1
|
Regmi P, Knesebeck M, Boles E, Weuster-Botz D, Oreb M. A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: Production of d-xylitol from d-xylose as a case study. Metab Eng Commun 2024; 19:e00245. [PMID: 39072283 PMCID: PMC11283233 DOI: 10.1016/j.mec.2024.e00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Enhancing the supply of the redox cofactor NADPH in metabolically engineered cells is a critical target for optimizing the synthesis of many product classes, such as fatty acids or terpenoids. In S. cerevisiae, several successful approaches have been developed in different experimental contexts. However, their systematic comparison has not been reported. Here, we established the reduction of xylose to xylitol by an NADPH-dependent xylose reductase as a model reaction to compare the efficacy of different NADPH supply strategies in the course of a batch fermentation, in which glucose and ethanol are sequentially used as carbon sources and redox donors. We show that strains overexpressing the glucose-6-phosphate dehydrogenase Zwf1 perform best, producing up to 16.9 g L-1 xylitol from 20 g L-1 xylose in stirred tank bioreactors. The beneficial effect of increased Zwf1 activity is especially pronounced during the ethanol consumption phase. The same notion applies to the deletion of the aldehyde dehydrogenase ALD6 gene, albeit at a quantitatively lower level. Reduced expression of the phosphoglucose isomerase Pgi1 and heterologous expression of the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase Gdp1 from Kluyveromyces lactis acted synergistically with ZWF1 overexpression in the presence of glucose, but had a detrimental effect after the diauxic shift. Expression of the mitochondrial NADH kinase Pos5 in the cytosol likewise improved the production of xylitol only on glucose, but not in combination with enhanced Zwf1 activity. To demonstrate the generalizability of our observations, we show that the most promising strategies - ZWF1 overexpression and deletion of ALD6 - also improve the production of l-galactonate from d-galacturonic acid. Therefore, we expect that these findings will provide valuable guidelines for engineering not only the production of xylitol but also of diverse other pathways that require NADPH.
Collapse
Affiliation(s)
- Priti Regmi
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Melanie Knesebeck
- Technical University of Munich, Chair of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Eckhard Boles
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Chair of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| | - Mislav Oreb
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Kwolek-Mirek M, Maslanka R, Bednarska S, Przywara M, Kwolek K, Zadrag-Tecza R. Strategies to Maintain Redox Homeostasis in Yeast Cells with Impaired Fermentation-Dependent NADPH Generation. Int J Mol Sci 2024; 25:9296. [PMID: 39273244 PMCID: PMC11395483 DOI: 10.3390/ijms25179296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Redox homeostasis is the balance between oxidation and reduction reactions. Its maintenance depends on glutathione, including its reduced and oxidized form, GSH/GSSG, which is the main intracellular redox buffer, but also on the nicotinamide adenine dinucleotide phosphate, including its reduced and oxidized form, NADPH/NADP+. Under conditions that enable yeast cells to undergo fermentative metabolism, the main source of NADPH is the pentose phosphate pathway. The lack of enzymes responsible for the production of NADPH has a significant impact on yeast cells. However, cells may compensate in different ways for impairments in NADPH synthesis, and the choice of compensation strategy has several consequences for cell functioning. The present study of this issue was based on isogenic mutants: Δzwf1, Δgnd1, Δald6, and the wild strain, as well as a comprehensive panel of molecular analyses such as the level of gene expression, protein content, and enzyme activity. The obtained results indicate that yeast cells compensate for the lack of enzymes responsible for the production of cytosolic NADPH by changing the content of selected proteins and/or their enzymatic activity. In turn, the cellular strategy used to compensate for them may affect cellular efficiency, and thus, the ability to grow or sensitivity to environmental acidification.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
3
|
Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab 2022; 4:932-943. [PMID: 35817856 DOI: 10.1038/s42255-022-00601-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Methanol is an ideal feedstock for biomanufacturing that can be beneficial for global carbon neutrality; however, the toxicity of methanol limits the efficiency of methanol metabolism toward biochemical production. We here show that engineering production of free fatty acids from sole methanol results in cell death with decreased cellular levels of phospholipids in the methylotrophic yeast Ogataea polymorpha, and cell growth is restored by adaptive laboratory evolution. Whole-genome sequencing of the adapted strains reveals that inactivation of LPL1 (encoding a putative lipase) and IZH3 (encoding a membrane protein related to zinc metabolism) preserve cell survival by restoring phospholipid metabolism. Engineering the pentose phosphate pathway and gluconeogenesis enables high-level production of free fatty acid (15.9 g l-1) from sole methanol. Preventing methanol-associated toxicity underscores the link between lipid metabolism and methanol tolerance, which should contribute to enhancing methanol-based biomanufacturing.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
4
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
5
|
Zhou P, Zhang L, Ding H, Gao X, Chen Y, Li D. Optimization of culture conditions of screened Galactomyces candidum for the production of single cell protein from biogas slurry. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Pereira F, Lopes H, Maia P, Meyer B, Nocon J, Jouhten P, Konstantinidis D, Kafkia E, Rocha M, Kötter P, Rocha I, Patil KR. Model-guided development of an evolutionarily stable yeast chassis. Mol Syst Biol 2021; 17:e10253. [PMID: 34292675 PMCID: PMC8297383 DOI: 10.15252/msb.202110253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
First-principle metabolic modelling holds potential for designing microbial chassis that are resilient against phenotype reversal due to adaptive mutations. Yet, the theory of model-based chassis design has rarely been put to rigorous experimental test. Here, we report the development of Saccharomyces cerevisiae chassis strains for dicarboxylic acid production using genome-scale metabolic modelling. The chassis strains, albeit geared for higher flux towards succinate, fumarate and malate, do not appreciably secrete these metabolites. As predicted by the model, introducing product-specific TCA cycle disruptions resulted in the secretion of the corresponding acid. Adaptive laboratory evolution further improved production of succinate and fumarate, demonstrating the evolutionary robustness of the engineered cells. In the case of malate, multi-omics analysis revealed a flux bypass at peroxisomal malate dehydrogenase that was missing in the yeast metabolic model. In all three cases, flux balance analysis integrating transcriptomics, proteomics and metabolomics data confirmed the flux re-routing predicted by the model. Taken together, our modelling and experimental results have implications for the computer-aided design of microbial cell factories.
Collapse
Affiliation(s)
- Filipa Pereira
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Life Science InstituteUniversity of MichiganAnn ArborUSA
| | - Helder Lopes
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
| | - Paulo Maia
- Silicolife ‐ Computational Biology Solutions for the Life SciencesBragaPortugal
| | - Britta Meyer
- Johann Wolfgang Goethe‐UniversitätFrankfurt am MainGermany
| | - Justyna Nocon
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Paula Jouhten
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | - Eleni Kafkia
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Miguel Rocha
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
| | - Peter Kötter
- Johann Wolfgang Goethe‐UniversitätFrankfurt am MainGermany
| | - Isabel Rocha
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| | - Kiran R Patil
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
7
|
Zhang X, Wang L, Li Q, den Haan R, Li F, Liu CG, Bai FW. Omics analysis reveals mechanism underlying metabolic oscillation during continuous very-high-gravity ethanol fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 2021; 118:2990-3001. [PMID: 33934328 DOI: 10.1002/bit.27809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022]
Abstract
During continuous very-high-gravity (VHG) ethanol fermentation with Saccharomyces cerevisiae, the process exhibits sustained oscillation in residual glucose, ethanol, and biomass, raising a question: how do yeast cells respond to this phenomenon? In this study, the oscillatory behavior of yeast cells was characterized through transcriptome and metabolome analysis for one complete oscillatory period. By analyzing the accumulation of 26 intracellular metabolites and the expression of 90 genes related to central carbon metabolism and stress response, we confirmed that the process oscillation was attributed to intracellular metabolic oscillation with phase difference, and the expression of HXK1, HXT1,2,4, and PFK1 was significantly different from other genes in the Embden-Meyerhof-Parnas pathway, indicating that glucose transport and phosphorylation could be key nodes for regulating the intracellular metabolism under oscillatory conditions. Moreover, the expression of stress response genes was triggered and affected predominately by ethanol inhibition in yeast cells. This progress not only contributes to the understanding of mechanisms underlying the process oscillation observed for continuous VHG ethanol fermentation, but also provides insights for understanding unsteady state that might develop in other continuous fermentation processes operated under VHG conditions to increase product titers for robust production.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Qian Li
