1
|
Zhu X, Wang R, Siitonen V, Vuksanovic N, Silvaggi NR, Melançon III CE, Metsä-Ketelä M. ActVI-ORFA directs metabolic flux towards actinorhodin by preventing intermediate degradation. PLoS One 2024; 19:e0308684. [PMID: 39121077 PMCID: PMC11315284 DOI: 10.1371/journal.pone.0308684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
The biosynthetic pathway of actinorhodin in Streptomyces coelicolor A3(2) has been studied for decades as a model system of type II polyketide biosynthesis. The actinorhodin biosynthetic gene cluster includes a gene, actVI-orfA, that encodes a protein that belongs to the nuclear transport factor-2-like (NTF-2-like) superfamily. The function of this ActVI-ORFA protein has been a long-standing question in this field. Several hypothetical functions, including pyran ring cyclase, enzyme complex stability enhancer, and gene transcription regulator, have been proposed for ActVI-ORFA in previous studies. However, although the recent structural analysis of ActVI-ORFA revealed a solvent-accessible cavity, the protein displayed structural differences to the well-characterized cyclase SnoaL and did not possess a DNA-binding domain. The obtained crystal structure facilitates an inspection of the previous hypotheses regarding the function of ActVI-ORFA. In the present study, we investigated the effects of a series of actVI-orfA test plasmids with different mutations in an established vector/host system. Time-course analysis of dynamic metabolism profiles demonstrated that ActVI-ORFA prevented formation of shunt metabolites and may have a metabolic flux directing function, which shepherds the flux of unstable intermediates towards actinorhodin. The expression studies resulted in the isolation and structure elucidation of two new shunt metabolites from the actinorhodin pathway. Next, we utilized computational modeling to probe the active site of ActVI-ORFA and confirmed the importance of residues R76 and H78 in the flux directing functionality by expression studies. This is the first time such a function has been observed for a member of NTF-2-like superfamily in Streptomyces secondary metabolism.
Collapse
Affiliation(s)
- Xuechen Zhu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rongbin Wang
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Vilja Siitonen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Nemanja Vuksanovic
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Charles E. Melançon III
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | |
Collapse
|
2
|
Lee M, Fraaije MW. Equipping Saccharomyces cerevisiae with an Additional Redox Cofactor Allows F 420-Dependent Bioconversions in Yeast. ACS Synth Biol 2024; 13:921-929. [PMID: 38346396 PMCID: PMC10949242 DOI: 10.1021/acssynbio.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/16/2024]
Abstract
Industrial application of the natural deazaflavin cofactor F420 has high potential for the enzymatic synthesis of high value compounds. It can offer an additional range of chemistry to the use of well-explored redox cofactors such as FAD and their respective enzymes. Its limited access through organisms that are rather difficult to grow has urged research on the heterologous production of F420 using more industrially relevant microorganisms such as Escherichia coli. In this study, we demonstrate the possibility of producing this cofactor in a robust and widely used industrial organism, Saccharomyces cerevisiae, by the heterologous expression of the F420 pathway. Through careful selection of involved enzymes and some optimization, we achieved an F420 yield of ∼1.3 μmol/L, which is comparable to the yield of natural F420 producers. Furthermore, we showed the potential use of F420-producing S. cerevisiae for F420-dependent bioconversions by carrying out the whole-cell conversion of tetracycline. As the first demonstration of F420 synthesis and use for bioconversion in a eukaryotic organism, this study contributes to the development of versatile bioconversion platforms.
Collapse
Affiliation(s)
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
3
|
Li J, Qin Y, Zhao C, Zhang Z, Zhou Z. Tetracycline antibiotics: Potential anticancer drugs. Eur J Pharmacol 2023; 956:175949. [PMID: 37541377 DOI: 10.1016/j.ejphar.2023.175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.
