1
|
Xu Y, Liu M, Zhao R, Pan Y, Wu P, Zhang C, Chi X, Zhang B, Wu H. TetR family regulator AbrT controls lincomycin production and morphological development in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:223. [PMID: 39118116 PMCID: PMC11308395 DOI: 10.1186/s12934-024-02498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood. RESULTS In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes. CONCLUSIONS AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.
Collapse
Affiliation(s)
- Yurong Xu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Meng Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruidong Zhao
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yue Pan
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chi Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiangying Chi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Wang W, Tang H, Cui X, Wei W, Wu J, Ye BC. Engineering of a TetR family transcriptional regulator BkdR enhances heterologous spinosad production in Streptomyces albus B4 chassis. Appl Environ Microbiol 2024; 90:e0083824. [PMID: 38904409 PMCID: PMC11267868 DOI: 10.1128/aem.00838-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Precursor supply plays a significant role in the production of secondary metabolites. In Streptomyces bacteria, propionyl-, malonyl-, and methylmalonyl-CoA are the most common precursors used for polyketide biosynthesis. Although propionyl-CoA synthetases participate in the propionate assimilation pathway and directly convert propionate into propionyl-CoA, malonyl- and methylmalonyl-CoA cannot be formed using common acyl-CoA synthetases. Therefore, both acetyl- and propionyl-CoA carboxylation, catalyzed by acyl-CoA carboxylases, should be considered when engineering a microorganism chassis to increase polyketide production. In this study, we identified a transcriptional regulator of the TetR family, BkdR, in Streptomyces albus B4, which binds directly to the promoter region of the neighboring pccAB operon. This operon encodes acetyl/propionyl-CoA carboxylase and negatively regulates its transcription. In addition to acetate and propionate, the binding of BkdR to pccAB is disrupted by acetyl- and propionyl-CoA ligands. We identified a 16-nucleotide palindromic BkdR-binding motif (GTTAg/CGGTCg/TTAAC) in the intergenic region between pccAB and bkdR. When bkdR was deleted, we found an enhanced supply of malonyl- and methylmalonyl-CoA precursors in S. albus B4. In this study, spinosad production was detected in the recombinant strain after introducing the entire artificial biosynthesized gene cluster into S. albus B4. When supplemented with propionate to provide propionyl-CoA, the novel bkdR-deleted strain produced 29.4% more spinosad than the initial strain in trypticase soy broth (TSB) medium. IMPORTANCE In this study, we describe a pccAB operon involved in short-chain acyl-CoA carboxylation in S. albus B4 chassis. The TetR family regulator, BkdR, represses this operon. Our results show that BkdR regulates the precursor supply needed for heterologous spinosad biosynthesis by controlling acetyl- and propionyl-CoA assimilation. The deletion of the BkdR-encoding gene exerts an increase in heterologous spinosad yield. Our research reveals a regulatory mechanism in short-chain acyl-CoA metabolism and suggests new possibilities for S. albus chassis engineering to enhance heterologous polyketide yield.
Collapse
Affiliation(s)
- Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Shao M, Xu F, Ke X, Huang M, Chu J. Enhancing erythromycin production in Saccharopolyspora erythraea through rational engineering and fermentation refinement: A Design-Build-Test-Learn approach. Biotechnol J 2024; 19:e2400039. [PMID: 38797723 DOI: 10.1002/biot.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Industrial production of bioactive compounds from actinobacteria, such as erythromycin and its derivatives, faces challenges in achieving optimal yields. To this end, the Design-Build-Test-Learn (DBTL) framework, a systematic metabolic engineering approach, was employed to enhance erythromycin production in Saccharopolyspora erythraea (S. erythraea) E3 strain. A genetically modified strain, S. erythraea E3-CymRP21-dcas9-sucC (S. erythraea CS), was developed by suppressing the sucC gene using an inducible promoter and dcas9 protein. The strain exhibited improved erythromycin synthesis, attributed to enhanced precursor synthesis and increased NADPH availability. Transcriptomic and metabolomic analyses revealed altered central carbon metabolism, amino acid metabolism, energy metabolism, and co-factor/vitamin metabolism in CS. Augmented amino acid metabolism led to nitrogen depletion, potentially causing cellular autolysis during later fermentation stages. By refining the fermentation process through ammonium sulfate supplementation, erythromycin yield reached 1125.66 mg L-1, a 43.5% increase. The results demonstrate the power of the DBTL methodology in optimizing erythromycin production, shedding light on its potential for revolutionizing antibiotic manufacturing in response to the global challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Minghao Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiang Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Feng Y, Jiang Y, Chen X, Zhu L, Xue H, Wu M, Yang L, Yu H, Lin J. Improving the production of carbamoyltobramycin by an industrial Streptoalloteichus tenebrarius through metabolic engineering. Appl Microbiol Biotechnol 2024; 108:304. [PMID: 38643456 PMCID: PMC11033246 DOI: 10.1007/s00253-024-13141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified. • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.
Collapse
Affiliation(s)
- Yun Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xutong Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hailong Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Cai X, Xu W, Zheng Y, Wu S, Zhao R, Wang N, Tang Y, Ke M, Kang Q, Bai L, Zhang B, Wu H. Coupled strategy based on regulator manipulation and medium optimization empowers the biosynthetic overproduction of lincomycin. Synth Syst Biotechnol 2024; 9:134-143. [PMID: 38318491 PMCID: PMC10840354 DOI: 10.1016/j.synbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The biosynthesis of bioactive secondary metabolites, specifically antibiotics, is of great scientific and economic importance. The control of antibiotic production typically involves different processes and molecular mechanism. Despite numerous efforts to improve antibiotic yields, joint engineering strategies for combining genetic manipulation with fermentation optimization remain finite. Lincomycin A (Lin-A), a lincosamide antibiotic, is industrially fermented by Streptomyces lincolnensis. Herein, the leucine-responsive regulatory protein (Lrp)-type regulator SLCG_4846 was confirmed to directly inhibit the lincomycin biosynthesis, whereas indirectly controlled the transcription of SLCG_2919, the first reported repressor in S. lincolnensis. Inactivation of SLCG_4846 in the high-yield S. lincolnensis LA219X (LA219XΔ4846) increases the Lin-A production and deletion of SLCG_2919 in LA219XΔ4846 exhibits superimposed yield increment. Given the effect of the double deletion on cellular primary metabolism of S. lincolnensis, Plackett-Burman design, steepest ascent and response surface methodologies were utilized and employed to optimize the seed medium of this double mutant in shake flask, and Lin-A yield using optimal seed medium was significantly increased over the control. Above strategies were performed in a 15-L fermenter. The maximal yield of Lin-A in LA219XΔ4846-2919 reached 6.56 g/L at 216 h, 55.1 % higher than that in LA219X at the parental cultivation (4.23 g/L). This study not only showcases the potential of this strategy to boost lincomycin production, but also could empower the development of high-performance actinomycetes for other antibiotics.
