1
|
Zhang X, Li Y, Wang K, Yin J, Du Y, Yang Z, Pan X, You J, Rao Z. Construction of antibiotic-free riboflavin producer in Escherichia coli by metabolic engineering strategies with a plasmid stabilization system. Synth Syst Biotechnol 2025; 10:346-355. [PMID: 39811763 PMCID: PMC11731478 DOI: 10.1016/j.synbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Riboflavin, an important vitamin utilized in pharmaceutical products and as a feed additive, is mainly produced by metabolically engineered bacterial fermentation. However, the reliance on antibiotics in the production process leads to increased costs and safety risks. To address these challenges, an antibiotic-free Escherichia coli riboflavin producer was constructed using metabolic engineering approaches coupled with a novel plasmid stabilization system. Initially, competitive pathways and feedback inhibition were attenuated to enhance the metabolic flux towards riboflavin. Key genes in the purine pathway were overexpressed to boost the availability of riboflavin precursors. Subsequently, a plasmid stabilization system based on toxin was screened and characterized, achieving a plasmid retention rate of 84.9% after 10 days of passaging. Finally, transcriptomic analysis at the genome-wide level revealed several rate-limiting genes, including pgl, gnd, and yigB, which were subsequently upregulated, leading to a 26% improvement in riboflavin production. With optimization of the culture medium, the final strain allowed the production of 11.5 g/L of riboflavin with a yield of 90.4 mg/g glucose in 5 L bioreactors without antibiotics. These strategies can be extended to other plasmid-based riboflavin derivative production systems.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yanan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jilong Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhen Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
2
|
Dai J, Geng M, Du Y, Iqbal MW, Yang H, Shen X, Wang J, Sun X, Yuan Q. Microbial Synthesis of Nucleosides: Advances and Prospects. ACS Synth Biol 2025; 14:1-9. [PMID: 39665672 DOI: 10.1021/acssynbio.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Nucleosides and its derivatives are essential chemicals with extensive applications in the food, agricultural, and pharmaceutical industries. Chemical synthesis of these compounds often faces problems such as harsh reaction conditions and environmental pollution, whereas microbial synthesis provides a promising and sustainable alternative. This review discusses recent advances in the biosynthesis of nucleosides and their derivatives. It begins by discussing the biosynthetic pathways and metabolic regulatory systems found in bacteria such as Escherichia coli and Bacillus subtilis. Further, the progress on microbial production of various nucleosides is summarized, focusing on the strategies applied to optimize their synthesis such as feedback inhibition relief, enzyme engineering, and dynamic control. The review finishes with a discussion of the challenges and opportunities for efficient synthesis of nucleosides and their derivatives.
Collapse
Affiliation(s)
- Jiu Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingjie Geng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Waleed Iqbal
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Liu Y, Qin R, Jia X. Design and construction of an artificial labor-division consortium for phenanthrene degradation with three-functional modules. CHEMOSPHERE 2024; 366:143439. [PMID: 39357657 DOI: 10.1016/j.chemosphere.2024.143439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are highly toxic organic pollutants. Phenanthrene often serves as a model compound for studying PAHs biodegradation. In this work, we firstly engineered Escherichia coli M01 containing seven phenanthrene degradation genes and combined it with existing engineered strains E. coli M2 and M3 to form an artificial three-bacteria consortium, named M0123, which exhibited a degradation ratio of 64.66% for 100 mg/L of phenanthrene over 8 days. Subsequently, we constructed engineered Pseudomonas putida KTRL02 which could produce 928.49 mg/L rhamnolipids and integrated it with M0123, forming a four-bacteria consortium with an impressive 81.62% phenanthrene degradation ratio. Assessment of extracellular adenosine levels during the degradation process indicated high cellular energy demand in the four-bacteria consortium. Then, we introduced Bacillus subtilis RH33, a riboflavin-producing strain, as an energy-supplying bacterium, to create a five-bacteria consortium, which exhibited an 88.19% degradation ratio for phenanthrene. The NADH/NAD+ ratio in the five-bacteria consortium during the degradation process was monitored, which was consistently higher than that of the four-bacteria consortium over the eight-day period, indicating a higher overall intracellular reduction capacity. Furthermore, the five-bacteria consortium displayed good tolerance to phenanthrene, even achieving a degradation ratio of 79.38% for 500 mg/L of phenanthrene. This study demonstrates that designing and constructing artificial consortia from the functional perspective and various angles can effectively enhance the degradation of phenanthrene after the addition of the energy-supplying bacterium. This study demonstrates that designing and constructing artificial labor-division consortia from the functional perspective and various angles can effectively enhance the degradation of phenanthrene.
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Indriani S, Srisakultiew N, Benjakul S, Boonchuen P, Pongsetkul J. Proteomic profiles revealed enzymatic activities associated with the flavor formation of salted shrimp paste influenced by Bacillus subtilis K-C3 inoculation. Food Funct 2024; 15:9100-9115. [PMID: 39210833 DOI: 10.1039/d4fo02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enzymatic proteomic profiles were examined to comprehend the predominant enzymes involved in the flavor development of salted shrimp paste influenced by Bacillus subtilis K-C3 inoculation (Inoc), compared to those without inoculation (CON). Inoc showed greater proteolytic, lipolytic, and chitinolytic activities than CON (P < 0.05) throughout 30 days of fermentation, indicating B. subtilis's ability to accelerate the fermentation rate and render distinctive flavor profiles to shrimp paste. Among 50 differential abundance proteins (DAPs), 24 DAPs were identified as potential key regulating enzymes, with a P-value < 0.05 and |FC| > 0.50, indicating their significance and regulating capacity within specific metabolic pathways. Notably, 27 and 23 DAPs were up-regulated in Inoc and CON, respectively. Moreover, gene ontology (GO) enrichment analysis revealed that hydrolases, involved in carbohydrate metabolic processes and proteolysis, were the most differentiating pathways between Inoc and CON. Both samples exhibited different flavor profiles. A greater abundance of N-containing volatile compounds with a lower total abundance of aldehydes, ketones, alcohols, and acids could suggest a more favorable flavor in Inoc, compared to CON. Principal component analysis (PCA) revealed a positive correlation between L-ascorbate peroxidase, carboxypeptidase, and tripeptidyl peptidase sed2, with proteolytic and lipolytic activities in Inoc (P < 0.05). Meanwhile, acids and alcohols were positively correlated with CON. Therefore, B. subtilis inoculation could produce a distinctive flavor with a desirable sensory perception of shrimp paste regarding its ability to release extracellular enzymes/proteins. B. subtilis K-C3 inoculation could be suggested in the production of shrimp paste to improve its flavor characteristics.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Kadapure AJ, Dalbanjan NP, S K PK. Characterization of heat, salt, acid, alkaline, and antibiotic stress response in soil isolate Bacillus subtilis strain PSK.A2. Int Microbiol 2024:10.1007/s10123-024-00549-z. [PMID: 38898189 DOI: 10.1007/s10123-024-00549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microbes play an essential role in soil fertility by replenishing the nutrients; they encounter various biotic and abiotic stresses disrupting their cellular homeostasis, which expedites activating a conserved signaling pathway for transient over-expression of heat shock proteins (HSPs). In the present study, a versatile soil bacterium Bacillus subtilis strain PSK.A2 was isolated and characterized. Further, the isolated bacterium was exposed with several stresses, viz., heat, salt, acid, alkaline, and antibiotics. Stress-attributed cellular morphological modifications such as swelling, shrinkage, and clump formation were observed under the scanning electron microscope. The comparative protein expression pattern was studied by SDS-PAGE, relative protein stabilization was assessed by protein aggregation assay, and relative survival was mapped by single spot dilution and colony-counting method under control, stressed, lethal, and stressed lethal conditions of the isolate. The findings demonstrated that bacterial stress tolerance was maintained via the activation of various HSPs of molecular weight ranging from 17 to 115 kD to respective stimuli. The treatment of subinhibitory dose of antibiotics not interfering protein synthesis (amoxicillin and ciprofloxacin) resulted in the expression of eight HSPs of molecular weight ranging from 18 to 71 kD. The pre-treatment of short stress dosage showed endured overall tolerance of bacterium to lethal conditions, as evidenced by moderately enhanced total soluble intracellular protein content, better protein stabilization, comparatively over-expressed HSPs, and relatively enhanced cell survival. These findings hold an opportunity for developing novel approaches towards enhancing microbial resilience in a variety of conditions, including industrial bioprocessing, environmental remediation, and infectious disease management.