- School of Life Science and Biotechnology, Dalian University, Dalian, Liaoning, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Fan Li
- COFCO Nutrition & Health Research Institute, Beijing, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Shao Y, Schiwy A, Glauch L, Henneberger L, König M, Mühlenbrink M, Xiao H, Thalmann B, Schlichting R, Hollert H, Escher BI. Optimization of a pre-metabolization procedure using rat liver S9 and cell-extracted S9 in the Ames fluctuation test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141468. [PMID: 32827816 DOI: 10.1016/j.scitotenv.2020.141468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Many environmental pollutants pose a toxicological hazard only after metabolic activation. In vitro bioassays using cell lines or bacteria have often no or reduced metabolic activity, which impedes their use in the risk assessment. To improve the predictive capability of in vitro assays, external metabolization systems like the liver S9 fraction are frequently combined with in vitro toxicity assays. While it is typical for S9 fractions that samples and testing systems are combined in the same exposure system, we propose to separate the metabolism step and toxicity measurement. This allows for a modular combination of metabolic activation by enzymes isolated from rat liver (S9) or a biotechnological alternative (ewoS9R) with in vitro bioassays that lack metabolic capacity. Benzo(a)pyrene and 2-aminoanthracene were used as model compounds to optimize the conditions for the S9 metabolic degradation/activation step. The Ames assay with Salmonella typhimurium strains TA98 and TA100 was applied to validate the set-up of decoupling the S9 activation/metabolism from the bioassay system. S9 protein concentration of 0.25 mgprotein/mL, a supplement of 0.13 mM NADPH and a pre-incubation time of 100 min are recommended for activation of samples prior to dosing them to in vitro bioassays using the regular dosing protocols of the respective bioassay. EwoS9R performed equally well as Moltox S9, which is a step forward in developing true animal-free in vitro bioassays. After pre-incubation with S9 fraction, chemicals induced bacteria revertants in both the TA98 and the TA100 assay as efficiently as the standard Ames assay. The pre-incubation of chemicals with S9 fraction could serve for a wide range of cellular in vitro assays to efficiently combine activation and toxicity measurement, which may greatly facilitate the application of these assays for chemical hazard assessment and monitoring of environmental samples.
Collapse
Affiliation(s)
- Ying Shao
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany; Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, Shazheng street 174, Shapingba, 400044 Chongqing, China.
| | - Andreas Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Ecotoxicology, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Lisa Glauch
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Marie Mühlenbrink
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Ecotoxicology, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, Permoser Str. 15, 04318 Leipzig, Germany; EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Germany; Eberhard Karls University of Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tubingen, Germany
| |
Collapse
|
9
|
Liu Y, Li Q, Wang L, Guo X, Wang J, Wang Q, Zhao ZK. Engineering d-Lactate Dehydrogenase to Favor an Non-natural Cofactor Nicotinamide Cytosine Dinucleotide. Chembiochem 2020; 21:1972-1975. [PMID: 32175634 DOI: 10.1002/cbic.201900766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/08/2020] [Indexed: 12/29/2022]
Abstract
Synthetic nicotinamide adenine dinucleotide (NAD) analogues are of great scientific and biotechnological interest. One such analogue, nicotinamide cytosine dinucleotide (NCD), has been successfully applied to creating bioorthogonal redox systems. Yet, only a few redox enzymes have been devised to favor NCD. We have engineered Lactobacillus helveticus-derived NAD-dependent d-lactate dehydrogenase (LhDLDH) to favor NCD by semirational design. Sequence alignment and structural analysis revealed that amino acid residues I177 and N213 form a "gate" guarding the NAD adenine moiety binding cavity. Saturated mutagenesis libraries were constructed by using the mutant LhDLDH-V152R as the parental sequence. Mutants were obtained with good catalytic efficiency, and NCD preference increased by up to 940-fold. Experiments showed that Escherichia coli cells expressing mutants with higher NCD preference afforded much less d-lactate, thus suggesting the potential to construct NCD-mediated orthogonal metabolism.