Collapse
Affiliation(s)
- Xinlu Cai
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wanlian Xu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang Zheng
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Sendi Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Rundong Zhao
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nian Wang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yaqian Tang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Meilan Ke
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
6
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [PMID: 37768348 DOI: 10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Actinomycetes Streptomyces lincolnensis is the producer of lincosamide-type antibiotic lincomycin, a widely utilized drug against Gram-positive bacteria and protozoans. In this work, through gene knockout, complementation, and overexpression experiments, we identified LcbR1 (SLINC_1595), a GntR family transcriptional regulator, as a repressor for lincomycin biosynthesis. Deletion of lcbR1 boosted lincomycin production by 3.8-fold, without obvious change in morphological development or cellular growth. The homologues of LcbR1 are widely distributed in Streptomyces. Heterologous expression of SCO1410 from Streptomyces coelicolor resulted in the reduction of lincomycin yield, implying that the function of LcbR1 is conserved across different species. Alignment among sequences upstream of lcbR1 and their homologues revealed a conserved 16-bp palindrome (-TTGAACGATCCTTCAA-), which was further proven to be the recognition motif of LcbR1 by electrophoretic mobility shift assays (EMSAs). Via this motif, LcbR1 suppressed the transcription of lcbR1 and SLINC_1596 sharing the same bi-directional promoter. SLINC_1596, one important target of LcbR1, exerted a positive effect on lincomycin production. As detected by quantitative real-time PCR (qRT-PCR) analyses, the expressions of all selected structural (lmbA, lmbC, lmbJ, lmbV, and lmbW), resistance (lmrA and lmrB) and regulatory genes (lmrC and lmbU) from lincomycin biosynthesis cluster were upregulated in deletion strain ΔlcbR1 at 48 h of fermentation, while the mRNA amounts of bldD, glnR, ramR, SLCG_Lrp, and SLCG_2919, previously characterized as the regulators on lincomycin production, were decreased in strain ΔlcbR1, although the regulatory effects of LcbR1 on the above differential expression genes seemed to be indirect. Besides, indicated by EMSAs, the expression of lcbR1 might be regulated by GlnR, SLCG_Lrp, and SLCG_2919, which shows the complexity of the regulatory network on lincomycin biosynthesis. KEY POINTS: • LcbR1 is a novel and conservative GntR family regulator regulating lincomycin production. • LcbR1 modulates the expressions of lcbR1 and SLINC_1596 through a palindromic motif. • GlnR, SLCG_Lrp, and SLCG_2919 can control the expression of lcbR1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023. [DOI: doi.org/10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
|
8
|
Wan M, Gan L, Li Z, Wang M, Chen J, Chen S, Hu J, Li J. Enhancement of fungichromin production of Streptomyces sp. WP-1 by genetic engineering. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12672-4. [PMID: 37417973 DOI: 10.1007/s00253-023-12672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Fungichromin is a polyene macrolide antibiotic with potent killing activity against a broad range of agricultural pathogens and filamentous fungi and a wide range of potential applications. The production of fungichromin is still hampered by poor fermentation yield and high cost. In this study, the whole genome sequencing of fungichromin-producing Streptomyces sp. WP-1 was conducted, and the fungichromin biosynthetic gene cluster was identified. Comparative analysis revealed that the fungichromin biosynthetic gene cluster contains two regulatory genes, ptnF, and ptnR. The roles of ptnF and ptnR were determined through knockout and complementation. The yield of fungichromin was increased by overexpressing these two regulatory genes, as well as the crotonyl CoA reductase/carboxylase gene ptnB in Streptomyces sp. WP-1. The yield of fungichromin was increased to 8.5 g/L using a combination of genetic engineering and a medium optimization strategy, which is the highest fermentation titer recorded. KEY POINTS: • Confirmation of the positive regulation of ptnF and ptnR on fungichromin. • Improvement of fungichromin production by the construction of ptnF, ptnR, and ptnB overexpression strains. • Improvement of fungichromin production by the addition of soybean oil and copper ions at optimal concentration.
Collapse
Affiliation(s)
- Miyang Wan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lu Gan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenxin Li
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mengran Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jingtao Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shaoxin Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jinfeng Hu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiyang Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhu J, Wang S, Wang C, Wang Z, Luo G, Li J, Zhan Y, Cai D, Chen S. Microbial synthesis of bacitracin: Recent progress, challenges, and prospects. Synth Syst Biotechnol 2023; 8:314-322. [PMID: 37122958 PMCID: PMC10130698 DOI: 10.1016/j.synbio.2023.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microorganisms are important sources of various natural products that have been commercialized for human medicine and animal healthcare. Bacitracin is an important antibacterial natural product predominantly produced by Bacillus licheniformis and Bacillus subtilis, and it is characterized by a broad antimicrobial spectrum, strong activity and low resistance, thus bacitracin is extensively applied in animal feed and veterinary medicine industries. In recent years, various strategies have been proposed to improve bacitracin production. Herein, we systematically describe the regulation of bacitracin biosynthesis in genus Bacillus and its associated mechanism, to provide a theoretical basis for bacitracin overproduction. The metabolic engineering strategies applied for bacitracin production are explored, including improving substrate utilization, using an enlarged precursor amino acid pool, increasing ATP supply and NADPH generation, and engineering transcription regulators. We also present several approaches of fermentation process optimization to facilitate the industrial large-scale production of bacitracin. Finally, the challenges and prospects associated with microbial bacitracin synthesis are discussed to facilitate the establishment of high-yield and low-cost biological factories.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Cheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Hubei Provincial Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Gan Luo
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
10
|
Bernauw AJ, Crabbe V, Ryssegem F, Willaert R, Bervoets I, Peeters E. Molecular mechanisms of regulation by a β-alanine-responsive Lrp-type transcription factor from Acidianus hospitalis. Microbiologyopen 2023; 12:e1356. [PMID: 37379425 PMCID: PMC10201364 DOI: 10.1002/mbo3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 06/30/2023] Open
Abstract
The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid β-alanine. In this work, we unravel molecular mechanisms of the Acidianus hospitalis BarR homolog, Ah-BarR. Using a heterologous reporter gene system in Escherichia coli, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. β-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in Sulfolobus acidocaldarius and Sulfurisphaera tokodaii, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.