Collapse
Affiliation(s)
- Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; College of Pharmacy, Nankai University, China
| | - Chenhao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
4
|
Kirk A, Stavrinides J. A replica plating method for efficient, high-throughput screening of antibiotic gene clusters in bacteria uncovers a holomycin-like cluster in the clinical isolate, Pantoea agglomerans 20KB447973. J Microbiol Methods 2023; 213:106822. [PMID: 37708943 DOI: 10.1016/j.mimet.2023.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Bacterial natural products remain a major untapped source for novel antimicrobial scaffolds. Many of these products are encoded by biosynthetic gene clusters (BGCs), which can be identified using functional genomics. We developed a replica-plating approach to quickly screen for antibiotic production mutants from transposon mutant libraries and identify candidate antibiotic BGCs. In this technique, filter paper is used to transfer up to 200 mutants simultaneously onto a soft agar overlay or spread plate containing a target microbe to identify antibiotic-production mutants. These mutants can then be analyzed to identify disrupted genes and antibiotic BGCs. We first tested and optimized this technique by screening for previously characterized BGCs in Pantoea. We then applied the technique to uncover the gene cluster responsible for the production of an unknown broad-spectrum antibiotic from P. agglomerans 20KB447973, which we call Pantoea Natural Product 5 (PNP-5). Analysis of the predicted gene cluster for PNP-5 showed similarity to previously identified gene clusters for the broad-spectrum dithiolopyrrolone antibiotic, holomycin. Analysis of the spectrum of activity of PNP-5 showed activity against members of the Enterobacteriaceae, Erwiniaceae, and Streptococcaceae, including clinically relevant pathogens such as Klebsiella sp. and Escherichia coli. We also identified the production of a second antibiotic, pantocin A. Our findings demonstrate the utility of our replica-plating mutant transfer method in exploring unknown antibiotic BGCs. Adoption of this technique may accelerate the identification of potentially novel antimicrobial BGCs within strain collections, advancing the search for novel antimicrobials that can be used to treat multi-drug resistant infections.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| |
Collapse
|
5
|
Baral B, Matroodi S, Siitonen V, Thapa K, Akhgari A, Yamada K, Nuutila A, Metsä-Ketelä M. Co-factor independent oxidases ncnN and actVA-3 are involved in the dimerization of benzoisochromanequinone antibiotics in naphthocyclinone and actinorhodin biosynthesis. FEMS Microbiol Lett 2023; 370:fnad123. [PMID: 37989784 PMCID: PMC10697411 DOI: 10.1093/femsle/fnad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Streptomyces produce complex bioactive secondary metabolites with remarkable chemical diversity. Benzoisochromanequinone polyketides actinorhodin and naphthocyclinone are formed through dimerization of half-molecules via single or double carbon-carbon bonds, respectively. Here we sequenced the genome of S. arenae DSM40737 to identify the naphthocyclinone gene cluster and established heterologous production in S. albus J1074 by utilizing direct cluster capture techniques. Comparative sequence analysis uncovered ncnN and ncnM gene products as putative enzymes responsible for dimerization. Inactivation of ncnN that is homologous to atypical co-factor independent oxidases resulted in the accumulation of fogacin, which is likely a reduced shunt product of the true substrate for naphthocyclinone dimerization. In agreement, inactivation of the homologous actVA-3 in S. coelicolor M145 also led to significantly reduced production of actinorhodin. Previous work has identified the NAD(P)H-dependent reductase ActVA-4 as the key enzyme in actinorhodin dimerization, but surprisingly inactivation of the homologous ncnM did not abolish naphthocyclinone formation and the mutation may have been complemented by an endogenous gene product. Our data suggests that dimerization of benzoisochromanequinone polyketides require two-component reductase-oxidase systems.