Collapse
Affiliation(s)
- Arihant Jayawant Kadapure
- Protein Biology Lab, Department of Biochemistry, Karnatak University Dharwad 580003, Dharwad, Karnataka, India
| | - Nagarjuna Prakash Dalbanjan
- Protein Biology Lab, Department of Biochemistry, Karnatak University Dharwad 580003, Dharwad, Karnataka, India
| | - Praveen Kumar S K
- Protein Biology Lab, Department of Biochemistry, Karnatak University Dharwad 580003, Dharwad, Karnataka, India.
| |
Collapse
|
6
|
Liu Y, Cheng H, Li H, Zhang Y, Wang M. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis. Appl Environ Microbiol 2023; 89:e0023023. [PMID: 37272803 PMCID: PMC10305015 DOI: 10.1128/aem.00230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Bacillus subtilis has been widely used and generally recognized as a safe host for the production of recombinant proteins, high-value chemicals, and pharmaceuticals. Thus, its metabolic engineering attracts significant attention. Nevertheless, the limited availability of selective markers makes this process difficult and time-consuming, especially in the case of multistep biosynthetic pathways. Here, we employ CRISPR/Cas9 technology to build an easy cloning toolkit that addresses commonly encountered obstacles in the metabolic engineering of B. subtilis, including the chromosomal integration locus, promoter, terminator, and guide RNA (gRNA) target. Six promoters were characterized, and the promoter strengths ranged from 0.9- to 23-fold that of the commonly used strong promoter P43. We characterized seven terminators in B. subtilis, and the termination efficiencies (TEs) of the seven terminators are all more than 90%. Six gRNA targets were designed upstream of the promoter and downstream of the terminator. Using a green fluorescent protein (GFP) reporter, we confirmed integration efficiency with the single-locus integration site is up to 100%. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important product, lycopene. By heterologous expression of the essential genes for lycopene synthesis on the B. subtilis genome, a total of 13 key genes involved in the lycopene biosynthetic pathway were manipulated. Moreover, our findings showed that the gene cluster ispG-idi-dxs-ispD could positively affect the production of lycopene, while the cluster dxr-ispE-ispF-ispH had a negative effect on lycopene production. Hence, our multilocus integration strategy can facilitate the pathway assembly for production of complex chemicals and pharmaceuticals in B. subtilis. IMPORTANCE We present a toolkit that allows for rapid cloning procedures and one-step subcloning to move from plasmid-based expression to stable chromosome integration and expression in a production strain in less than a week. The utility of the customized tool was demonstrated by integrating the MEP (2C-methyl-d-erythritol-4-phosphate) pathway, part of the pentose phosphate pathway (PPP), and the hetero-lycopene biosynthesis genes by stable expression in the genome. The tool could be useful to engineer B. subtilis strains through diverse recombination events and ultimately improve its potential and scope of industrial application as biological chassis.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haijiao Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haoni Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingzhe Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
7
|
Wang H, Ke X, Jia R, Huang L, Liu Z, Zheng Y. Gibberellic acid overproduction in Fusarium fujikuroi using regulatory modification and transcription analysis. Appl Microbiol Biotechnol 2023; 107:3071-3084. [PMID: 37014394 DOI: 10.1007/s00253-023-12498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Gibberellic acid (GA3), one of the natural diterpenoids produced by Fusarium fujikuroi, serves as an important phytohormone in agriculture for promoting plant growth. Presently, the metabolic engineering strategies for increasing the production of GA3 are progressing slowly, which seriously restricted the advancing of the cost-effective industrial production of GA3. In this study, an industrial strain with high-yield GA3 of F. fujikuroi was constructed by metabolic modification, coupling with transcriptome analysis and promoter engineering. The over-expression of AreA and Lae1, two positive factors in the regulatory network, generated an initial producing strain with GA3 production of 2.78 g L-1. Compared with a large abundance of transcript enrichments in the GA3 synthetic gene cluster discovered by the comparative transcriptome analysis, geranylgeranyl pyrophosphate synthase 2 (Ggs2), and cytochrome P450-3 genes, two key genes that respectively participated in the initial and final step of biosynthesis, were identified to be downregulated when the highest GA3 productivity was obtained. Employing with a nitrogen-responsive bidirectional promoter, the two rate-limiting genes were dynamically upregulated, and therefore, the production of GA3 was increased to 3.02 g L-1. Furthermore, the top 20 upregulated genes were characterized in GA3 over-production, and their distributions in chromosomes suggested potential genomic regions with a high transcriptional level for further strain development. The construction of a GA3 high-yield-producing strain was successfully achieved, and insights into the enriched functional transcripts provided novel strain development targets of F. fujikuroi, offering an efficient microbial development platform for industrial GA3 production. KEY POINTS: • Global regulatory modification was achieved in F. fujikuroi for GA3 overproduction. • Comparative transcriptome analysis revealed bottlenecks in GA specific-pathway. • A dynamically nitrogen-regulated bidirectional promoter was cloned and employed.