Collapse
Affiliation(s)
- Amber J. Bernauw
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Vincent Crabbe
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Fraukje Ryssegem
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Ronnie Willaert
- Research Group Structural Biology Brussels, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
- Alliance Research Group VUB‐UGent NanoMicrobiology, International Joint Research Group VUB‐EFPL NanoBiotechnology & NanoMedicineVrije Universiteit BrusselBrusselsBelgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
11
|
Liao Y, Xiong M, Miao Z, Ishaq AR, Zhang M, Li B, Zhan Y, Cai D, Yang Z, Chen J, Chen S. Modular Engineering to Enhance Keratinase Production for Biotransformation of Discarded Feathers. Appl Biochem Biotechnol 2023; 195:1752-1769. [PMID: 36394712 DOI: 10.1007/s12010-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Biotransformation of wasted feathers via feather-degrading enzyme has gained immense popularity, low conversion efficiency hinders its scale application, and the main purpose of this study is to improve feather-degrading enzyme production in Bacillus licheniformis. Firstly, keratinase from Bacillus amyloliquefaciens K11 was attained with the best performance for feather hydrolysis, via screening several extracellular proteases from Bacillus; also, feather powder was proven as the most suitable substrate for determination of feather-degrading enzyme activity. Then, expression elements, including signal peptides and promoters, were optimized, and the combination of signal peptide SPSacC with promoter Pdual3 owned the best performance, keratinase activity aggrandized by 6.21-fold. According to amino acid compositions of keratinase and feeding assays, Ala, Val, and Ser were proven as critical precursors, and strengthening these precursors' supplies via metabolic pathway optimization resulted in a 33.59% increase in the keratinase activity. Furthermore, keratinase activity reached 2210.66 U/mL, up to 56.74-fold from the original activity under the optimized fermentation condition in 3-L fermentor. Finally, the biotransformation process of discarded feathers by the fermented keratinase was optimized, and our results indicated that 90.94% of discarded feathers (16%, w/v) were decomposed in 12 h. Our results suggested that strengthening precursor amino acids' supplies was an efficient strategy for enhanced production of keratinase, and this research provided an efficient strain as well as the biotransformation process for discarded feather re-utilization.
Collapse
Affiliation(s)
- Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhaoqi Miao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Min Zhang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Bichan Li
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Jun Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China.
| |
Collapse
|
12
|
Liu J, Wang Y, He H, Dong S, Tang L, Yang E, Wang W, Zhang B. The leucine-responsive regulatory protein SCAB_Lrp modulates thaxtomin biosynthesis, pathogenicity, and morphological development in Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2023; 24:167-178. [PMID: 36478143 PMCID: PMC9831280 DOI: 10.1111/mpp.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Streptomyces scabies is the best-characterized plant-pathogenic streptomycete, which is a special species among the large genus Streptomyces. The pathogenicity of S. scabies relies on the production of the secondary metabolite thaxtomin A. Little is known about the molecular mechanisms underlying the regulation of thaxtomin biosynthesis in S. scabies beyond the pathway-specific activator TxtR and the cellulose utilization repressor CebR. The leucine-responsive regulatory protein (Lrp) family modulates secondary metabolism in nonpathogenic streptomycetes. However, the regulatory relationship between the Lrp and pathogenic streptomycetes remains unknown. In this study, we demonstrated that SCAB_Lrp (SCAB_77931) from S. scabies significantly affects thaxtomin biosynthesis, pathogenicity, and morphological development. SCAB_Lrp deletion resulted in a dramatic decline in thaxtomin A production and a low-virulence phenotype of S. scabies. An in-depth dissection of the regulatory mechanism of SCAB_Lrp revealed that it positively regulates the transcription of the thaxtomin biosynthetic gene cluster by directly binding to the promoter of the cluster-situated regulator gene txtR. SCAB_Lrp also controls the morphological development of S. scabies by directly activating the transcription of amfC, whiB, and ssgB. SCAB_Lrp directly controls the transcription of its own gene by binding a specific sequence (5'-GGACAGTCGCCGTGCTACG-3'). Moreover, phenylalanine and methionine have been characterized as SCAB_Lrp effectors by strengthening the binding affinity and complex status between SCAB_Lrp and DNA. Our findings characterize a multifunctional regulatory protein, SCAB_Lrp, that controls secondary metabolism, pathogenicity, and sporulation in S. scabies and provide new insights into the complex regulatory network that modulates thaxtomin phytotoxins in pathogenic Streptomyces.
Collapse
Affiliation(s)
- Jing Liu
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Yunxia Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Haoyang He
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Shengnan Dong
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Lijuan Tang
- Institute of Physical Science and Information Technology, School of Life SciencesAnhui UniversityHefeiChina
| | - Endong Yang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Weiyun Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Buchang Zhang
- Institute of Physical Science and Information Technology, School of Life SciencesAnhui UniversityHefeiChina
| |
Collapse
|
13
|
Crosstalk of TetR-like regulator SACE_4839 and a nitrogen regulator for erythromycin biosynthesis. Appl Microbiol Biotechnol 2022; 106:6551-6566. [PMID: 36075984 DOI: 10.1007/s00253-022-12153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
TetR family transcriptional regulators (TFRs) are widespread in actinomycetes, which exhibit diverse regulatory modes in antibiotic biosynthesis. Nitrogen regulators play vital roles in modulation of primary and secondary metabolism. However, crosstalk between TFR and nitrogen regulator has rarely been reported in actinomycetes. Herein, we demonstrated that a novel TFR, SACE_4839, was negatively correlated with erythromycin yield in Saccharopolyspora erythraea A226. SACE_4839 indirectly suppressed erythromycin synthetic gene eryAI and resistance gene ermE and directly inhibited its adjacent gene SACE_4838 encoding a homologue of nitrogen metabolite repression (NMR) regulator NmrA (herein named NmrR). The SACE_4839-binding sites within SACE_4839-nmrR intergenic region were identified. NmrR positively controlled erythromycin biosynthesis by indirectly stimulating eryAI and ermE and directly repressing SACE_4839. NmrR was found to affect growth viability under the nitrogen source supply. Furthermore, NmrR directly repressed glutamine and glutamate utilization-related genes SACE_1623, SACE_5070 and SACE_5979 but activated nitrate utilization-associated genes SACE_1163, SACE_4070 and SACE_4912 as well as nitrite utilization-associated genes SACE_1476 and SACE_4514. This is the first reported NmrA homolog for modulating antibiotic biosynthesis and nitrogen metabolism in actinomycetes. Moreover, combinatorial engineering of SACE_4839 and nmrR in the high-yield S. erythraea WB resulted in a 68.8% increase in erythromycin A production. This investigation deepens the understanding of complicated regulatory network for erythromycin biosynthesis. KEY POINTS: • SACE_4839 and NmrR had opposite contributions to erythromycin biosynthesis. • NmrR was first identified as a homolog of another nitrogen regulator NmrA. • Cross regulation between SACE_4839 and NmrR was revealed.
Collapse
|
14
|
Gan Y, Bai M, Lin X, Liu K, Huang B, Jiang X, Liu Y, Gao C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb Cell Fact 2022; 21:147. [PMID: 35854349 PMCID: PMC9294813 DOI: 10.1186/s12934-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. RESULTS Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisDD41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisDD41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. CONCLUSIONS In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.