Collapse
Affiliation(s)
- Bikash Baral
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Soheila Matroodi
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
- Laboratory of Biotechnology, Department of Marine Biology, Faculty of Marine Science and Oceanography, University of Marine Science and Technology, 64199-34619 Khorramshahr, Iran
| | - Vilja Siitonen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Keshav Thapa
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Amir Akhgari
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Keith Yamada
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
6
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
7
|
Baldera-Aguayo PA, Lee A, Cornish VW. High-Titer Production of the Fungal Anhydrotetracycline, TAN-1612, in Engineered Yeasts. ACS Synth Biol 2022; 11:2429-2444. [PMID: 35699947 PMCID: PMC9480237 DOI: 10.1021/acssynbio.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a growing global health threat, demanding urgent responses. Tetracyclines, a widely used antibiotic class, are increasingly succumbing to antibiotic resistance; generating novel analogues is therefore a top priority for public health. Fungal tetracyclines provide structural and enzymatic diversity for novel tetracycline analogue production in tractable heterologous hosts, like yeasts, to combat antibiotic-resistant pathogens. Here, we successfully engineered Saccharomyces cerevisiae (baker's yeast) and Saccharomyces boulardii (probiotic yeast) to produce the nonantibiotic fungal anhydrotetracycline, TAN-1612, in synthetic defined media─necessary for clean purifications─through heterologously expressing TAN-1612 genes mined from the fungus, Aspergillus niger ATCC 1015. This was accomplished via (i) a promoter library-based combinatorial pathway optimization of the biosynthetic TAN-1612 genes coexpressed with a putative TAN-1612 efflux pump, reducing TAN-1612 toxicity in yeasts while simultaneously increasing supernatant titers and (ii) the development of a medium-throughput UV-visible spectrophotometric assay that facilitates TAN-1612 combinatorial library screening. Through this multipronged approach, we optimized TAN-1612 production, yielding an over 450-fold increase compared to previously reported S. cerevisiae yields. TAN-1612 is an important tetracycline analogue precursor, and we thus present the first step toward generating novel tetracycline analogue therapeutics to combat current and emerging antibiotic resistance. We also report the first heterologous production of a fungal polyketide, like TAN-1612, in the probiotic S. boulardii. This highlights that engineered S. boulardii can biosynthesize complex natural products like tetracyclines, setting the stage to equip probiotic yeasts with synthetic therapeutic functionalities to generate living therapeutics or biocontrol agents for clinical and agricultural applications.
Collapse
Affiliation(s)
- Pedro A Baldera-Aguayo
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, New York 10032, United States
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
- Department of Systems Biology, Columbia University Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, New York 10032, United States
| |
Collapse
|
8
|
Scott KA, Cox PB, Njardarson JT. Phenols in Pharmaceuticals: Analysis of a Recurring Motif. J Med Chem 2022; 65:7044-7072. [PMID: 35533692 DOI: 10.1021/acs.jmedchem.2c00223] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenols and phenolic ethers are significant scaffolds recurring both in nature and among approved small-molecule pharmaceuticals. This compendium presents the first comprehensive compilation and analysis of the structures of U.S. FDA-approved molecules containing phenol or phenolic ether fragments. This dataset comprises 371 structures, which are strongly represented by natural products. A total of 55 of the compounds described here are on the World Health Organization's list of essential medicines. Structural analysis reveals significant differences in the physicochemical properties imparted by phenols versus phenol ethers, each having benefits and drawbacks for drug developability. Despite trends over the past decade to increase the fraction of sp3 centers in drug leads, thereby "escaping flatland", phenols and phenolic ethers are represented in 62% of small-molecule drugs approved in 2020, suggesting that this aromatic moiety holds a special place in drugs and natural products.
Collapse
Affiliation(s)
- Kevin A Scott
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Drug Discovery Science and Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Hamrick GS, Londergan CH, Charkoudian LK. Heterologous Expression, Purification, and Characterization of Type II Polyketide Synthase Acyl Carrier Proteins. Methods Mol Biol 2022; 2489:239-267. [PMID: 35524054 PMCID: PMC9373356 DOI: 10.1007/978-1-0716-2273-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enzymes that comprise type II polyketide synthases (PKSs) are powerful biocatalysts that, once well-understood and strategically applied, could enable cost-effective and sustainable access to a range of pharmaceutically relevant molecules. Progress toward this goal hinges on gaining ample access to materials for in vitro characterizations and structural analysis of the components of these synthases. A central component of PKSs is the acyl carrier protein (ACP), which serves as a hub during the biosynthesis of type II polyketides. Herein, we share methods for accessing type II PKS ACPs via heterologous expression in E. coli . We also share how the installation of reactive and site-specific spectroscopic probes can be leveraged to study the conformational dynamics and interactions of type II PKS ACPs.