Collapse
Affiliation(s)
- Haonan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rui Jia
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Zhang Q, Qi X, Gao H, Wang M, Guan H, Yu B. Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review. Microorganisms 2023; 11:microorganisms11010164. [PMID: 36677456 PMCID: PMC9863419 DOI: 10.3390/microorganisms11010164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Riboflavin (vitamin B2) is one of the essential vitamins that the human body needs to maintain normal metabolism. Its biosynthesis has become one of the successful models for gradual replacement of traditional chemical production routes. B. subtilis is characterized by its short fermentation time and high yield, which shows a huge competitive advantage in microbial fermentation for production of riboflavin. This review summarized the advancements of regulation on riboflavin production as well as the synthesis of two precursors of ribulose-5-phosphate riboflavin (Ru5P) and guanosine 5'-triphosphate (GTP) in B. subtilis. The different strategies to improve production of riboflavin by metabolic engineering were also reviewed.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Zhang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
- Correspondence: (Q.Z.); (B.Y.)
| | - Xiaoxiao Qi
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Gao
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Meng Wang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Hao Guan
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.Z.); (B.Y.)
| |
Collapse
|
9
|
The Effect of E. coli Uridine-Cytidine Kinase Gene Deletion on Cytidine Synthesis and Transcriptome Analysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytidine is an antiviral and anticancer drug intermediate, its primary method of manufacture being fermentation. Uridine-cytidine kinase (UCK) catalyzes the reverse process of phosphorylation of cytidine to produce cytidylic acid, which influences cytidine accumulation in the Escherichia coli cytidine biosynthesis pathway. The cytidine-producing strain E. coli NXBG-11 was used as the starting strain in this work; the udk gene coding UCK was knocked out of the chromosomal genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. The mutant strain E. coli NXBG-12 was obtained; its transcriptomics were studied to see how udk gene deletion affected cytidine synthesis and cell-wide transcription. The mutant strain E. coli NXBG-12 generated 1.28 times more cytidine than the original strain E. coli NXBG-11 after 40 h of shake-flask fermentation at 37 °C. The udk gene was knocked out, and transcriptome analysis showed that there were 1168 differentially expressed genes between the mutant and original strains, 559 upregulated genes and 609 downregulated genes. It was primarily shown that udk gene knockout has a positive impact on the cytidine synthesis network because genes involved in cytidine synthesis were significantly upregulated (p < 0.05) and genes related to the cytidine precursor PRPP and cofactor NADPH were upregulated in the PPP and TCA pathways. These results principally demonstrate that udk gene deletion has a favorable impact on the cytidine synthesis network. The continual improvement of cytidine synthesis and metasynthesis is made possible by this information, which is also useful for further converting microorganisms that produce cytidine.
Collapse
|
10
|
Nie L, He Y, Hu L, Zhu X, Wu X, Zhang B. Improvement in L-ornithine production from mannitol via transcriptome-guided genetic engineering in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:97. [PMID: 36123702 PMCID: PMC9484086 DOI: 10.1186/s13068-022-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND L-Ornithine is an important medicinal intermediate that is mainly produced by microbial fermentation using glucose as the substrate. To avoid competition with human food resources, there is an urgent need to explore alternative carbon sources for L-ornithine production. In a previous study, we constructed an engineered strain, Corynebacterium glutamicum MTL13, which produces 54.56 g/L of L-ornithine from mannitol. However, compared with the titers produced using glucose as a substrate, the results are insufficient, and further improvement is required. RESULTS In this study, comparative transcriptome profiling of MTL01 cultivated with glucose or mannitol was performed to identify novel targets for engineering L-ornithine-producing strains. Guided by the transcriptome profiling results, we modulated the expression of qsuR (encoding a LysR-type regulator QsuR), prpC (encoding 2-methylcitrate synthase PrpC), pdxR (encoding a MocR-type regulator PdxR), acnR (encoding a TetR-type transcriptional regulator AcnR), CGS9114_RS08985 (encoding a hypothetical protein), and CGS9114_RS09730 (encoding a TetR/AcrR family transcriptional regulator), thereby generating the engineered strain MTL25 that can produce L-ornithine at a titer of 93.6 g/L, representing a 71.6% increase as compared with the parent strain MTL13 and the highest L-ornithine titer reported so far for C. glutamicum. CONCLUSIONS This study provides novel indirect genetic targets for enhancing L-ornithine accumulation on mannitol and lays a solid foundation for the biosynthesis of L-ornithine from marine macroalgae, which is farmed globally as a promising alternative feedstock.
Collapse
Affiliation(s)
- Libin Nie
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yutong He
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lirong Hu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiangdong Zhu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China.
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
11
|
Wang J, Li Z, Wang W, Pang S, Yao Y, Yuan F, Wang H, Xu Z, Pan G, Liu Z, Chen Y, Fan K. Dynamic Control Strategy to Produce Riboflavin with Lignocellulose Hydrolysate in the Thermophile Geobacillus thermoglucosidasius. ACS Synth Biol 2022; 11:2163-2174. [PMID: 35677969 DOI: 10.1021/acssynbio.2c00087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient utilization of both glucose and xylose, the two most abundant sugars in biomass hydrolysates, is one of the main objectives of biofermentation with lignocellulosic materials. The utilization of xylose is commonly inhibited by glucose, which is known as glucose catabolite repression (GCR). Here, we report a GCR-based dynamic control (GCR-DC) strategy aiming at better co-utilization of glucose and xylose, by decoupling the cell growth and biosynthesis of riboflavin as a product. Using the thermophilic strain Geobacillus thermoglucosidasius DSM 2542 as a host, we constructed additional riboflavin biosynthetic pathways that were activated by xylose but not glucose. The engineered strains showed a two-stage fermentation process. In the first stage, glucose was preferentially used for cell growth and no production of riboflavin was observed, while in the second stage where glucose was nearly depleted, xylose was effectively utilized for riboflavin biosynthesis. Using corn cob hydrolysate as a carbon source, the optimized riboflavin yields of strains DSM2542-DCall-MSS (full pathway dynamic control strategy) and DSM2542-DCrib (single-module dynamic control strategy) were 5.3- and 2.3-fold higher than that of the control strain DSM 2542 Rib-Gtg constitutively producing riboflavin, respectively. This GCR-DC strategy should also be applicable to the construction of cell factories that can efficiently use natural carbon sources with multiple sugar components for the production of high-value chemicals in future.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongpeng Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co. Ltd., Shijiazhuang 051430, Hebei, China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co. Ltd., Shijiazhuang 051430, Hebei, China
| | - Zhen Xu
- Hebei Shengxue Dacheng Pharmaceutical Co. Ltd., Shijiazhuang 051430, Hebei, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