Collapse
Affiliation(s)
- Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| |
Collapse
|
15
|
Li X, Ke X, Qiao L, Sui Y, Chu J. Comparative genomic and transcriptomic analysis guides to further enhance the biosynthesis of erythromycin by an overproducer. Biotechnol Bioeng 2022; 119:1624-1640. [PMID: 35150130 DOI: 10.1002/bit.28059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022]
Abstract
Omics approaches have been applied to understand the boosted productivity of natural products by industrial high-producing microorganisms. Here, with the updated genome sequence and transcriptomic profiles derived from high-throughput sequencing, we exploited comparative omics analysis to further enhance the biosynthesis of erythromycin in an industrial overproducer, Saccharopolyspora erythraea HL3168 E3. By comparing the genome of E3 with the wild type NRRL23338, we identified fragment deletions inside 56 coding sequences and 255 single nucleotide polymorphisms over the genome of E3. A substantial number of genomic variations were observed in genes responsible for pathways which were interconnected to the biosynthesis of erythromycin by supplying precursors/cofactors or by signal transduction. Furthermore, the transcriptomic data suggested that genes involved in the biosynthesis of erythromycin were significantly up-regulated constantly, whereas some genes in biosynthesis clusters of other secondary metabolites contained nonsense mutations and were expressed at extremely low levels. Through comparative transcriptomic analysis, L-glutamine/L-glutamate and 2-oxoglutarate were identified as reporter metabolites. Around the node of 2-oxoglutarate, genomic mutations were also observed. Based on the omics association analysis, readily available strategies were proposed to engineer E3 by simultaneously overexpressing sucB (coding for 2-oxoglutarate dehydrogenase E2 component) and sucA (coding for 2-oxoglutarate dehydrogenase E1 component), which increased the erythromycin titer by 71% compared to E3 in batch culture. This work provides more promising molecular targets to engineer for enhanced production of erythromycin by the overproducer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Xiang Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Lijia Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Yufei Sui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| |
Collapse
|
16
|
Polyketide Starter and Extender Units Serve as Regulatory Ligands to Coordinate the Biosynthesis of Antibiotics in Actinomycetes. mBio 2021; 12:e0229821. [PMID: 34579580 PMCID: PMC8546615 DOI: 10.1128/mbio.02298-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Polyketides are one of the largest categories of secondary metabolites, and their biosynthesis is initiated by polyketide synthases (PKSs) using coenzyme A esters of short fatty acids (acyl-CoAs) as starter and extender units. In this study, we discover a universal regulatory mechanism in which the starter and extender units, beyond direct precursors of polyketides, function as ligands to coordinate the biosynthesis of antibiotics in actinomycetes. A novel acyl-CoA responsive TetR-like regulator (AcrT) is identified in an erythromycin-producing strain of Saccharopolyspora erythraea. AcrT shows the highest binding affinity to the promoter of the PKS-encoding gene eryAI in the DNA affinity capture assay (DACA) and directly represses the biosynthesis of erythromycin. Propionyl-CoA (P-CoA) and methylmalonyl-CoA (MM-CoA) as the starter and extender units for erythromycin biosynthesis can serve as the ligands to release AcrT from PeryAI, resulting in an improved erythromycin yield. Intriguingly, anabolic pathways of the two acyl-CoAs are also suppressed by AcrT through inhibition of the transcription of acetyl-CoA (A-CoA) and P-CoA carboxylase genes and stimulation of the transcription of citrate synthase genes, which is beneficial to bacterial growth. As P-CoA and MM-CoA accumulate, they act as ligands in turn to release AcrT from those targets, resulting in a redistribution of more A-CoA to P-CoA and MM-CoA against citrate. Furthermore, based on analyses of AcrT homologs in Streptomyces avermitilis and Streptomyces coelicolor, it is believed that polyketide starter and extender units have a prevalent, crucial role as ligands in modulating antibiotic biosynthesis in actinomycetes.
Collapse
|
17
|
Liu Y, Khan S, Wu P, Li B, Liu L, Ni J, Zhang H, Chen K, Wu H, Zhang B. Uncovering and Engineering a Mini-Regulatory Network of the TetR-Family Regulator SACE_0303 for Yield Improvement of Erythromycin in Saccharopolyspora erythraea. Front Bioeng Biotechnol 2021; 9:692901. [PMID: 34595157 PMCID: PMC8476842 DOI: 10.3389/fbioe.2021.692901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023] Open
Abstract
Erythromycins produced by Saccharopolyspora erythraea have broad-spectrum antibacterial activities. Recently, several TetR-family transcriptional regulators (TFRs) were identified to control erythromycin production by multiplex control modes; however, their regulatory network remains poorly understood. In this study, we report a novel TFR, SACE_0303, positively correlated with erythromycin production in Sac. erythraea. It directly represses its adjacent gene SACE_0304 encoding a MarR-family regulator and indirectly stimulates the erythromycin biosynthetic gene eryAI and resistance gene ermE. SACE_0304 negatively regulates erythromycin biosynthesis by directly inhibiting SACE_0303 as well as eryAI and indirectly repressing ermE. Then, the SACE_0303 binding site within the SACE_0303-SACE_0304 intergenic region was defined. Through genome scanning combined with in vivo and in vitro experiments, three additional SACE_0303 target genes (SACE_2467 encoding cation-transporting ATPase, SACE_3156 encoding a large transcriptional regulator, SACE_5222 encoding α-ketoglutarate permease) were identified and proved to negatively affect erythromycin production. Finally, by coupling CRISPRi-based repression of those three targets with SACE_0304 deletion and SACE_0303 overexpression, we performed stepwise engineering of the SACE_0303-mediated mini-regulatory network in a high-yield strain, resulting in enhanced erythromycin production by 67%. In conclusion, the present study uncovered the regulatory network of a novel TFR for control of erythromycin production and provides a multiplex tactic to facilitate the engineering of industrial actinomycetes for yield improvement of antibiotics.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Sabir Khan
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Bowen Li
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lanlan Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jingshu Ni
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hongxia Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ketao Chen
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
18
|
Liu J, Li L, Wang Y, Li B, Cai X, Tang L, Dong S, Yang E, Wu H, Zhang B. Joint engineering of SACE_Lrp and its target MarR enhances the biosynthesis and export of erythromycin in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2021; 105:2911-2924. [PMID: 33760930 DOI: 10.1007/s00253-021-11228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
The Lrp and MarR families are two groups of transcriptional regulators widely distributed among prokaryotes. However, the hierarchical-regulatory relationship between the Lrp family and the MarR family remains unknown. Our previous study found that an Lrp (SACE_Lrp) from Saccharopolyspora erythraea indirectly repressed the biosynthesis of erythromycin. In this study, we characterized a novel MarR family protein (SACE_6745) from S. erythraea, which is controlled by SACE_Lrp and plays a direct regulatory role in erythromycin biosynthesis and export. SACE_Lrp directly regulated the expression of marR by specifically binding a precise site OM (5'-CTCCGGGAACCATT-3'). Gene disruption of marR increased the production of erythromycin by 45% in S. erythraea A226. We found that MarR has direct DNA-binding activity for the promoter regions of the erythromycin biosynthetic genes, as well as an ABC exporter SACE_2701-2702 which was genetically proved to be responsible for erythromycin efflux. Disruption of SACE_Lrp in industrial S. erythraea WB was an efficient strategy to enhance erythromycin production. Herein, we jointly engineered SACE_Lrp and its target MarR by deleting marR in WBΔSACE_Lrp, resulting in 20% increase in erythromycin yield in mutant WBΔLrpΔmarR compared to WBΔSACE_Lrp, and 39% to WB. Overall, our findings provide new insights into the hierarchical-regulatory relationship of Lrp and MarR proteins and new avenues for coordinating antibiotic biosynthesis and export by joint engineering regulators in actinomycetes. KEY POINTS: • The hierarchical-regulatory relationship between SACE_Lrp and MarR was identified. • MarR directly controlled the expression of erythromycin biosynthesis and export genes. • Joint engineering of SACE_Lrp-MarR regulatory element enhanced erythromycin production.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Long Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Bowen Li