Collapse
|
10
|
Abstract
AbstractTetracyclines belong to the first broad-spectrum, well-tolerated, and easy-to-administer antibiotics, which are effective against plague, cholera, typhoid, syphilis, Legionnaire’s disease, and anthrax. Some can also be used to treat malaria, Lyme disease, tuberculosis, Rocky Mountain spotted fever, and leprosy. Humans first encountered these chemical species involuntarily in ancient times, as evidenced from the analysis of bone samples dating back more than 1500 years. Shortly after World War II, they were “rediscovered” at Lederle Laboratories and Pfizer as a result of an intense search for new antibiotics. Their bacteriostatic action is based on the inhibition of protein biosynthesis. Since the structure elucidation by Robert Woodward, Lloyd Hillyard Conover, and others in the 1950s, tetracyclines have become preferred targets for natural product synthesis. However, on industrial scale, they became readily available by fermentation and partial synthesis. Their casual and thoughtless use in the initial decades after launch not only in humans but for veterinary purposes and as growth-enhancement agents in meat production rapidly led to the emergence of resistance. In an arms race for new antibiotics, more and more new drugs have been developed to deal with the threat. In this ongoing endeavor, a remarkable milestone was set by Andrew Myers in 2005 with the convergent total synthesis of (−)-doxycycline, as well as numerous azatetracyclines and pentacyclines, which has inspired chemists in the pharmaceutical industry to discover novel and highly active tetracyclines in recent years.
Graphic abstract
Collapse
|
11
|
Zhu X, Siitonen V, Melançon III CE, Metsä-Ketelä M. Biosynthesis of Diverse Type II Polyketide Core Structures in Streptomyces coelicolor M1152. ACS Synth Biol 2021; 10:243-251. [PMID: 33471506 DOI: 10.1021/acssynbio.0c00482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic biology-based approaches have been employed to generate advanced natural product (NP) pathway intermediates to overcome obstacles in NP drug discovery and production. Type II polyketides (PK-IIs) comprise a major subclass of NPs that provide attractive structures for antimicrobial and anticancer drug development. Herein, we have assembled five biosynthetic pathways using a generalized operon design strategy in Streptomyces coelicolor M1152 to allow comparative analysis of metabolite production in an improved heterologous host. The work resulted in production of four distinct PK-II core structures, namely benzoisochromanequinone, angucycline, tetracenomycin, and pentangular compounds, which serve as precursors to diverse pharmaceutically important NPs. Our bottom-up design strategy provided evidence that the biosynthetic pathway of BE-7585A proceeds via an angucycline core structure, instead of rearrangement of an anthracycline aglycone, and led to the discovery of a novel 26-carbon pentangular polyketide. The synthetic biology platform presented here provides an opportunity for further controlled production of diverse PK-IIs in a heterologous host.
Collapse
Affiliation(s)
- Xuechen Zhu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Vilja Siitonen
- Department of Biochemistry, University of Turku, Turku, FIN-20014, Finland
| | - Charles E. Melançon III
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Turku, FIN-20014, Finland
| |
Collapse
|
12
|
Yang T, Yang K, Chen Y, Fan K. Characterization of a Bi-directional Promoter OtrRp Involved in Oxytetracycline Biosynthesis. Curr Microbiol 2019; 76:1264-1269. [PMID: 31410507 DOI: 10.1007/s00284-019-01753-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Previous studies identified a MarR (multiple antibiotic resistance regulator) family transcription factor OtrR in the oxytetracycline biosynthetic gene cluster, which regulated the expression of an efflux pump OtrB. The genes otrB and otrR were divergent arranged and the inter-ORF (open reading frame) region between the two genes contained the promoter otrBp. In this study, we demonstrated that the reverse complementary sequence of otrBp contained the promoter of otrR, and its activity was also repressed by OtrR by sharing the same operator otrO within otrBp, and allosteric regulated by oxytetracycline. Our findings offered a solid base for the synthetic biological application of the bi-direction promoter in controlling two elements at the same time using only one signal molecule.