You J, Du Y, Pan X, Zhang X, Yang T, Rao Z. Increased Production of Riboflavin by Coordinated Expression of Multiple Genes in Operons in Bacillus subtilis. ACS Synth Biol 2022; 11:1801-1810. [PMID: 35467340 DOI: 10.1021/acssynbio.1c00640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboflavin is an essential vitamin widely used in the food, pharmaceutical, and feed industries. However, the insufficient supply of precursors caused by the imbalance of intracellular metabolic flow limits the riboflavin synthesis by industrial strains. Here, we increase riboflavin production by tuning multiple gene expression to balance intracellular metabolic flow. First, we tuned the expression of mCherry and egfp genes within operons by generating libraries of tunable intergenic regions (TIGRs) and confirmed the relative expression of the two reporter genes. The TIGR library can coordinate the expression ratio of reporter genes more than 180 times in Escherichia coli and more than 70 times in Bacillus subtilis. Next, we used this strategy to tune the expression of zwf, ribBA, and ywlf genes within operons through the TIGR library to increase the intracellular precursor pool for riboflavin biosynthesis. Based on the fluorescence characteristics of riboflavin, 96-well plates were used to screen the optimal combination mutants quickly. The best-engineered strain was selected from the library, which produced 2.7 g/L riboflavin, increasing by 64.35% in the shake flask. Finally, the riboflavin titer increased by 59.27% to 11.77 g/L in fed-batch fermentation. The strategy described here will contribute to the industrial production of riboflavin and related products by B. subtilis.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Yang H, Yang J, Liu C, Lv X, Liu L, Li J, Du G, Chen J, Liu Y. High-Level 5-Methyltetrahydrofolate Bioproduction in Bacillus subtilis by Combining Modular Engineering and Transcriptomics-Guided Global Metabolic Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5849-5859. [PMID: 35521920 DOI: 10.1021/acs.jafc.2c01252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
5-Methyltetrahydrofolate (5-MTHF) is the predominant folate form in human plasma, which has been widely used as a nutraceutical. However, the microbial synthesis of 5-MTHF is currently inefficient, limiting green and sustainable 5-MTHF production. In this study, the Generally Regarded As Safe (GRAS) microorganism Bacillus subtilis was engineered as the 5-MTHF production host. Three precursor supply modules were first optimized by modular engineering for strengthening the supply of guanosine-5-triphosphate (GTP) and p-aminobenzoic acid (pABA). Next, the impact of genome-wide gene expression on 5-MTHF biosynthesis was evaluated using transcriptome analyses, which identified key genes for 5-MTHF production. The effects of potential genes on 5-MTHF synthesis were verified by observing the genes' up-regulated by strong promoter P566 and those down-regulated by inhibition through the clustered regularly interspaced short palindromic repeat interference (CRISPRi). Finally, a key gene for improved 5-MTHF biosynthesis, comGC, was integrated into the genome of modular engineered strain B89 for its overexpression and facilitating efficient 5-MTHF synthesis, reaching 3.41 ± 0.10 mg/L with a productivity of 0.21 mg/L/h, which was the highest level achieved by microbial synthesis. The engineered 5-MTHF-producing B. subtilis developed in this work lays the foundation of further enhancing 5-MTHF production by microbial fermentation, which can be used for isolation and purification of 5-MTHF as food and nutraceutical ingredients.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinning Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
14
|
Anderson BW, Schumacher MA, Yang J, Turdiev A, Turdiev H, Schroeder J, He Q, Lee V, Brennan R, Wang J. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Nucleic Acids Res 2022; 50:847-866. [PMID: 34967415 PMCID: PMC8789054 DOI: 10.1093/nar/gkab1281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qixiang He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent T Lee
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Zhang M, Zhao X, Chen X, Li M, Wang X. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway. Biotechnol Lett 2021; 43:2209-2216. [PMID: 34606014 DOI: 10.1007/s10529-021-03190-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The production of riboflavin with Bacillus subtilis, is an established process, however it is yet to be fully optimized. The aim of this study was to explore how riboflavin yields can be improved via in vitro and in vivo metabolic engineering modification of the pentose phosphate pathway (PPP). RESULTS In vitro, glucose was replaced with sodium gluconate to enhance PPP. Flask tests showed that the riboflavin titer increased from 0.64 to 0.87 g/L. The results revealed that the direct use of sodium gluconate could benefit riboflavin production. In vivo, gntP (encoding gluconate permease) was overexpressed to improve sodium gluconate uptake. The riboflavin titer reached 1.00 g/L with the mutant B. subtilis RF01. Ultimately, the fermentation verification of the engineered strain was carried out in a 7-L fermenter, with the increased riboflavin titer validating this approach. CONCLUSIONS The combination of metabolic engineering modifications in vitro and in vivo was confirmed to promote riboflavin production efficiently by increasing PPP and has great potential for industrial application. This work is aimed to explore how to improve the riboflavin yield by the rational renovation of the pentose phosphate pathway (PPP). In vitro, metabolic engineering mainly uses sodium gluconate as a carbon source instead of glucose, and in vivo, metabolic engineering mainly includes the overexpression of sodium gluconate utility-related genes. The effect of sodium gluconate on cell growth, riboflavin production was investigated in the flasks and fermenter scale.
Collapse
Affiliation(s)
- Mengxue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingcong Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingyue Li
- College of Biological Science, University of California, Davis, USA
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
16
|
You J, Pan X, Yang C, Du Y, Osire T, Yang T, Zhang X, Xu M, Xu G, Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68:46-58. [PMID: 34481976 DOI: 10.1016/j.ymben.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
Abstract
Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
You J, Yang C, Pan X, Hu M, Du Y, Osire T, Yang T, Rao Z. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. BIORESOURCE TECHNOLOGY 2021; 333:125228. [PMID: 33957462 DOI: 10.1016/j.biortech.2021.125228] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Riboflavin, an essential vitamin for animals, is used widely in the pharmaceutical industry and as a food and feed additive. The microbial synthesis of riboflavin requires a large amount of oxygen, which limits the industrial-scale production of the vitamin. In this study, a metabolic engineering strategy based on transcriptome analysis was identified as effective in increasing riboflavin production. First, transcriptional profiling revealed that hypoxia affects purine, and nitrogen metabolism. Next, the precursor supply pool was increased by purR knockout and tnrA and glnR knockdown to balance intracellular nitrogen metabolism. Finally, increased oxygen utilization was achieved by dynamically regulating vgb. Fed-batch fermentation of the engineered strain in a 5-liter bioreactor produced 10.71 g/l riboflavin, a 45.51% higher yield than that obtained with Bacillus subtilis RF1. The metabolic engineering strategy described herein is useful for alleviating the oxygen limitation of bacterial strains used for the industrial production of riboflavin and related products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Yang B, Sun Y, Fu S, Xia M, Su Y, Liu C, Zhang C, Zhang D. Improving the Production of Riboflavin by Introducing a Mutant Ribulose 5-Phosphate 3-Epimerase Gene in Bacillus subtilis. Front Bioeng Biotechnol 2021; 9:704650. [PMID: 34395408 PMCID: PMC8359813 DOI: 10.3389/fbioe.2021.704650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ribulose 5-phosphate (Ru5P) and guanosine 5′-triphosphate (GTP) are two key precursors of riboflavin, whereby Ru5P is also a precursor of GTP. Ribulose 5-phosphate 3-epimerase (Rpe) catalyzes the conversion of ribulose 5-phosphate into xylulose 5-phosphate. Inactivation of Rpe can reduce the consumption of Ru5P, enhancing the carbon flux toward riboflavin biosynthesis. Here we investigated the effect of mutation of rpe and other related genes on riboflavin production, physiological and metabolic phenotypes in Bacillus subtilis LY (BSLY). Introducing single nucleotide deletion (generated BSR) or nonsense mutation (generated BSRN) on the genomic copy of rpe, resulting in more than fivefold increase of riboflavin production over the parental strain. BSR process 62% Rpe activity, while BSRN lost the entire Rpe activity and had a growth defect compared with the parent strain. BSR and BSRN exhibited increases of the inosine and guanine titers, in addition, BSRN exhibited an increase of inosine 5′-monophosphate titer in fermentation. The transcription levels of most oxidative pentose phosphate pathway and purine synthesis genes were unchanged in BSR, except for the levels of zwf and ndk, which were higher than in BSLY. The production of riboflavin was increased to 479.90 ± 33.21 mg/L when ribA was overexpressed in BSR. The overexpression of zwf, gntZ, prs, and purF also enhanced the riboflavin production. Finally, overexpression of the rib operon by the pMX45 plasmid and mutant gnd by pHP03 plasmid in BSR led to a 3.05-fold increase of the riboflavin production (977.29 ± 63.44 mg/L), showing the potential for further engineering of this strain.