Collapse
Affiliation(s)
- Yuxue Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Qing Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Lei Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Junting Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P. R. China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P. R. China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P. R. China
| |
Collapse
|
10
|
Gong G, Liu L, Zhang X, Tan T. Comparative evaluation of different carbon sources supply on simultaneous production of lipid and carotene of Rhodotorula glutinis with irradiation and the assessment of key gene transcription. BIORESOURCE TECHNOLOGY 2019; 288:121559. [PMID: 31152958 DOI: 10.1016/j.biortech.2019.121559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
To investigate the feasibility of simultaneously enhancing lipid and carotene production by irradiation with different carbon sources, a strategy by controlling the carbon sources supply were selected to culture Rhodotorula glutinis under the irradiation condition. The results demonstrated that the irradiation indeed enhanced cell growth, lipid and carotene production with different carbon sources supply. Besides, the fatty acids profiling as revealed by more unsaturated fatty acids (mainly C16:1, C18:2 and C18:3) and less saturated fatty acids (C18:0, C22:0 and C24:0) were found during the process of irradiation. Compared with the control, the increase of the transcription levels in genes connected with substrates assimilation, lipid production and carotene accumulation were observed under the irradiation condition. The results suggest the possibility of using irradiation as an effective strategy to increase the production of both lipid and carotene with the controlled carbon sources supply.
Collapse
Affiliation(s)
- Guiping Gong
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Luo Liu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
11
|
Kwolek-Mirek M, Maslanka R, Molon M. Disorders in NADPH generation via pentose phosphate pathway influence the reproductive potential of the Saccharomyces cerevisiae yeast due to changes in redox status. J Cell Biochem 2019; 120:8521-8533. [PMID: 30474881 DOI: 10.1002/jcb.28140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Intermediary metabolites have a crucial impact on basic cell functions. There is a relationship between cellular metabolism and redox balance. To maintain redox homoeostasis, the cooperation of both glutathione and nicotine adenine dinucleotides is necessary. Availability of nicotinamide adenine dinucleotide phosphate (NADPH) as a major electron donor is critical for many intracellular redox reactions. The activity of glucose-6-phosphate dehydrogenase (Zwf1p) and 6-phosphogluconate dehydrogenase (Gnd1p and Gnd2p) is responsible for NADPH formation in a pentose phosphate (PP) pathway. In this study, we examine the impact of redox homoeostasis on cellular physiology and proliferation. We have noted that the Δzwf1 mutant lacking the rate-limiting enzyme of the PP pathway shows changes in the cellular redox status caused by disorders in NADPH generation. This leads to a decrease in reproductive potential but without affecting the total lifespan of the cell. The results presented in this paper show that nicotine adenine dinucleotides play a central role in cellular physiology.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Roman Maslanka
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Mateusz Molon
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
12
|
Li K, Xia J, Mehmood MA, Zhao XQ, Liu CG, Bai FW. Extracellular redox potential regulation improves yeast tolerance to furfural. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Yao R, Li J, Feng L, Zhang X, Hu H. 13C metabolic flux analysis-guided metabolic engineering of Escherichia coli for improved acetol production from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:29. [PMID: 30805028 PMCID: PMC6373095 DOI: 10.1186/s13068-019-1372-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bioprocessing offers a sustainable and green approach to manufacture various chemicals and materials. Development of bioprocesses requires transforming common producer strains to cell factories. 13C metabolic flux analysis (13C-MFA) can be applied to identify relevant targets to accomplish the desired phenotype, which has become one of the major tools to support systems metabolic engineering. In this research, we applied 13C-MFA to identify bottlenecks in the bioconversion of glycerol into acetol by Escherichia coli. Valorization of glycerol, the main by-product of biodiesel, has contributed to the viability of biofuel economy. RESULTS We performed 13C-MFA and measured intracellular pyridine nucleotide pools in a first-generation acetol producer strain (HJ06) and a non-producer strain (HJ06C), and identified that engineering the NADPH regeneration is a promising target. Based on this finding, we overexpressed nadK encoding NAD kinase or pntAB encoding membrane-bound transhydrogenase either individually or in combination with HJ06, obtaining HJ06N, HJ06P and HJ06PN. The step-wise approach resulted in increasing the acetol titer from 0.91 g/L (HJ06) to 2.81 g/L (HJ06PN). To systematically characterize and the effect of mutation(s) on the metabolism, we also examined the metabolomics and transcriptional levels of key genes in four strains. The pool sizes of NADPH, NADP+ and the NADPH/NADP+ ratio were progressively increased from HJ06 to HJ06PN, demonstrating that the sufficient NADPH supply is critical for acetol production. Flux distribution was optimized towards acetol formation from HJ06 to HJ06PN: (1) The carbon partitioning at the DHAP node directed gradually more carbon from the lower glycolytic pathway through the acetol biosynthetic pathway; (2) The transhydrogenation flux was constantly increased. In addition, 13C-MFA showed the rigidity of upper glycolytic pathway, PP pathway and the TCA cycle to support growth. The flux patterns were supported by most metabolomics data and gene expression profiles. CONCLUSIONS This research demonstrated how 13C-MFA can be applied to drive the cycles of design, build, test and learn implementation for strain development. This succeeding engineering strategy can also be applicable for rational design of other microbial cell factories.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jiawei Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