Collapse
Affiliation(s)
- Tongjian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Villebro R, Shaw S, Blin K, Weber T. Sequence-based classification of type II polyketide synthase biosynthetic gene clusters for antiSMASH. J Ind Microbiol Biotechnol 2019; 46:469-475. [PMID: 30610412 DOI: 10.1007/s10295-018-02131-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/24/2018] [Indexed: 02/01/2023]
Abstract
The software antiSMASH examines microbial genome data to identify and analyze biosynthetic gene clusters for a wide range of natural products. So far, type II polyketide synthase (PKS) gene clusters could only be identified, but no detailed predictions for type II PKS gene clusters could be provided. In this study, an antiSMASH module for analyzing type II PKS gene clusters has been developed. The module detects genes/proteins in the type II PKS gene cluster involved with polyketide biosynthesis and is able to make predictions about the aromatic polyketide product. Predictions include the putative starter unit, the number of malonyl elongations during polyketide biosynthesis, the putative class and the molecular weight of the product. Furthermore, putative cyclization patterns are predicted. The accuracy of the predictions generated with the new PKSII antiSMASH module was evaluated using a leave-one-out cross validation. The prediction module is available in antiSMASH version 5 at https://antismash.secondarymetabolites.org .
Collapse
Affiliation(s)
- Rasmus Villebro
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark.
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Bygning 220, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Stepek IA, Bode JW. Synthetic fermentation of bioactive molecules. Curr Opin Chem Biol 2018; 46:18-24. [PMID: 29627458 DOI: 10.1016/j.cbpa.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The concept of synthetic fermentation is to 'grow' complex organic molecules in a controlled and predictable manner by combining small molecule building blocks in water-without the need for reagents, enzymes, or organisms. This approach mimics the production of small mixtures of structurally related natural products by living organisms, particularly microbes, under conditions compatible with direct screening of the cultures for biological activity. This review discusses the development and implementation of this concept, its use for the discovery of protease inhibitors, its basis as a chemistry outreach program allowing non-specialists to make and discover new antibiotics, and highlights of related approaches.
Collapse
Affiliation(s)
- Iain A Stepek
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
15
|
Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs 2016; 14:E129. [PMID: 27399731 PMCID: PMC4962019 DOI: 10.3390/md14070129] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota.
Collapse
Affiliation(s)
- Clément Offret
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florie Desriac
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Patrick Le Chevalier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Camille Jégou
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Yannick Fleury
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
16
|
Krauser S, Weyler C, Blaß LK, Heinzle E. Directed multistep biocatalysis using tailored permeabilized cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 137:185-234. [PMID: 23989897 DOI: 10.1007/10_2013_240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
: Recent developments in the field of biocatalysis using permeabilized cells are reviewed here, with a special emphasis on the newly emerging area of multistep biocatalysis using permeabilized cells. New methods of metabolic engineering using in silico network design and new methods of genetic engineering provide the opportunity to design more complex biocatalysts for the synthesis of complex biomolecules. Methods for the permeabilization of cells are thoroughly reviewed. We provide an extended review of useful available databases and bioinformatics tools, particularly for setting up genome-scale reconstructed networks. Examples described include phosphorylated carbohydrates, sugar nucleotides, and polyketides.
Collapse
Affiliation(s)
- Steffen Krauser
- Biochemical Engineering Institute, Saarland University, 66123, Saarbrücken, Germany
| | | | | | | |
Collapse
|
17
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes. ACTA ACUST UNITED AC 2015; 22:888-97. [PMID: 26097034 DOI: 10.1016/j.chembiol.2015.05.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
Enzymes capable of inactivating tetracycline are paradoxically rare compared with enzymes that inactivate other natural-product antibiotics. We describe a family of flavoenzymes, previously unrecognizable as resistance genes, which are capable of degrading tetracycline antibiotics. From soil functional metagenomic selections, we discovered nine genes that confer high-level tetracycline resistance by enzymatic inactivation. We also demonstrate that a tenth enzyme, an uncharacterized homolog in the human pathogen Legionella longbeachae, similarly inactivates tetracycline. These enzymes catalyze the oxidation of tetracyclines in vitro both by known mechanisms and via previously undescribed activity. Tetracycline-inactivation genes were identified in diverse soil types, encompass substantial sequence diversity, and are adjacent to genes implicated in horizontal gene transfer. Because tetracycline inactivation is scarcely observed in hospitals, these enzymes may fill an empty niche in pathogenic organisms, and should therefore be monitored for their dissemination potential into the clinic.
