BW, Seifar RM, Heijnen JJ, van Gulik WM. Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum. Biotechnol Prog 2011; 28:337-48. [DOI: 10.1002/btpr.1503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/24/2011] [Indexed: 11/06/2022]
|
46
|
de Jonge LP, Buijs NAA, ten Pierick A, Deshmukh A, Zhao Z, Kiel JAKW, Heijnen JJ, van Gulik WM. Scale-down of penicillin production in Penicillium chrysogenum. Biotechnol J 2011; 6:944-58. [PMID: 21751388 DOI: 10.1002/biot.201000409] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In large-scale production reactors the combination of high broth viscosity and large broth volume leads to insufficient liquid-phase mixing, resulting in gradients in, for example, the concentrations of substrate and oxygen. This often leads to differences in productivity of the full-scale process compared with laboratory scale. In this scale-down study of penicillin production, the influence of substrate gradients on process performance and cell physiology was investigated by imposing an intermittent feeding regime on a laboratory-scale culture of a high yielding strain of Penicillium chrysogenum. It was found that penicillin production was reduced by a factor of two in the intermittently fed cultures relative to constant feed cultivations fed with the same amount of glucose per hour, while the biomass yield was the same. Measurement of the levels of the intermediates of the penicillin biosynthesis pathway, along with the enzyme levels, suggested that the reduction of the flux through the penicillin pathway is mainly the result of a lower influx into the pathway, possibly due to inhibitory levels of adenosine monophosphate and pyrophosphate and lower activating levels of adenosine triphosphate during the zero-substrate phase of each cycle of intermittent feeding.
Collapse
Affiliation(s)
- Lodewijk P de Jonge
- Bioprocess Technology, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Teijeira F, Ullán R, Fernández-Aguado M, Martín J. CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 2011; 13:532-43. [DOI: 10.1016/j.ymben.2011.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/27/2022]
|
48
|
Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum: A systems biology approach. BMC SYSTEMS BIOLOGY 2011; 5:132. [PMID: 21854586 PMCID: PMC3224390 DOI: 10.1186/1752-0509-5-132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022]
Abstract
Background In microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat), a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to produced flux, was used to study degeneration of penicillin production in a high producing Penicillium chrysogenum strain during prolonged ethanol-limited chemostat cultivations. Results During these cultivations, the biomass specific penicillin production rate decreased more than 10-fold in less than 22 generations. No evidence was obtained for a decrease of the copy number of the penicillin gene cluster, nor a significant down regulation of the expression of the penicillin biosynthesis genes. However, a strong down regulation of the biosynthesis pathway of cysteine, one of the precursors of penicillin, was observed. Furthermore the protein levels of the penicillin pathway enzymes L-α-(δ-aminoadipyl)-L-α-cystenyl-D-α-valine synthetase (ACVS) and isopenicillin-N synthase (IPNS), decreased significantly. Re-cultivation of fully degenerated cells in unlimited batch culture and subsequent C-limited chemostats did only result in a slight recovery of penicillin production. Conclusions Our findings indicate that the observed degeneration is attributed to a significant decrease of the levels of the first two enzymes of the penicillin biosynthesis pathway, ACVS and IPNS. This decrease is not caused by genetic instability of the penicillin amplicon, neither by down regulation of the penicillin biosynthesis pathway. Furthermore no indications were obtained for degradation of these enzymes as a result of autophagy. Possible causes for the decreased enzyme levels could be a decrease of the translation efficiency of ACVS and IPNS during degeneration, or the presence of a culture variant impaired in the biosynthesis of functional proteins of these enzymes, which outcompeted the high producing part of the population.
Collapse
|
49
|
Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl Microbiol Biotechnol 2011; 92:45-53. [PMID: 21805169 DOI: 10.1007/s00253-011-3476-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 01/12/2023]
Abstract
The genome sequence of Penicillium chrysogenum has initiated a range of fundamental studies, deciphering the genetic secrets of the industrial penicillin producer. More than 60 years of classical strain improvement has resulted in major but delicate rebalancing of the intracellular metabolism leading to the impressive penicillin titres of the current production strains. Several leads for further improvement are being followed up, including the use of P. chrysogenum as a cell factory for other products than β-lactam antibiotics.
Collapse
|
50
|
de Kok S, Yilmaz D, Suir E, Pronk JT, Daran JM, van Maris AJA. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab Eng 2011; 13:518-26. [PMID: 21684346 DOI: 10.1016/j.ymben.2011.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/16/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein(-1)min(-1)). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μ(aerobic) 0.09 ± 0.03 h(-1)). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μ(aerobic) 0.21 ± 0.01 h(-1), μ(anaerobic) 0.10 ± 0.00 h(-1)). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|