14
|
Kim JE, Jang IS, Sung BH, Kim SC, Lee JY. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Sci Rep 2018; 8:15820. [PMID: 30361526 PMCID: PMC6202386 DOI: 10.1038/s41598-018-34210-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Ginseng (Panax ginseng) and its bioactive components, ginsenosides, are popular medicinal herbal products, exhibiting various pharmacological effects. Despite their advocated use for medication, the long cultivation periods of ginseng roots and their low ginsenoside content prevent mass production of this compound. Yeast Saccharomyces cerevisiae was engineered for production of protopanaxadiol (PPD), a type of aglycone characterizing ginsenoside. PPD-producing yeast cell factory was further engineered by obtaining a balance between enzyme expressions and altering cofactor availability. Different combinations of promoters (PGPD, PCCW12, and PADH2) were utilized to construct the PPD biosynthetic pathway. Rerouting the redox metabolism to improve NADPH availability in the engineered S. cerevisiae also increased PPD production. Combining these approaches resulted in more than an 11-fold increase in PPD titer over the initially constructed strain. The series of metabolic engineering strategies of this study provides a feasible approach for the microbial production of PPD and development of microbial platforms producing other industrially-relevant terpenoids.
Collapse
Affiliation(s)
- Jae-Eung Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - In-Seung Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| |
Collapse
|
15
|
Wytock TP, Fiebig A, Willett JW, Herrou J, Fergin A, Motter AE, Crosson S. Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 2018; 14:e1007284. [PMID: 29584733 PMCID: PMC5892946 DOI: 10.1371/journal.pgen.1007284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/10/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cell growth is determined by substrate availability and the cell’s metabolic capacity to assimilate substrates into building blocks. Metabolic genes that determine growth rate may interact synergistically or antagonistically, and can accelerate or slow growth, depending on genetic background and environmental conditions. We evolved a diverse set of Escherichia coli single-gene deletion mutants with a spectrum of growth rates and identified mutations that generally increase growth rate. Despite the metabolic differences between parent strains, mutations that enhanced growth largely mapped to core transcription machinery, including the β and β’ subunits of RNA polymerase (RNAP) and the transcription elongation factor, NusA. The structural segments of RNAP that determine enhanced growth have been previously implicated in antibiotic resistance and in the control of transcription elongation and pausing. We further developed a computational framework to characterize how the transcriptional changes that occur upon acquisition of these mutations affect growth rate across strains. Our experimental and computational results provide evidence for cases in which RNAP mutations shift the competitive balance between active transcription and gene silencing. This study demonstrates that mutations in specific regions of RNAP are a convergent adaptive solution that can enhance the growth rate of cells from distinct metabolic states. The loss of a metabolic function caused by gene deletion can be compensated, in certain cases, by the concurrent mutation of a second gene. Whether such gene pairs share a local chemical or regulatory relationship or interact via a non-local mechanism has implications for the co-evolution of genetic changes, development of alternatives to gene therapy, and the design of combination antimicrobial therapies that select against resistance. Yet, we lack a comprehensive knowledge of adaptive responses to metabolic mutations, and our understanding of the mechanisms underlying genetic rescue remains limited. We present results of a laboratory evolution approach that has the potential to address both challenges, showing that mutations in specific regions of RNA polymerase enhance growth rates of distinct mutant strains of Escherichia coli with a spectrum of growth defects. Several of these adaptive mutations are deleterious when engineered directly into the original wild-type strain under alternative cultivation conditions, and thus have epistatic rescue properties when paired with the corresponding primary metabolic gene deletions. Our combination of adaptive evolution, directed genetic engineering, and mathematical analysis of transcription and growth rate distinguishes between rescue interactions that are specific or non-specific to a particular deletion. Our study further supports a model for RNA polymerase as a locus of convergent adaptive evolution from different sub-optimal metabolic starting points.
Collapse
Affiliation(s)
- Thomas P. Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan W. Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aleksandra Fergin
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Adilson E. Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (AEM); (SC)
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AEM); (SC)
| |
Collapse
|