Collapse
Affiliation(s)
- Kevin J Forsberg
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sanket Patel
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Gautam Dantas
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Krauser S, Hoffmann T, Heinzle E. Directed Multistep Biocatalysis for the Synthesis of the Polyketide Oxytetracycline in Permeabilized Cells of Escherichia coli. ACS Catal 2015. [DOI: 10.1021/cs501825u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Steffen Krauser
- Biochemical Engineering, Saarland University, Campus A1.5, 66123 Saarbrücken, Germany
| | - Thomas Hoffmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Elmar Heinzle
- Biochemical Engineering, Saarland University, Campus A1.5, 66123 Saarbrücken, Germany
| |
Collapse
|
20
|
Newman DJ, Cragg GM. Natural Products as Drugs and Leads to Drugs: An Introduction and Perspective as of the End of 2012. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng 2013; 19:69-78. [DOI: 10.1016/j.ymben.2013.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/27/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022]
|
22
|
Probing the selectivity and protein·protein interactions of a nonreducing fungal polyketide synthase using mechanism-based crosslinkers. ACTA ACUST UNITED AC 2013; 20:1135-46. [PMID: 23993461 DOI: 10.1016/j.chembiol.2013.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 01/05/2023]
Abstract
Protein·protein interactions, which often involve interactions among an acyl carrier protein (ACP) and ACP partner enzymes, are important for coordinating polyketide biosynthesis. However, the nature of such interactions is not well understood, especially in the fungal nonreducing polyketide synthases (NR-PKSs) that biosynthesize toxic and pharmaceutically important polyketides. Here, we employ mechanism-based crosslinkers to successfully probe ACP and ketosynthase (KS) domain interactions in NR-PKSs. We found that crosslinking efficiency is closely correlated with the strength of ACP·KS interactions and that KS demonstrates strong starter unit selectivity. We further identified positively charged surface residues by KS mutagenesis, which mediates key interactions with the negatively charged ACP surface. Such complementary/matching contact pairs can serve as "adapter surfaces" for future efforts to generate new polyketides using NR-PKSs.
Collapse
|
23
|
Wang F, Zhou M, Singh S, Yennamalli RM, Bingman CA, Thorson JS, Phillips GN. Crystal structure of SsfS6, the putative C-glycosyltransferase involved in SF2575 biosynthesis. Proteins 2013; 81:1277-82. [PMID: 23526584 DOI: 10.1002/prot.24289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
The molecule known as SF2575 from Streptomyces sp. is a tetracycline polyketide natural product that displays antitumor activity against murine leukemia P388 in vivo. In the SF2575 biosynthetic pathway, SsfS6 has been implicated as the crucial C-glycosyltransferase (C-GT) that forms the C-C glycosidic bond between the sugar and the SF2575 tetracycline-like scaffold. Here, we report the crystal structure of SsfS6 in the free form and in complex with TDP, both at 2.4 Å resolution. The structures reveal SsfS6 to adopt a GT-B fold wherein the TDP and docked putative aglycon are consistent with the overall C-glycosylation reaction. As one of only a few existing structures for C-glycosyltransferases, the structures described herein may serve as a guide to better understand and engineer C-glycosylation.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes. Enzyme Microb Technol 2012; 50:318-24. [PMID: 22500899 DOI: 10.1016/j.enzmictec.2012.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
Oxytetracycline (OTC) is a widely used antibiotic, which is commercially produced by Streptomyces rimosus. The type II minimal polyketide synthases (minimal PKS) genes of the oxytetracycline biosynthesis cluster in S. rimosus, consisting of oxyA, oxyB and oxyC, are involved in catalyzing 19-C chain building by the condensation of eight malonyl-CoA groups to form the starting polyketide. This study aimed to investigate the effects of overexpression of the minimal PKS gene in a model S. rimosus strain (M4018) and in an industrial overproducer (SR16) by introduction of a second copy of the gene into the chromosome. Increased levels of oxyA, oxyB and oxyC gene transcription were monitored using reverse transcription quantitative real-time PCR. Overexpression of the minimal PKS gene elicited retardation of cell growth and a significant improvement in OTC production in corresponding mutants (approximately 51.2% and 32.9% in M4018 and SR16 mutants respectively). These data indicate that the minimal PKS plays an important role in carbon flux redirection from cell growth pathways to OTC biosynthesis pathways.