Collapse
Affiliation(s)
- Bin Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yiwen Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shouying Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuan Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
20
|
Zhao G, Dong F, Lao X, Zheng H. Strategies to Increase the Production of Biosynthetic Riboflavin. Mol Biotechnol 2021; 63:909-918. [PMID: 34156642 DOI: 10.1007/s12033-021-00318-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Riboflavin is widely regarded as an essential nutrient that is involved in biological oxidation in vivo. In addition to preventing and treating acyl-CoA dehydrogenase deficiency in patients with keratitis, stomatitis, and glossitis, riboflavin is also closely related to the treatment of radiation mucositis and cardiovascular disease. Chemical synthesis has been the dominant method for producing riboflavin for approximately 50 years. Nevertheless, due to the intricate synthesis process, relatively high cost, and high risk of pollution, alternative methods of chemical syntheses, such as the fermentation method, began to develop and eventually became the main methods for producing riboflavin. At present, there are three types of strains used in industrial riboflavin production: Ashbya gossypii, Candida famata, and Bacillus subtilis. Additionally, many recent studies have been conducted on Escherichia coli and Lactobacillus. Fermentation increases the yield of riboflavin using genetic engineering technology to modify and induce riboflavin production in the strain, as well as to regulate the metabolic flux of the purine pathway and pentose phosphate pathway (PP pathway), thereby optimizing the culture process. This article briefly introduces recent progress in the fermentation of riboflavin.
Collapse
Affiliation(s)
- Guiling Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Fanyi Dong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
21
|
Hu W, Liu S, Wang Z, Chen T. Improving riboflavin production by knocking down ribF, purA and guaC genes using synthetic regulatory small RNA. J Biotechnol 2021; 336:25-29. [PMID: 34087245 DOI: 10.1016/j.jbiotec.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Riboflavin is a commercially important compound in the food, pharmaceutical, chemical, and cosmetic industries. The down-regulation of expression levels of ribF, purA and guaC genes involved in the downstream or branch reactions of riboflavin biosynthesis pathway could direct more carbon flux to riboflavin accumulation. In this study, we made an attempt to fine-tune the expression levels of the 3 genes by using synthetic regulatory small RNA to enhance riboflavin production in Escherichia coli. Firstly, each of the 3 genes was knocking down by using 5 different sRNAs, respectively, and a highest increase of 50.2 % in riboflavin titer was achieved by using anti-ribF5 sRNA. Then this sRNA was further co-expressed with 5 anti-purA and 5 anti-guaC sRNAs to simultaneously knocking down 2 or 3 genes. Co-expression of anti-ribF5 and anti-guaC3 led to the highest riboflavin production of 1091.3 mg/L, which was further increased by 97.6 % compared to the base strain. Finally, the expression levels of anti-ribF5 and anti-guaC3 were further fine-tuned by using 4 different promoters. The best strain WY40, in which the two sRNAs were respectively expressed by PJ23100 and PJ23107 promoter, produced 1454.5 mg/L riboflavin with an increase of 163.4 % compared to the base strain. To our knowledge, it's the first study to enhance riboflavin synthesis by simultaneously regulating the expression levels of ribF, purA and guaC genes, which led to a highest yield of 0.147 g/g glucose among all reported riboflavin-producing strains.
Collapse
Affiliation(s)
- Wenya Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Shuang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
22
|
Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power-Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2021; 60:2258-2278. [PMID: 33026132 DOI: 10.1002/anie.202004248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Fermentation as a production method for chemicals is especially attractive, as it is based on cheap renewable raw materials and often exhibits advantages in terms of costs and sustainability. The tremendous development of technology in bioscience has resulted in an exponentially increasing knowledge about biological systems and has become the main driver for innovations in the field of metabolic engineering. Progress in recombinant DNA technology, genomics, and computational methods open new, cheaper, and faster ways to metabolically engineer microorganisms. Existing biosynthetic pathways for natural products, such as vitamins, organic acids, amino acids, or secondary metabolites, can be discovered and optimized efficiently, thereby enabling competitive commercial production processes. Novel biosynthetic routes can now be designed by the rearrangement of nature's unlimited number of enzymes and metabolic pathways in microbial strains. This expands the range of chemicals accessible by biotechnology and has yielded the first commercial products, while new fermentation technologies targeting novel active ingredients, commodity chemicals, and CO2 -fixation methods are on the horizon.
Collapse
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jens Plassmeier
- Biomaterials, Conagen, Inc., 15 DeAngelo Drive, 01730, Bedford, MA, USA
| | - Matthew Blankschien
- James R. Randall Research Center, ADM, 1001 North Brush College Road, 62521, Decatur, Il, USA
| | - Anne-Catrin Letzel
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Lauralynn Kourtz
- R&D, Allied Microbiota, 1345 Ave of Americas, 10105, New York, NY, USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Walter Koch
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
23
|
Hoff B, Plassmeier J, Blankschien M, Letzel A, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Jens Plassmeier
- Biomaterials Conagen, Inc. 15 DeAngelo Drive 01730 Bedford, MA USA
| | - Matthew Blankschien
- James R. Randall Research Center ADM 1001 North Brush College Road 62521 Decatur, Il USA
| | - Anne‐Catrin Letzel
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Lauralynn Kourtz
- R&D Allied Microbiota 1345 Ave of Americas 10105 New York, NY USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Walter Koch
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| |
Collapse
|
24
|
Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri. Sci Rep 2020; 10:16314. [PMID: 33004914 PMCID: PMC7530994 DOI: 10.1038/s41598-020-73253-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023] Open
Abstract
Lachancea kluyveri, a weak Crabtree positive yeast, has been extensively studied for its unique URC pyrimidine catabolism pathway. It produces more biomass than Saccharomyces cerevisiae due to the underlying weak Crabtree effect and resorts to fermentation only in oxygen limiting conditions that renders it as a suitable industrial host. The yeast also produces ethyl acetate as a major overflow metabolite in aerobic conditions. Here, we report the first genome-scale metabolic model, iPN730, of L. kluyveri comprising of 1235 reactions, 1179 metabolites, and 730 genes distributed in 8 compartments. The in silico viability in different media conditions and the growth characteristics in various carbon sources show good agreement with experimental data. Dynamic flux balance analysis describes the growth dynamics, substrate utilization and product formation kinetics in various oxygen-limited conditions. We have also demonstrated the effect of switching carbon sources on the production of ethyl acetate under varying oxygen uptake rates. A phenotypic phase plane analysis described the energetic cost penalty of ethyl acetate and ethanol production on the specific growth rate of L. kluyveri. We generated the context specific models of L. kluyveri growing on uracil or ammonium salts as the sole nitrogen source. Differential flux calculated using flux variability analysis helped us in highlighting pathways like purine, histidine, riboflavin and pyrimidine metabolism associated with uracil degradation. The genome-scale metabolic construction of L. kluyveri will provide a better understanding of metabolism behind ethyl acetate production as well as uracil catabolism (pyrimidine degradation) pathway. iPN730 is an addition to genome-scale metabolic models of non-conventional yeasts that will facilitate system-wide omics analysis to understand fungal metabolic diversity.