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Xinlu Cai
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Lijuan Tang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shengnan Dong
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Wu
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Buchang Zhang
- Institute of Physical Science and Information Technology, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
19
|
Xu F, Ke X, Hong M, Huang M, Chen C, Tian X, Hang H, Chu J. Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea. Biochem Biophys Res Commun 2021; 542:73-79. [PMID: 33497965 DOI: 10.1016/j.bbrc.2021.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Propanol had been widely used as a precursor for erythromycin synthesis in industrial production. However, the knowledge on the exact metabolic fate of propanol was still unclear. In the present study, the metabolic fate of propanol in industrial erythromycin-producing strain Saccharopolyspora erythraea E3 was explored via 13C labeling experiments. An unexpected pathway in which propanol was channeled into tricarboxylic acid cycle was uncovered, resulting in uneconomic catabolism of propanol. By deleting the sucC gene, which encodes succinyl-CoA synthetase that catalyse a reaction in the unexpected propanol utilization pathway, a novel strain E3-ΔsucC was constructed. The strain E3-ΔsucC showed a significant enhancement in erythromycin production in the chemically defined medium compared to E3 (786.61 vs 392.94 mg/L). Isotopically nonstationary 13C metabolic flux analysis were employed to characterize the metabolic differences between Saccharopolyspora erythraea E3 and E3-ΔsucC. The results showed that compared with the starting strain E3, the fluxes of pentose phosphate pathway in E3-△sucC increased by almost 200%. The flux of the metabolic reaction catalyzed by succinyl-CoA synthetase in E3-ΔsucC was almost zero, while the glyoxylate bypass flux significantly increased. These new insights into the precursor utilization of antibiotic biosynthesis by rational metabolic engineering in Saccharopolyspora erythraea provided the new vision in increasing industrial production of secondary metabolites.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiang Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ming Hong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Chongchong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
20
|
Moharkar S, Dhamole PB. Sugaring-out extraction of erythromycin from fermentation broth. KOREAN J CHEM ENG 2021; 38:90-97. [PMID: 33432252 PMCID: PMC7787404 DOI: 10.1007/s11814-020-0680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters-glucose concentration, temperature, ACN/water ratio and pH-were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.3 g/L; temperature 4 °C; ACN/water ratio 1 and pH 8.3. Further, the effect of typical fermentation media components (starch, soybean flour, CaCO3, NaCl and (NH4)2SO4) on sugaring out extraction of erythromycin was also investigated. Starch, soybean flour and CaCO3 were observed to affect erythromycin extraction only at higher concentration. Removal of suspended solids from simulated as well as real broth prior to extraction enhanced the extraction efficiency (from 72% to 87%). Sugaring out extraction of erythromycin was found to be more effective than salting out extraction. Also, higher partition coefficient was achieved in the present work than other reported methods using carbohydrates as mass separating agent. Further, it was found that the antimicrobial activity of erythromycin was preserved during sugaring out extraction of erythromycin.
Collapse
Affiliation(s)
- Sharayu Moharkar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Pradip Babanrao Dhamole
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| |
Collapse
|
21
|
Li X, Chu J, Jensen PR. The Expression of NOX From Synthetic Promoters Reveals an Important Role of the Redox Status in Regulating Secondary Metabolism of Saccharopolyspora erythraea. Front Bioeng Biotechnol 2020; 8:818. [PMID: 32766231 PMCID: PMC7379104 DOI: 10.3389/fbioe.2020.00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Redox cofactors play a pivotal role in primary cellular metabolism, whereas the clear link between redox status and secondary metabolism is still vague. In this study we investigated effects of redox perturbation on the production of erythromycin in Saccharopolyspora erythraea by expressing the water-forming NADH oxidase (NOX) from Streptococcus pneumonia at different levels with synthetic promoters. The expression of NOX reduced the intracellular [NADH]/[NAD+] ratio significantly in S. erythraea which resulted in an increased production of erythromycin by 19∼29% and this increment rose to 60% as more oxygen was supplied. In contrast, the lower redox ratio resulted in a decreased production of another secondary metabolite, the reddish pigment 7-O-rahmnosyl flaviolin. The metabolic shifts of secondary metabolism results in a higher NADH availability which compensates for its oxidization via NOX. The expression of the erythromycin biosynthesis gene cluster (BGC) in the NOX-expression strains was upregulated as the activity of diguanylate cyclase was inhibited moderately by NADH. This study also suggested that lower intracellular [NADH]/[NAD+] ratio benefits the biosynthesis of erythromycin by potentially affecting the biosynthesis of the secondary messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which may stimulate the positive regulation of erythromycin BGC via BldD. The present work provides a basis for future cofactor manipulation in S. erythraea to improve the industrial production of erythromycin.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Peter R Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
23
|
Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis. Metab Eng Commun 2020; 11:e00136. [PMID: 32637317 PMCID: PMC7326738 DOI: 10.1016/j.mec.2020.e00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Bacitracin is a broad-spectrum cyclic peptide antibiotic mainly produced by Bacillus, precursor amino acid supply served as the critical role during its synthesis. In this study, we systematically engineered branch-chain amino acid (BCAA) supply modules for bacitracin production. Firstly, we demonstrated that Ile and Leu acted as limiting precursors for bacitracin synthesis, and that BCAA synthetic pathways were strengthened via simultaneous overexpression of, feedback-resistance acetolactate synthase IlvBNfbr, 2-isopropylmalate synthetase LeuAfbr and BCAA aminotransferase YbgE. Using this approach, bacitracin yield from strain DW-BCAA2 was 892.54 U/mL, an increase of 18.32% compared with that DW2 (754.32 U/mL). Secondly, the BCAA permeases, YvbW and BraB, which have higher affinities for Leu and Ile transportation, respectively, were both identified as BCAA importers, with their overexpression improving intracellular BCAA accumulations and bacitracin yields. Finally, the leucine-responsive family regulator, lrpC was deleted to generate the final strain DW-BCAA6, with intracellular concentrations of Ile, Leu and Val increased by 2.26-, 1.90- and 0.72-fold, respectively. The bacitracin yield from DW-BCAA6 was 1029.83 U/mL, an increase of 36.52%, and is the highest bacitracin yield reported. Equally, concentrations of other byproducts including acetic acid, acetoin and 2,3-butanediol were all reduced. Taken together, we devised an efficient strategy for the enhanced production of bacitracin, and a promising B. licheniformis DW-BCAA6 strain was constructed for industrial production of bacitracin. Enhancing intracellular BCAA accumulations benefited bacitracin synthesis. YvbW and BraB were both identified as BCAA importers in B. licheniformis. Deleting lrp increased brnQ transcription and intracellular BCAA concentrations. Bacitracin yield produced by DW-BCAA6 was the highest currently reported.