Collapse
|
25
|
Santos-Aberturas J, Payero TD, Vicente CM, Guerra SM, Cañibano C, Martín JF, Aparicio JF. Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis. Metab Eng 2011; 13:756-67. [PMID: 22001323 DOI: 10.1016/j.ymben.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 01/27/2023]
Abstract
Control of polyene macrolide production in Streptomyces natalensis is mediated by the PAS-LuxR transcriptional activator PimM. Expression of target genes in this strain is positively regulated by binding of the regulator to 14-nucleotide sites showing dyad symmetry, and overlapping the -35 element of each promoter. These sequences have been found in the upstream regions of genes belonging to different polyene biosynthetic gene clusters. All the sequences in the amphotericin, nystatin, and filipin clusters were cloned and the binding of PimM to all of them has been shown by electrophoretic mobility shift assays. The precise binding regions were investigated by DNaseI protection studies. Results indicated that PAS-luxR regulators share the same regulatory pattern in different polyene-producing strains, these genes being responsible for polyketide chain construction, and when available, the genes for sugar dehydration and attachment, and the ABC transporters, the targets for regulation. Information content analysis of the 24 sequences protected in target promoters was used to refine the information-based model of the binding site. This site now spans 16 nucleotides and adjusts to the consensus CTVGGGAWWTCCCBAG. Gene complementation of S. natalensis ΔpimM with a single copy of heterologous regulators of the PAS/LuxR class integrated into the chromosome, such as amphRIV, nysRIV, or pteF, restored antifungal production, thus proving the functional conservation of these regulators. Introduction of a single copy of pimM into the amphotericin producing strain Streptomyces nodosus, or into the filipin producing strain S. avermitilis, boosted the production of both polyenes, thus indicating that the expression of the PAS-LuxR regulator constitutes a bottleneck in the biosynthesis of the antifungal, and also that these regulators are fully exchangeable. This work is the first report of a general mechanism regulating polyene production.
Collapse
|
26
|
Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 2011; 13:414-25. [DOI: 10.1016/j.ymben.2011.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
27
|
Yu Z, Reichheld SE, Cuthbertson L, Nodwell JR, Davidson AR. Characterization of tetracycline modifying enzymes using a sensitive in vivo reporter system. BMC BIOCHEMISTRY 2010; 11:34. [PMID: 20831817 PMCID: PMC2949611 DOI: 10.1186/1471-2091-11-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/11/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Increasing our understanding of antibiotic resistance mechanisms is critical. To enable progress in this area, methods to rapidly identify and characterize antibiotic resistance conferring enzymes are required. RESULTS We have constructed a sensitive reporter system in Escherichia coli that can be used to detect and characterize the activity of enzymes that act upon the antibiotic, tetracycline and its derivatives. In this system, expression of the lux operon is regulated by the tetracycline repressor, TetR, which is expressed from the same plasmid under the control of an arabinose-inducible promoter. Addition of very low concentrations of tetracycline derivatives, well below growth inhibitory concentrations, resulted in luminescence production as a result of expression of the lux genes carried by the reporter plasmid. Introduction of another plasmid into this system expressing TetX, a tetracycline-inactivating enzyme, caused a marked loss in luminescence due to enzyme-mediated reduction in the intracellular Tc concentration. Data generated for the TetX enzyme using the reporter system could be effectively fit with the known Km and kcat values, demonstrating the usefulness of this system for quantitative analyses. CONCLUSION Since members of the TetR family of repressors regulate enzymes and pumps acting upon almost every known antibiotic and a wide range of other small molecules, reporter systems with the same design as presented here, but employing heterologous TetR-related proteins, could be developed to measure enzymatic activities against a wide range of antibiotics and other compounds. Thus, the assay described here has far-reaching applicability and could be adapted for high-throughput applications.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
Oxytetracycline (OTC) is a broad-spectrum antibiotic that acts by inhibiting protein synthesis in bacteria. It is an important member of the bacterial aromatic polyketide family, which is a structurally diverse class of natural products. OTC is synthesized by a type II polyketide synthase that generates the poly-beta-ketone backbone through successive decarboxylative condensation of malonyl-CoA extender units, followed by modifications by cyclases, oxygenases, transferases, and additional tailoring enzymes. Genetic and biochemical studies have illuminated most of the steps involved in the biosynthesis of OTC, which is detailed here as a representative case study in type II polyketide biosynthesis.