Collapse
|
25
|
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020; 19:173. [PMID: 32883293 PMCID: PMC7650271 DOI: 10.1186/s12934-020-01436-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini-review, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications.
Collapse
Affiliation(s)
- Yuan Su
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Liu G, Vijayaraman SB, Dong Y, Li X, Andongmaa BT, Zhao L, Tu J, He J, Lin L. Bacillus velezensis LG37: transcriptome profiling and functional verification of GlnK and MnrA in ammonia assimilation. BMC Genomics 2020; 21:215. [PMID: 32143571 PMCID: PMC7060608 DOI: 10.1186/s12864-020-6621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background In recent years, interest in Bacillus velezensis has increased significantly due to its role in many industrial water bioremediation processes. In this study, we isolated and assessed the transcriptome of Bacillus velezensis LG37 (from an aquaculture pond) under different nitrogen sources. Since Bacillus species exhibit heterogeneity, it is worth investigating the molecular mechanism of LG37 through ammonia nitrogen assimilation, where nitrogen in the form of molecular ammonia is considered toxic to aquatic organisms. Results Here, a total of 812 differentially expressed genes (DEGs) from the transcriptomic sequencing of LG37 grown in minimal medium supplemented with ammonia (treatment) or glutamine (control) were obtained, from which 56 had Fold Change ≥2. BLAST-NCBI and UniProt databases revealed 27 out of the 56 DEGs were potentially involved in NH4+ assimilation. Among them, 8 DEGs together with the two-component regulatory system GlnK/GlnL were randomly selected for validation by quantitative real-time RT-PCR, and the results showed that expression of all the 8 DEGs are consistent with the RNA-seq data. Moreover, the transcriptome and relative expression analysis were consistent with the transporter gene amtB and it is not involved in ammonia transport, even in the highest ammonia concentrations. Besides, CRISPR-Cas9 knockout and overexpression glnK mutants further evidenced the exclusion of amtB regulation, suggesting the involvement of alternative transporter. Additionally, in the transcriptomic data, a novel ammonium transporter mnrA was expressed significantly in increased ammonia concentrations. Subsequently, OEmnrA and ΔmnrA LG37 strains showed unique expression pattern of specific genes compared to that of wild-LG37 strain. Conclusion Based on the transcriptome data, regulation of nitrogen related genes was determined in the newly isolated LG37 strain to analyse the key regulating factors during ammonia assimilation. Using genomics tools, the novel MnrA transporter of LG37 became apparent in ammonia transport instead of AmtB, which transports ammonium nitrogen in other Bacillus strains. Collectively, this study defines heterogeneity of B. velezensis LG37 through comprehensive transcriptome analysis and subsequently, by genome editing techniques, sheds light on the enigmatic mechanisms controlling the functional genes under different nitrogen sources also reveals the need for further research.
Collapse
Affiliation(s)
- Guangxin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Sarath Babu Vijayaraman
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yanjun Dong
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Binda Tembeng Andongmaa
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Li Lin
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China. .,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
| |
Collapse
|
27
|
Liu S, Hu W, Wang Z, Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Fact 2020; 19:31. [PMID: 32054466 PMCID: PMC7017516 DOI: 10.1186/s12934-020-01302-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Riboflavin (RF) and its active forms, the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have been extensively used in the food, feed and pharmaceutical industries. Modern commercial production of riboflavin is based on microbial fermentation, but the established genetically engineered production strains are facing new challenges due to safety concerns in the food and feed additives industry. High yields of flavin mononucleotide and flavin adenine dinucleotide have been obtained using whole-cell biocatalysis processes. However, the necessity of adding expensive precursors results in high production costs. Consequently, developing microbial cell factories that are capable of efficiently producing flavin nucleotides at low cost is an increasingly attractive approach. The biotechnological processes for the production of RF and its cognate cofactors are reviewed in this article.
Collapse
Affiliation(s)
- Shuang Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenya Hu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
28
|
Niu H, Sun X, Song J, Zhu C, Chen Y, Gao N, Qu X, Ying H, Liu D. Knockout of pde gene in Arthrobacter sp. CGMCC 3584 and transcriptomic analysis of its effects on cAMP production. Bioprocess Biosyst Eng 2020; 43:839-850. [PMID: 31925506 DOI: 10.1007/s00449-019-02280-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
Arthrobacter sp. CGMCC 3584 is used for the industrial production of cyclic adenosine monophosphate (cAMP). However, because of the paucity of genetic engineering tools for genetic manipulation on Arthrobacter species, only a few metabolically engineered Arthrobacter have been constructed and investigated. In this study, for the first time, we constructed an arpde knockout mutant of Arthrobacter without any antibiotic resistance marker by a PCR-targeting-based homologous recombination method. Our results revealed that the deletion of arpde had little effect on biomass production and improved cAMP production by 31.1%. Furthermore, we compared the transcriptomes of the arpde knockout strain and the wild strain, aiming to understand the capacities of cAMP production due to arpde inactivation at the molecular level. Comparative transcriptomic analysis revealed that arpde inactivation had two major effects on metabolism: inhibition of glycolysis, PP pathway, and amino acid metabolism (phenylalanine, tryptophan, branched-chain amino acids, and glutamate metabolism); promotion of the purine metabolism and carbon flux from the precursor 5'-phosphoribosyl 1-pyrophosphate, which benefited cAMP production.
Collapse
Affiliation(s)
- Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Xinzeng Sun
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Jiarui Song
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Nan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China.