Collapse
|
24
|
Cai D, Zhang B, Zhu J, Xu H, Liu P, Wang Z, Li J, Yang Z, Ma X, Chen S. Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus licheniformis. Front Bioeng Biotechnol 2020; 8:305. [PMID: 32318565 PMCID: PMC7155746 DOI: 10.3389/fbioe.2020.00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Bacitracin is a broad-spectrum veterinary antibiotic that widely used in the fields of veterinary drug and feed additive. S-Adenosylmethionine (SAM) is a critical factor involved in many biochemical reactions, especially antibiotic production. However, whether SAM affects bacitracin synthesis is still unknown. Here, we want to analyze the relationship between SAM supply and bacitracin synthesis, and then metabolic engineering of SAM synthetic pathway for bacitracin production in Bacillus licheniformis. Firstly, our results implied that SAM exogenous addition benefited bacitracin production, which yield was increased by 12.13% under the condition of 40 mg/L SAM addition. Then, SAM synthetases and Methionine (Met) synthetases from B. licheniformis, Corynebacterium glutamicum, and Saccharomyces cerevisiae were screened and overexpressed to improve SAM accumulation, and the combination of SAM synthetase from S. cerevisiae and Met synthetase from B. licheniformis showed the best performance, and 70.12% increase of intracellular SAM concentration (31.54 mg/L) and 13.08% increase of bacitraicn yield (839.54 U/mL) were achieved in resultant strain DW2-KE. Furthermore, Met transporters MetN and MetP were, respectively, identified as Met exporter and importer, and bacitracin yield was further increased by 5.94% to 889.42 U/mL via deleting metN and overexpressing metP in DW2-KE, attaining strain DW2-KENP. Finally, SAM nucleosidase gene mtnN and SAM decarboxylase gene speD were deleted to block SAM degradation pathways, and bacitracin yield of resultant strain DW2-KENPND reached 957.53 U/mL, increased by 28.97% compared to DW2. Collectively, this study demonstrated that SAM supply served as the critical role in bacitracin synthesis, and a promising strain B. licheniformis DW2-KENPND was attained for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Pei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping, China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
25
|
Xu Y, Tang Y, Wang N, Liu J, Cai X, Cai H, Li J, Tan G, Liu R, Bai L, Zhang L, Wu H, Zhang B. Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2020; 104:2575-2587. [DOI: 10.1007/s00253-020-10381-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
|
26
|
Wu F, Cai D, Li L, Li Y, Yang H, Li J, Ma X, Chen S. Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 103:8799-8812. [DOI: 10.1007/s00253-019-10110-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
|
27
|
Characterization and engineering of the Lrp/AsnC family regulator SACE_5717 for erythromycin overproduction in Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 2019; 46:1013-1024. [PMID: 31016583 DOI: 10.1007/s10295-019-02178-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
In this work, we found that the Lrp/AsnC family protein SACE_5717 negatively regulated erythromycin biosynthesis in S. erythraea. Disruption of SACE_5717 led to a 27% improvement in the yield of erythromycin in S. erythraea A226. SACE_5717 directly repressed its own gene expression, as well as that of the adjacent gene SACE_5716 by binding to the target sequence 5'-GAACGTTCGCCGTCACGCC-3'. The predicted LysE superfamily protein SACE_5716 directly influenced the export of lysine, histidine, threonine and glycine in S. erythraea. Arginine, tyrosine and tryptophan were characterized as the effectors of SACE_5717 by weakening the binding affinity of SACE_5717. In the industrial S. erythraea WB strain, deletion of SACE_5717 (WBΔSACE_5717) increased erythromycin yield by 20%, and by 36% when SACE_5716 was overexpressed in WBΔSACE_5717 (WBΔSACE_5717/5716). In large-scale 5-L fermentation experiment, erythromycin yield in the engineered strain WBΔSACE_5717/5716 reached 4686 mg/L, a 41% enhancement over 3323 mg/L of the parent WB strain.
Collapse
|
28
|
Cai D, Zhu J, Zhu S, Lu Y, Zhang B, Lu K, Li J, Ma X, Chen S. Metabolic Engineering of Main Transcription Factors in Carbon, Nitrogen, and Phosphorus Metabolisms for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synth Biol 2019; 8:866-875. [PMID: 30865822 DOI: 10.1021/acssynbio.9b00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary metabolism plays a key role in the synthesis of secondary metabolite. In this study, the main transcription factors in carbon, nitrogen, and phosphorus metabolisms (CcpA, CcpC, CcpN, CodY, TnrA, GlnR, and PhoP) were engineered to improve bacitracin yield in Bacillus licheniformis DW2, an industrial strain for bacitracin production. First, our results demonstrated that deletions of ccpC and ccpN improved ATP and NADPH supplies, and the bacitracin yields were respectively increased by 14.02% and 16.06% compared with that of DW2, while it was decreased significantly in ccpA deficient strain DW2ΔccpA. Second, excessive branched chain amino acids (BCAAs) were accumulated in codY, tnrA, and glnR deletion strains DW2ΔcodY, DW2ΔtnrA, and DW2ΔglnR, which resulted in the nitrogen catabolite repressions and reductions of bacitracin yields. Moreover, overexpression of these regulators improved intracellular BCAA supplies, and further enhanced bacitracin yields by 14.17%, 12.98%, and 16.20%, respectively. Furthermore, our results confirmed that phosphate addition reduced bacitracin synthesis capability, and bacitracin yield was improved by 15.71% in gene phop deletion strain. On the contrary, overexpression of PhoP led to a 19.40% decrease of bacitracin yield. Finally, a combinatorial engineering of these above metabolic manipulations was applied, and bacitracin yield produced by the final strain DW2-CNCTGP (Simultaneously deleting ccpC, ccpN, phop and overexpressing glnR, codY, and tnrA in DW2) reached 1014.38 U/mL, increased by 35.72% compared to DW2, and this yield was the highest bacitracin yield currently reported. Taken together, this study implied that metabolic engineering of carbon, nitrogen, and phosphorus metabolism regulators is an efficient strategy to enhance bacitracin production, and provided a promising B. licheniformis strain for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shan Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Kai Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping 353400, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
29
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
30
|
Lu Z, Zhang X, Dai J, Wang Y, He W. Engineering of leucine-responsive regulatory protein improves spiramycin and bitespiramycin biosynthesis. Microb Cell Fact 2019; 18:38. [PMID: 30782164 PMCID: PMC6379999 DOI: 10.1186/s12934-019-1086-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background Bitespiramycin (BT) is produced by recombinant spiramycin (SP) producing strain Streptomyces spiramyceticus harboring a heterologous 4″-O-isovaleryltransferase gene (ist). Exogenous l-Leucine (l-Leu) could improve the production of BT. The orf2 gene found from the genomic sequence of S. spiramyceticus encodes a leucine-responsive regulatory protein (Lrp) family regulator named as SSP_Lrp. The functions of SSP_Lrp and l-Leu involved in the biosynthesis of spiramycin (SP) and BT were investigated in S. spiramyceticus. Results SSP_Lrp was a global regulator directly affecting the expression of three positive regulatory genes, bsm23, bsm42 and acyB2, in SP or BT biosynthesis. Inactivation of SSP_Lrp gene in S. spiramyceticus 1941 caused minor increase of SP production. However, SP production of the ΔSSP_Lrp-SP strain containing an SSP_Lrp deficient of putative l-Leu binding domain was higher than that of S. spiramyceticus 1941 (476.2 ± 3.1 μg/L versus 313.3 ± 25.2 μg/L, respectively), especially SP III increased remarkably. The yield of BT in ΔSSP_Lrp-BT strain was more than twice than that in 1941-BT. The fact that intracellular concentrations of branched-chain amino acids (BCAAs) decreased markedly in the ΔSSP_Lrp-SP demonstrated increasing catabolism of BCAAs provided more precursors for SP biosynthesis. Comparative analysis of transcriptome profiles of the ΔSSP_Lrp-SP and S. spiramyceticus 1941 found 12 genes with obvious differences in expression, including 6 up-regulated genes and 6 down-regulated genes. The up-regulated genes are related to PKS gene for SP biosynthesis, isoprenoid biosynthesis, a Sigma24 family factor, the metabolism of aspartic acid, pyruvate and acyl-CoA; and the down-regulated genes are associated with ribosomal proteins, an AcrR family regulator, and biosynthesis of terpenoid, glutamate and glutamine. Conclusion SSP_Lrp in S. spiramyceticus was a negative regulator involved in the SP and BT biosynthesis. The deletion of SSP_Lrp putative l-Leu binding domain was advantageous for production of BT and SP, especially their III components. Electronic supplementary material The online version of this article (10.1186/s12934-019-1086-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoting Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Jianlu Dai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Yiguang Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Weiqing He
