1
|
Mardoukhi MSY, Rapp J, Irisarri I, Gunka K, Link H, Marienhagen J, de Vries J, Stülke J, Commichau FM. Metabolic rewiring enables ammonium assimilation via a non-canonical fumarate-based pathway. Microb Biotechnol 2024; 17:e14429. [PMID: 38483038 PMCID: PMC10938345 DOI: 10.1111/1751-7915.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.
Collapse
Affiliation(s)
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Katrin Gunka
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Jan Marienhagen
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
- Institut of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Fabian M. Commichau
- FG Molecular Microbiology, Institute for BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
2
|
Wicke D, Neumann P, Gößringer M, Chernev A, Davydov S, Poehlein A, Daniel R, Urlaub H, Hartmann R, Ficner R, Stülke J. The previously uncharacterized RnpM (YlxR) protein modulates the activity of ribonuclease P in Bacillus subtilis in vitro. Nucleic Acids Res 2024; 52:1404-1419. [PMID: 38050972 PMCID: PMC10853771 DOI: 10.1093/nar/gkad1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Gößringer
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swetlana Davydov
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, GZMB, University Medical Centre Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August-University Göttingen, Germany
| | - Roland K Hartmann
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Zhu J, Wang S, Wang C, Wang Z, Luo G, Li J, Zhan Y, Cai D, Chen S. Microbial synthesis of bacitracin: Recent progress, challenges, and prospects. Synth Syst Biotechnol 2023; 8:314-322. [PMID: 37122958 PMCID: PMC10130698 DOI: 10.1016/j.synbio.2023.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microorganisms are important sources of various natural products that have been commercialized for human medicine and animal healthcare. Bacitracin is an important antibacterial natural product predominantly produced by Bacillus licheniformis and Bacillus subtilis, and it is characterized by a broad antimicrobial spectrum, strong activity and low resistance, thus bacitracin is extensively applied in animal feed and veterinary medicine industries. In recent years, various strategies have been proposed to improve bacitracin production. Herein, we systematically describe the regulation of bacitracin biosynthesis in genus Bacillus and its associated mechanism, to provide a theoretical basis for bacitracin overproduction. The metabolic engineering strategies applied for bacitracin production are explored, including improving substrate utilization, using an enlarged precursor amino acid pool, increasing ATP supply and NADPH generation, and engineering transcription regulators. We also present several approaches of fermentation process optimization to facilitate the industrial large-scale production of bacitracin. Finally, the challenges and prospects associated with microbial bacitracin synthesis are discussed to facilitate the establishment of high-yield and low-cost biological factories.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Cheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Hubei Provincial Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Gan Luo
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
4
|
Liu Z, Wang Y, Liu S, Guo X, Zhao T, Wu J, Chen S. Boosting the Heterologous Expression of d-Allulose 3-Epimerase in Bacillus subtilis through Protein Engineering and Catabolite-Responsive Element Box Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12128-12134. [PMID: 36099523 DOI: 10.1021/acs.jafc.2c04800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a natural sweetener with low calories and various physiological activities, d-allulose has drawn worldwide attention. Currently, d-allulose 3-epimerase (DAEase) is mainly used to catalyze the epimerization of d-fructose to d-allulose. Therefore, it is quite necessary to enhance the food-grade expression of DAEase to meet the surging market demand for d-allulose. In this study, initially, the promising variant H207L/D281G/C289R of Clostridium cellulolyticum H10 DAEase (CcDAEase) was generated by protein engineering, the specific activity and the T1/2 of which were 2.24-fold and 13.45-fold those of the CcDAEase wild type at 60 °C, respectively. After that, PamyE was determined as the optimal promoter for the recombinant expression of CcDAEase in Bacillus subtilis, and catabolite-responsive element (CRE) box engineering was further performed to eliminate the carbon catabolite repression (CCR) effect. Lastly, high-density fermentation was carried out and the final activity peaked at 4971.5 U mL-1, which is the highest expression level and could effectively promote the industrial production of DAEase. This research provides a theoretical basis and technical support for the molecular modification of DAEase and its efficient fermentation preparation.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yifan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shuhan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xuehong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Tianlong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
5
|