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
29
|
Ruan L, Li L, Zou D, Jiang C, Wen Z, Chen S, Deng Y, Wei X. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:211. [PMID: 31516550 PMCID: PMC6732833 DOI: 10.1186/s13068-019-1554-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. RESULTS Four genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium. CONCLUSIONS This study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.
Collapse
Affiliation(s)
- Liying Ruan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhiyou Wen
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, 50011 USA
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, 214122 China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
30
|
Han L, Cui W, Suo F, Miao S, Hao W, Chen Q, Guo J, Liu Z, Zhou L, Zhou Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact 2019; 18:96. [PMID: 31142347 PMCID: PMC6540529 DOI: 10.1186/s12934-019-1148-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. Results The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between − 35 box and − 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the − 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the − 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as β-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. Conclusion Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology. Electronic supplementary material The online version of this article (10.1186/s12934-019-1148-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shengnan Miao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiaoqing Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
31
|
Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol 2019; 103:4455-4465. [PMID: 30968162 DOI: 10.1007/s00253-019-09788-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
In this study, stress tolerance devices consisting of heat shock protein (HSP) genes from thermophiles Geobacillus and Parageobacillus were introduced into riboflavin-producing strain Bacillus subtilis 446 to improve its stress tolerance and riboflavin production. The 12 HSP homologs were selected from 28 Geobacillus and Parageobacillus genomes according to their sequence clustering and phylogenetically analysis which represents the diversity of HSPs from thermophilic bacillus. The 12 HSP genes and 2 combinations of them (PtdnaK-PtdnaJ-PtgrpE and PtgroeL-PtgroeS) were heterologously expressed in B. subtilis 446 under the control of a strong constitutive promoter P43. Most of the 14 engineered strains showed increased cell density at 44 to 48 °C and less cell death at 50 °C compared with the control strains. Among them, strains B.s446-HSP20-3, B.s446-HSP20-2, and B.s446-PtDnaK-PtDnaJ-PtGrpE increased their cell densities over 25% at 44 to 48 °C. They also showed 5-, 4-, and 4-fold improved cell survivals after the 10-h heat shock treatment at 50 °C, respectively. These three strains also showed reduced cell death rates under osmotic stress of 10% NaCl, indicating that the introduction of HSPs improved not only the heat tolerance of B. subtilis 446 but also its osmotic tolerance. Fermentation of these three strains at higher temperatures of 39 and 43 °C showed 23-66% improved riboflavin titers, as well as 24-h shortened fermentation period. These results indicated that implanting HSPs from thermophiles to B. subtilis 446 would be an efficient approach to improve its stress tolerance and riboflavin production.
Collapse
|
32
|
iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum FS5-5 to salt tolerance. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
33
|
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng 2018; 50:109-121. [DOI: 10.1016/j.ymben.2018.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
|
34
|
Niu T, Liu Y, Li J, Koffas M, Du G, Alper HS, Liu L. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. ACS Synth Biol 2018; 7:2423-2435. [PMID: 30138558 DOI: 10.1021/acssynbio.8b00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis is a typical industrial microorganism and is widely used in industrial biotechnology, particularly for nutraceutical production. There are many studies on the static metabolic engineering of B. subtilis, whereas there are few reports on dynamic metabolic engineering due to the lack of appropriate elements. Here, we established a dynamic reprogramming strategy for reconstructing metabolic networks in B. subtilis, using a typical nutraceutical, N-acetylglucosamine (GlcNAc), as a model product and the glmS (encoding glucosamine-6-phosphate synthase) ribozyme as an engineering element. First, a trp terminator was introduced to effectively release the glmS ribozyme feedback inhibition. Further, we engineered the native glucosamine-6-phosphate (GlcN6P) responsive glmS ribozyme switch to dynamically control the metabolic flux in B. subtilis for overproduction of GlcNAc. With GlcN6P as a ligand, the native sensor glmS ribozyme is integrated at the 5'- of phosphoglucosamine mutase and 6-phosphofructokinase genes to decrease the flux dynamically toward the peptidoglycan synthesis and glycolysis pathway, respectively. The glmS ribozyme mutant M5 ( glmS ribozyme cleavage site AG → GG) with decreased ribozyme activity is integrated at the 5'- of glucose-6-phosphate isomerase gene to increase the flux dynamically toward the GlcNAc synthesis pathway. This strategy increased the GlcNAc titer from 9.24 to 18.45 g/L, and the specific GlcNAc productivity from 0.53 to 1.21 g GlcNAc/g cell. Since GlcN6P is involved in the biosynthesis of various products, here the developed strategy for multiple target dynamic engineering of metabolic pathways can be generally used in B. subtilis and other industrial microbes for chemical production.
Collapse
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
Fan X, Wu H, Jia Z, Li G, Li Q, Chen N, Xie X. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Appl Microbiol Biotechnol 2018; 102:8753-8762. [DOI: 10.1007/s00253-018-9316-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
|
36
|
Liu D, Mao Z, Guo J, Wei L, Ma H, Tang Y, Chen T, Wang Z, Zhao X. Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. ACS Synth Biol 2018; 7:1785-1797. [PMID: 29944832 DOI: 10.1021/acssynbio.8b00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Promoters are among the most-important and most-basic tools for the control of metabolic pathways. However, previous research mainly focused on the screening and characterization of some native promoters in Bacillus subtilis. To develop a broadly applicable promoter system for this important platform organism, we created a de novo synthetic promoter library (SPL) based on consensus sequences by analyzing the microarray transcriptome data of B. subtilis 168. A total of 214 potential promoters spanning a gradient of strengths was isolated and characterized by a green fluorescence assay. Among these, a detailed intensity analysis was conducted on nine promoters with different strengths by reverse-transcription polymerase chain reaction (RT-PCR) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Furthermore, reconstructed promoters and promoter cassettes (tandem promoter cluster) were designed via statistical model-based analysis and tandem dual promoters, which showed strength that was increased 1.2- and 2.77-fold compared to that of promoter P43, respectively. Finally, the SPL was employed in the production of inosine and acetoin by repressing and over-expressing the relevant metabolic pathways, yielding a 700% and 44% increase relative to the respective control strains. This is the first report of a de novo synthetic promoter library for B. subtilis, which is independent of any native promoter. The strategy of improving and fine-tuning promoter strengths will contribute to future metabolic engineering and synthetic biology projects in B. subtilis.
Collapse
Affiliation(s)
| | - Zhitao Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | | | | | | |
Collapse
|
37
|
Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab Eng 2018; 48:138-149. [DOI: 10.1016/j.ymben.2018.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022]
|
38
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
39
|
Jiang P, Wei WF, Zhong GW, Zhou XG, Qiao WR, Fisher R, Lu L. The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans. MICROBIOLOGY-SGM 2017; 163:218-232. [PMID: 28277197 DOI: 10.1099/mic.0.000427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.