Collapse
Affiliation(s)
- Lauren B. Pickens
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| |
Collapse
|
29
|
Kharel MK, Nybo SE, Shepherd MD, Rohr J. Cloning and characterization of the ravidomycin and chrysomycin biosynthetic gene clusters. Chembiochem 2010; 11:523-32. [PMID: 20140934 PMCID: PMC2879346 DOI: 10.1002/cbic.200900673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 11/06/2022]
Abstract
The gene clusters responsible for the biosynthesis of two antitumor antibiotics, ravidomycin and chrysomycin, have been cloned from Streptomyces ravidus and Streptomyces albaduncus, respectively. Sequencing of the 33.28 kb DNA region of the cosmid cosRav32 and the 34.65 kb DNA region of cosChry1-1 and cosChryF2 revealed 36 and 35 open reading frames (ORFs), respectively, harboring tandem sets of type II polyketide synthase (PKS) genes, D-ravidosamine and D-virenose biosynthetic genes, post-PKS tailoring genes, regulatory genes, and genes of unknown function. The isolated ravidomycin gene cluster was confirmed to be involved in ravidomycin biosynthesis through the production of a new analogue of ravidomycin along with anticipated pathway intermediates and biosynthetic shunt products upon heterologous expression of the cosmid, cosRav32, in Streptomyces lividans TK24. The identity of the cluster was further verified through cross complementation of gilvocarcin V (GV) mutants. Similarly, the chrysomycin gene cluster was demonstrated to be indirectly involved in chrysomycin biosynthesis through cross-complementation of gilvocarcin mutants deficient in the oxygenases GilOII, GilOIII, and GilOIV with the respective chrysomycin monooxygenase homologues. The ravidomycin glycosyltransferase (RavGT) appears to be able to transfer both amino- and neutral sugars, exemplified through the structurally distinct 6-membered D-ravidosamine and 5-membered D-fucofuranose, to the coumarin-based polyketide derived backbone. These results expand the library of biosynthetic genes involved in the biosyntheses of gilvocarcin class compounds that can be used to generate novel analogues through combinatorial biosynthesis.
Collapse
Affiliation(s)
- Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Numerous ‘scaffolds’ that have been identified in natural product structures have led to very significant numbers of approved drugs and drug candidates for a multiplicity of diseases over the years. In this mini-review, we discuss the base scaffolds (chemical skeletons) that we feel have produced very significant numbers of agents as drugs or drug leads and, in a number of cases, compounds that can be used as chemical synthons or that present activities in biological areas that were not obvious from their earlier history.
Collapse
|
31
|
Koglin A, Walsh CT. Structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep 2009; 26:987-1000. [PMID: 19636447 DOI: 10.1039/b904543k] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonribosomal peptides have a variety of medicinal activities including activity as antibiotics, antitumor drugs, immunosuppressives, and toxins. Their biosynthesis on multimodular assembly lines as a series of covalently tethered thioesters, in turn covalently attached on pantetheinyl arms on carrier protein way stations, reflects similar chemical logic and protein machinery to fatty acid and polyketide biosynthesis. While structural information on excised or isolated catalytic adenylation (A), condensation (C), peptidyl carrier protein (PCP) and thioesterase (TE) domains had been gathered over the past decade, little was known about how the NRPS catalytic and carrier domains interact with each other both within and across elongation or termination modules. This Highlight reviews recent breakthrough achievements in both X-ray and NMR spectroscopic studies that illuminate the architecture of NRPS PCP domains, PCP-containing didomain-fragments and of a full termination module (C-A-PCP-TE).
Collapse
Affiliation(s)
- Alexander Koglin
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|