He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Nitrogen sources play an essential role in maintaining the physiological and biochemical activity of bacteria. Nitrogen metabolism, which is the core of microorganism metabolism, makes bacteria able to autonomously respond to different external nitrogen environments by exercising complex internal regulatory networks to help them stay in an ideal state. Although various studies have been put forth to better understand this regulation in Bacillus, and many valuable viewpoints have been obtained, these views need to be presented systematically and their possible applications need to be specified. AIM OF REVIEW The intention is to provide a deep and comprehensive understanding of nitrogen metabolism in Bacillus, an important industrial microorganism, and thereby apply this regulatory logic to synthetic biology to improve biosynthesis competitiveness. In addition, the potential researches in the future are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Understanding the meticulous regulation process of nitrogen metabolism in Bacillus not only could facilitate research on metabolic engineering but also could provide constructive insights and inspiration for studies of other microorganisms.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
6
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
7
|
Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021; 251:126831. [PMID: 34325194 DOI: 10.1016/j.micres.2021.126831] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Organisms have cellular machinery that is focused on optimum utilization of resources to maximize growth and survival depending on various environmental and developmental factors. Catabolite repression is a strategy utilized by various species of bacteria and fungi to accommodate changes in the environment such as the depletion of resources, or an abundance of less-favored nutrient sources. Catabolite repression allows for the rapid use of certain substrates like glucose over other carbon sources. Effective handling of carbon and nitrogen catabolite repression in microorganisms is crucial to outcompete others in nutrient limiting conditions. Investigations into genes and proteins linked to preferential uptake of different nutrients under various environmental conditions can aid in identifying regulatory mechanisms that are crucial for optimum growth and survival of microorganisms. The exact time and way bacteria and fungi switch their utilization of certain nutrients is of great interest for scientific, industrial, and clinical reasons. Catabolite repression is of great significance for industrial applications that rely on microorganisms for the generation of valuable bio-products. The impact catabolite repression has on virulence of pathogenic bacteria and fungi and disease progression in hosts makes it important area of interest in medical research for the prevention of diseases and developing new treatment strategies. Regulatory networks under catabolite repression exemplify the flexibility and the tremendous diversity that is found in microorganisms and provides an impetus for newer insights into these networks.
Collapse
Affiliation(s)
- Abhinav Nair
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Jyoti Sarma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
8
|
Surfactin, a quorum sensing signal molecule, globally affects the carbon metabolism in Bacillus amyloliquefaciens. Metab Eng Commun 2021; 12:e00174. [PMID: 34094854 PMCID: PMC8166949 DOI: 10.1016/j.mec.2021.e00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Surfactin, a quorum sensing signal molecule, is correlated with carbon metabolism in Bacillus amyloliquefaciens. In the present work, we found that mutation of srfA (ΔsrfA) led to an obviously changed carbon metabolism in B. amyloliquefaciens. Firstly, the PTS-glucose system was significantly increased as a feedback to glucose exhaustion. Secondly, the basic carbon metabolism such as glycolysis and TCA cycle was obviously weakened in ΔsrfA. Thirdly, the global regulator of CcpA (carbon catabolite protein A) and P ~ Ser46-HPr (seryl-phosphorylated form of histidine-containing protein) to mediate the CcpA-dependent CCR (carbon catabolite repression) were not increased, but the ability to use extracellular non- and less-preferred carbon sources was down-regulated in ΔsrfA. Fourthly, the carbon overflow metabolism such as biosynthesis of acetate was enhanced while biosynthesis of acetoin/2,3-butanediol and branched-chain amino acids were weakened in ΔsrfA. Finally, ΔsrfA could use most of non- and less-preferred carbon sources except for fatty acids, branched chain amino acids, and some organic acids (e.g. pyruvate, citrate and glutamate) after glucose exhaustion. Collectively, surfactin showed a global influence on carbon metabolism in B. amyloliquefaciens. Our studies highlighted a way to correlate quorum sensing with carbon metabolism via surfactin in Bacillus species. The quorum sensing molecule of surfactin globally influenced the carbon metabolism in B. amyloliquefaciens. The studies highlighted a way to correlate quorum sensing with carbon metabolism via surfactin in Bacillus species. Glycolysis and TCA cycle was obviously weakened after biosynthesis of surfactin was disrupted. The CcpA-dependent carbon catabolite repression was not enhanced after disruption of surfactin biosynthesis. The ability to use non-preferred carbon sources was down-regulated after disruption of surfactin biosynthesis.
Collapse
|
9
|
Krüger L, Herzberg C, Rath H, Pedreira T, Ischebeck T, Poehlein A, Gundlach J, Daniel R, Völker U, Mäder U, Stülke J. Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLoS Genet 2021; 17:e1009092. [PMID: 33481774 PMCID: PMC7857571 DOI: 10.1371/journal.pgen.1009092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.