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China.
| |
Collapse
|
31
|
Discovery of 16-Demethylrifamycins by Removing the Predominant Polyketide Biosynthesis Pathway in Micromonospora sp. Strain TP-A0468. Appl Environ Microbiol 2019; 85:AEM.02597-18. [PMID: 30530711 DOI: 10.1128/aem.02597-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms.IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.
Collapse
|
32
|
Wu H, Chu Z, Zhang W, Zhang C, Ni J, Fang H, Chen Y, Wang Y, Zhang L, Zhang B. Transcriptome-guided target identification of the TetR-like regulator SACE_5754 and engineered overproduction of erythromycin in Saccharopolyspora erythraea. J Biol Eng 2019; 13:11. [PMID: 30697347 PMCID: PMC6346578 DOI: 10.1186/s13036-018-0135-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Erythromycin A (Er-A) produced by the actinomycete Saccharopolyspora erythraea is an important antibiotic extensively used in human medicine. Dissecting of transcriptional regulators and their target genes associated with erythromycin biosynthesis is crucial to obtain erythromycin overproducer strains through engineering of relevant regulatory elements in S. erythraea. Results Here, we identified a TetR family transcriptional regulator (TFR), SACE_5754, negatively controlling erythromycin production. SACE_5754 indirectly repressed the transcription of ery cluster and cannot regulate itself and its adjacent gene SACE_5753. RNA-seq coupled with EMSAs and qRT-PCR was performed to identify the targets of SACE_5754, and confirmed that transcription of SACE_0388 (encoding a pyruvate, water diknase), SACE_3599 (encoding an antibiotic resistance macrolide glycosyltransferase) and SACE_6149 (encoding a FAD-binding monooxygenase) were directly repressed by SACE_5754. A consensus palindromic sequence TYMAGG-n2/n4/n11-KKTKRA (Y: C/T, M: A/C, K: T/G, R: A/G) was proved to be essential for SACE_5754 binding using DNase I footprinting and EMSAs. During the three target genes of SACE_5754, SACE_0388 and SACE_6149 exhibited the positive effect on erythromycin production. Overexpression of either SACE_0388 or SACE_6149 in ∆SACE_5754 further increased the Er-A production. By engineering the industrial strain S. erythraea WB with deletion of SACE_5754 combined with overexpression of either SACE_0388 or SACE_6149, Er-A production in WB∆SACE_5754/pIB139–0388 and WB∆SACE_5754/pIB139–6149 was successively increased by 42 and 30% compared to WB. Co-overexpression of SACE_0388 and SACE_6149 in WB∆SACE_5754 resulted in enhanced Er-A production by 64% relative to WB. In a 5-L fermenter, WB∆SACE_5754/pIB139–0388-6149 produced 4998 mg/L Er-A, a 48% increase over WB. Conclusion We have identified a TFR, SACE_5754, as a negative regulator of erythromycin biosynthesis, and engineering of SACE_5754 and its target genes, SACE_0388 and SACE_6149, resulted in enhanced erythromycin production in both wild-type and industrial S. erythraea strains. The strategy demonstrated here may be valuable to facilitate the manipulation of transcriptional regulators and their targets for production improvement of antibiotics in industrial actinomycetes. Electronic supplementary material The online version of this article (10.1186/s13036-018-0135-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hang Wu
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Zuling Chu
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Wanxiang Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Chi Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Jingshu Ni
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Heshi Fang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yuhong Chen
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yansheng Wang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Lixin Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China.,2State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Buchang Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| |
Collapse
|
33
|
Park JW, Yoon YJ. Recent advances in the discovery and combinatorial biosynthesis of microbial 14-membered macrolides and macrolactones. J Ind Microbiol Biotechnol 2018; 46:445-458. [PMID: 30415291 DOI: 10.1007/s10295-018-2095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition to their antibacterial activity, newly discovered 14-membered macrolides exhibit other therapeutic potentials, such as anti-proliferative and anti-protistal activities. Combinatorial biosynthetic approaches will allow us to create structurally diversified macrolide analogs, which are especially important during the emerging post-antibiotic era. This review focuses on recent advances in the discovery of new 14-membered macrolides (also including macrolactones) from microorganisms and the current status of combinatorial biosynthetic approaches, including polyketide synthase (PKS) and post-PKS tailoring pathways, and metabolic engineering for improved production together with heterologous production of 14-membered macrolides.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
34
|
Enhancement of precursor amino acid supplies for improving bacitracin production by activation of branched chain amino acid transporter BrnQ and deletion of its regulator gene lrp in Bacillus licheniformis. Synth Syst Biotechnol 2018; 3:236-243. [PMID: 30417137 PMCID: PMC6215969 DOI: 10.1016/j.synbio.2018.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
Bacitracin, a new type of cyclic peptide antibiotic, is widely used as the feed additive in feed industry. Branched chain amino acids (BCAAs) are the key precursors for bacitracin synthesis. In this research, soybean meal was served as the raw material to supply precursor amino acids for bacitracin synthesis, and enhanced production of bacitracin was attempted by engineering BCAA transporter BrnQ and its regulator Lrp in the bacitracin industrial production strain Bacillus licheniformis DW2. Firstly, our results confirmed that Lrp negatively affected bacitracin synthesis in DW2, and deletion of lrp improved intracellular BCAA accumulations, as well as the expression level of BCAA transporter BrnQ, which further led to a 14.71% increase of bacitracin yield, compared with that of DW2. On the contrary, overexpression of Lrp decreased bacitracin yield by 12.28%. Secondly, it was suggested that BrnQ acted as a BCAA importer in DW2, and overexpression of BrnQ enhanced the intracellular BCAA accumulations and 10.43% of bacitracin yield. While, the bacitracin yield decreased by 18.27% in the brnQ deletion strain DW2△brnQ. Finally, BrnQ was further overexpressed in lrp deletion strain DW2△lrp, and bacitracin yield produced by the final strain DW2△lrp::BrnQ was 965.34 U/mL, increased by 22.42% compared with that of DW2 (788.48 U/mL). Collectively, this research confirmed that Lrp affected bacitracin synthesis via regulating the expression of BCAA transporter BrnQ and BCAA distributions, and provided a promising strain for industrial production of bacitracin.