Collapse
Affiliation(s)
- Ping Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen-Fan Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Guo-Wei Zhong
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Xiao-Gang Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wei-Ran Qiao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Reinhard Fisher
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
40
|
Hu J, Lei P, Mohsin A, Liu X, Huang M, Li L, Hu J, Hang H, Zhuang Y, Guo M. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb Cell Fact 2017; 16:150. [PMID: 28899391 PMCID: PMC5596917 DOI: 10.1186/s12934-017-0764-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Background Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. Results In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden–Meyerhof–Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD+ ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. Conclusions This study shows that integration of transcriptomics, 13C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin’s regulatory mechanisms in B. subtilis grown under different dissolved oxygen tension conditions. The two-component system, ResD–ResE, was considered as the signal receiver of DO tension and gene regulator that led to differences between biomass and riboflavin production after triggering the shifts in gene expression, metabolic flux distributions and metabolite pool sizes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0764-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junlang Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Pan Lei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Xiaoyun Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China.
| | - Liang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Jianhua Hu
- Shanghai Acebright Pharmaceuticals Group Co., Ltd, Shanghai, 201203, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. box 329#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
41
|
Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol 2016; 44:659-665. [PMID: 27696023 DOI: 10.1007/s10295-016-1842-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Riboflavin (vitamin B2) is an essential nutrient for humans and animals that must be obtained from the diet. To ensure an optimal supply, riboflavin is used on a large scale as additive in the food and feed industries. Here, we describe a historical overview of the industrial process of riboflavin production starting from its discovery and the need to produce the vitamin in bulk at prices that would allow for their use in human and animal nutrition. Riboflavin was produced industrially by chemical synthesis for many decades. At present, the development of economical and eco-efficient fermentation processes, which are mainly based on Bacillus subtilis and Ashbya gossypii strains, has replaced the synthetic process at industrial scale. A detailed account is given of the development of the riboflavin overproducer strains as well as future prospects for its improvement.
Collapse
|
42
|
Wang X, Wang G, Li X, Fu J, Chen T, Wang Z, Zhao X. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering. J Biotechnol 2016; 231:115-121. [DOI: 10.1016/j.jbiotec.2016.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
|
43
|
Liu Y, Link H, Liu L, Du G, Chen J, Sauer U. A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nat Commun 2016; 7:11933. [PMID: 27324299 PMCID: PMC5512609 DOI: 10.1038/ncomms11933] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/13/2016] [Indexed: 01/24/2023] Open
Abstract
Recent advances in genome engineering have further widened the gap between our ability to implement essentially any genetic change and understanding the impact of these changes on cellular function. We lack efficient methods to diagnose limiting steps in engineered pathways. Here, we develop a generally applicable approach to reveal limiting steps within a synthetic pathway. It is based on monitoring metabolite dynamics and simplified kinetic modelling to differentiate between putative causes of limiting product synthesis during the start-up phase of the pathway with near-maximal rates. We examine the synthetic N-acetylglucosamine (GlcNAc) pathway in Bacillus subtilis and find none of the acetyl-, amine- or glucose-moiety precursors to limit synthesis. Our dynamic metabolomics approach predicts an energy-dissipating futile cycle between GlcNAc6P and GlcNAc as the primary problem in the pathway. Deletion of the responsible glucokinase more than doubles GlcNAc productivity by restoring healthy growth of the overproducing strain. Rate-limiting steps in synthetic metabolic pathways are difficult to identify. Here, the authors monitor metabolite dynamics and apply kinetic modelling during the start-up phase of the Bacillus subtilis GlcNAc pathway to discover a futile cycle, allowing them to identify a more productive strain.
Collapse
Affiliation(s)
- Yanfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.,Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Hannes Link
- Max Planck Institute for terrestrial Microbiology, Marburg 35043, Germany
| | - Long Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
44
|
Li Y, Zhu X, Zhang X, Fu J, Wang Z, Chen T, Zhao X. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb Cell Fact 2016; 15:94. [PMID: 27260256 PMCID: PMC4893254 DOI: 10.1186/s12934-016-0494-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. Results In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Conclusions Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved properties compared to the wild-type strain as chassis cells for the production of these two products. These strains also have great potential for the production of other nucleosides and similar derived chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0494-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Xujun Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xueyu Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Tianjin Vocational College of Bioengineering, Tianjin, 300462, China
| | - Jing Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
45
|
Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:90. [PMID: 27099629 PMCID: PMC4837526 DOI: 10.1186/s13068-016-0502-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BD) with low toxicity to microbes, could be a promising alternative for biofuel production. However, most of the 2,3-BD producers are opportunistic pathogens that are not suitable for industrial-scale fermentation. In our previous study, wild-type Bacillus subtilis 168, as a class I microorganism, was first found to generate only d-(-)-2,3-BD (purity >99 %) under low oxygen conditions. RESULTS In this work, B. subtilis was engineered to produce chiral pure meso-2,3-BD. First, d-(-)-2,3-BD production was abolished by deleting d-(-)-2,3-BD dehydrogenase coding gene bdhA, and acoA gene was knocked out to prevent the degradation of acetoin (AC), the immediate precursor of 2,3-BD. Next, both pta and ldh gene were deleted to decrease the accumulation of the byproducts, acetate and l-lactate. We further introduced the meso-2,3-BD dehydrogenase coding gene budC from Klebsiella pneumoniae CICC10011, as well as overexpressed alsSD in the tetra-mutant (ΔacoAΔbdhAΔptaΔldh) to achieve the efficient production of chiral meso-2,3-BD. Finally, the pool of NADH availability was further increased to facilitate the conversion of meso-2,3-BD from AC by overexpressing udhA gene (coding a soluble transhydrogenase) and low dissolved oxygen control during the cultivation. Under microaerobic oxygen conditions, the best strain BSF9 produced 103.7 g/L meso-2,3-BD with a yield of 0.487 g/g glucose in the 5-L batch fermenter, and the titer of the main byproduct AC was no more than 1.1 g/L. CONCLUSION This work offered a novel strategy for the production of chiral pure meso-2,3-BD in B. subtilis. To our knowledge, this is the first report indicating that metabolic engineered B. subtilis could produce chiral meso-2,3-BD with high purity under limited oxygen conditions. These results further demonstrated that B. subtilis as a class I microorganism is a competitive industrial-level meso-2,3-BD producer.
Collapse
Affiliation(s)
- Jing Fu
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Guangxin Huo
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Lili Feng
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yufeng Mao
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hongwu Ma
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Tao Chen
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- />Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Xueming Zhao
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
46
|
Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 2016; 140:424-32. [DOI: 10.1016/j.carbpol.2015.12.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
47
|
Biotechnology of riboflavin. Appl Microbiol Biotechnol 2016; 100:2107-19. [DOI: 10.1007/s00253-015-7256-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
48
|
Xu Z, Lin Z, Wang Z, Chen T. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Becker J, Wittmann C. Advanced Biotechnology: Metabolically Engineered Cells for the Bio-Based Production of Chemicals and Fuels, Materials, and Health-Care Products. Angew Chem Int Ed Engl 2015; 54:3328-50. [DOI: 10.1002/anie.201409033] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/16/2022]
|
50
|
Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|