Collapse
Affiliation(s)
- Larissa Krüger
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tiago Pedreira
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Liu Y, Su A, Li J, Ledesma-Amaro R, Xu P, Du G, Liu L. Towards next-generation model microorganism chassis for biomanufacturing. Appl Microbiol Biotechnol 2020; 104:9095-9108. [DOI: 10.1007/s00253-020-10902-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
11
|
Reuß DR, Faßhauer P, Mroch PJ, Ul-Haq I, Koo BM, Pöhlein A, Gross CA, Daniel R, Brantl S, Stülke J. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Res 2019; 47:5231-5242. [PMID: 30957856 PMCID: PMC6547408 DOI: 10.1093/nar/gkz260] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
DNA topoisomerases play essential roles in chromosome organization and replication. Most bacteria possess multiple topoisomerases which have specialized functions in the control of DNA supercoiling or in DNA catenation/decatenation during recombination and chromosome segregation. DNA topoisomerase I is required for the relaxation of negatively supercoiled DNA behind the transcribing RNA polymerase. Conflicting results have been reported on the essentiality of the topA gene encoding topoisomerase I in the model bacterium Bacillus subtilis. In this work, we have studied the requirement for topoisomerase I in B. subtilis. All stable topA mutants carried different chromosomal amplifications of the genomic region encompassing the parEC operon encoding topoisomerase IV. Using a fluorescent amplification reporter system we observed that each individual topA mutant had acquired such an amplification. Eventually, the amplifications were replaced by a point mutation in the parEC promoter region which resulted in a fivefold increase of parEC expression. In this strain both type I topoisomerases, encoded by topA and topB, were dispensable. Our results demonstrate that topoisomerase IV at increased expression is necessary and sufficient to take over the function of type 1A topoisomerases.
Collapse
Affiliation(s)
- Daniel R Reuß
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Philipp Joel Mroch
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Inam Ul-Haq
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-University Jena, Jena, Germany
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anja Pöhlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Sabine Brantl
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends Biotechnol 2019; 37:548-562. [DOI: 10.1016/j.tibtech.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
|
13
|
Cai D, Zhu J, Zhu S, Lu Y, Zhang B, Lu K, Li J, Ma X, Chen S. Metabolic Engineering of Main Transcription Factors in Carbon, Nitrogen, and Phosphorus Metabolisms for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synth Biol 2019; 8:866-875. [PMID: 30865822 DOI: 10.1021/acssynbio.9b00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary metabolism plays a key role in the synthesis of secondary metabolite. In this study, the main transcription factors in carbon, nitrogen, and phosphorus metabolisms (CcpA, CcpC, CcpN, CodY, TnrA, GlnR, and PhoP) were engineered to improve bacitracin yield in Bacillus licheniformis DW2, an industrial strain for bacitracin production. First, our results demonstrated that deletions of ccpC and ccpN improved ATP and NADPH supplies, and the bacitracin yields were respectively increased by 14.02% and 16.06% compared with that of DW2, while it was decreased significantly in ccpA deficient strain DW2ΔccpA. Second, excessive branched chain amino acids (BCAAs) were accumulated in codY, tnrA, and glnR deletion strains DW2ΔcodY, DW2ΔtnrA, and DW2ΔglnR, which resulted in the nitrogen catabolite repressions and reductions of bacitracin yields. Moreover, overexpression of these regulators improved intracellular BCAA supplies, and further enhanced bacitracin yields by 14.17%, 12.98%, and 16.20%, respectively. Furthermore, our results confirmed that phosphate addition reduced bacitracin synthesis capability, and bacitracin yield was improved by 15.71% in gene phop deletion strain. On the contrary, overexpression of PhoP led to a 19.40% decrease of bacitracin yield. Finally, a combinatorial engineering of these above metabolic manipulations was applied, and bacitracin yield produced by the final strain DW2-CNCTGP (Simultaneously deleting ccpC, ccpN, phop and overexpressing glnR, codY, and tnrA in DW2) reached 1014.38 U/mL, increased by 35.72% compared to DW2, and this yield was the highest bacitracin yield currently reported. Taken together, this study implied that metabolic engineering of carbon, nitrogen, and phosphorus metabolism regulators is an efficient strategy to enhance bacitracin production, and provided a promising B. licheniformis strain for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shan Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Kai Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping 353400, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
14
|
Harnessing Underground Metabolism for Pathway Development. Trends Biotechnol 2019; 37:29-37. [DOI: 10.1016/j.tibtech.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023]
|