Collapse
|
35
|
Liu Y, Wei WP, Ye BC. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. ACS Synth Biol 2018; 7:1338-1348. [PMID: 29634237 DOI: 10.1021/acssynbio.7b00448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.
Collapse
Affiliation(s)
- Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , Zhejiang , China
| |
Collapse
|
36
|
PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea. Appl Environ Microbiol 2018; 84:AEM.00049-18. [PMID: 29439982 DOI: 10.1128/aem.00049-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/31/2018] [Indexed: 11/20/2022] Open
Abstract
Branched-chain amino acid (BCAA) degradation is a major source of propionyl coenzyme A (propionyl-CoA), a key precursor of erythromycin biosynthesis in Saccharopolyspora erythraea In this study, we found that the bkd operon, responsible for BCAA degradation, was regulated directly by PccD, a transcriptional regulator of propionyl-CoA carboxylase genes. The transcriptional level of the bkd operon was upregulated 5-fold in a pccD gene deletion strain (ΔpccD strain) and decreased 3-fold in a pccD overexpression strain (WT/pIB-pccD), demonstrating that PccD was a negative transcriptional regulator of the operon. The deletion of pccD significantly improved the ΔpccD strain's growth rate, whereas pccD overexpression repressed WT/pIB-pccD growth rate, in basic Evans medium with 30 mM valine as the sole carbon and nitrogen source. The deletion of gdhA1 and the BcdhE1 gene (genes in the bkd operon) resulted in lower growth rates of ΔgdhA1 and ΔBcdhE1 strains, respectively, on 30 mM valine, further suggesting that the bkd operon is involved in BCAA degradation. Both bkd overexpression (WT/pIB-bkd) and pccD inactivation (ΔpccD strain) improve erythromycin production (38% and 64%, respectively), whereas the erythromycin production of strain WT/pIB-pccD was decreased by 48%. Lastly, we explored the applications of engineering pccD and bkd in an industrial high-erythromycin-producing strain. pccD deletion in industrial strain S. erythraea E3 (E3pccD) improved erythromycin production by 20%, and the overexpression of bkd in E3ΔpccD (E3ΔpccD/pIB-bkd) increased erythromycin production by 39% compared with S. erythraea E3 in an industrial fermentation medium. Addition of 30 mM valine to industrial fermentation medium further improved the erythromycin production by 23%, a 72% increase from the initial strain S. erythraea E3.IMPORTANCE We describe a bkd operon involved in BCAA degradation in S. erythraea The genes of the operon are repressed by a TetR regulator, PccD. The results demonstrated that PccD controlled the supply of precursors for biosynthesis of erythromycin via regulating the BCAA degradation and propionyl-CoA assimilation and exerted a negative effect on erythromycin production. The findings reveal a regulatory mechanism in feeder pathways and provide new strategies for designing metabolic engineering to increase erythromycin yield.
Collapse
|
37
|
Li S, Wang J, Xiang W, Yang K, Li Z, Wang W. An Autoregulated Fine-Tuning Strategy for Titer Improvement of Secondary Metabolites Using Native Promoters in Streptomyces. ACS Synth Biol 2018; 7:522-530. [PMID: 29087698 DOI: 10.1021/acssynbio.7b00318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Streptomycetes are well-known producers of biologically active secondary metabolites. Various efforts have been made to increase productions of these metabolites, while few approaches could well coordinate the biosynthesis of secondary metabolites and other physiological events of their hosts. Here we develop a universal autoregulated strategy for fine-tuning the expression of secondary metabolites biosynthetic gene clusters (BGCs) in Streptomyces species. First, inducible promoters were used to control the expression of secondary metabolites BGCs. Then, the optimal induction condition was determined by response surface model in both dimensions of time and strength. Finally, native promoters with similar transcription profile to the inducible promoter under the optimal condition were identified based on time-course transcriptome analyses, and used to replace the inducible promoter following an elaborate replacement approach. The expression of actinorhodin (Act) and heterogeneous oxytetracycline (OTC) BGCs were optimized in Streptomyces coelicolor using this strategy. Compared to modulating the expression via constitutive promoters, our strategy could dramatically improve the titers of Act and OTC by 1.3- and 9.1-fold, respectively. The autoregulated fine-tuning strategy developed here opens a novel route for titer improvement of desired secondary metabolites in Streptomyces.
Collapse
Affiliation(s)
- Shanshan Li
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District,
Beijing 100193, China
| | - Junyang Wang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wensheng Xiang
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District,
Beijing 100193, China
| | - Keqian Yang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Zilong Li
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Weishan Wang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
38
|
Liu J, Li J, Dong H, Chen Y, Wang Y, Wu H, Li C, Weaver DT, Zhang L, Zhang B. Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 2017; 101:5773-5783. [DOI: 10.1007/s00253-017-8339-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
39
|
Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. Appl Microbiol Biotechnol 2017; 101:5341-5352. [DOI: 10.1007/s00253-017-8292-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
|