1
|
Li X, Sang Z, Zhao X, Wen Y. Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin. Microb Biotechnol 2024; 17:e70038. [PMID: 39487765 PMCID: PMC11530997 DOI: 10.1111/1751-7915.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in S. roseosporus wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter kasOp*. The resulting strains all showed increased DAP titre. Combined inhibition of acsA4, pta, pyrB, and pyrC increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of aspC, gdhA, ppc, and ecaA led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native dptEp with kasOp*). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.
Collapse
Affiliation(s)
- Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziwei Sang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
2
|
Zhang Y, Ba F, Huang S, Liu WQ, Li J. Orthogonal Serine Integrases Enable Scalable Gene Storage Cascades in Bacterial Genome. ACS Synth Biol 2024; 13:3022-3031. [PMID: 39238421 DOI: 10.1021/acssynbio.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Genome integration enables host organisms to stably carry heterologous DNA messages, introducing new genotypes and phenotypes for expanded applications. While several genome integration approaches have been reported, a scalable tool for DNA message storage within site-specific genome landing pads is still lacking. Here, we introduce an iterative genome integration method utilizing orthogonal serine integrases, enabling the stable storage of multiple heterologous genes in the chromosome of Escherichia coli MG1655. By leveraging serine integrases TP901-1, Bxb1, and PhiC31, along with engineered integration vectors, we demonstrate high-efficiency, marker-free integration of DNA fragments up to 13 kb in length. To further simplify the procedure, we then develop a streamlined integration method and showcase the system's versatility by constructing an engineered E. coli strain capable of storing and expressing multiple genes from diverse species. Additionally, we illustrate the potential utility of these engineered strains for synthetic biology applications, including in vivo and in vitro protein expression. Our work extends the application scope of serine integrases for scalable gene integration cascades, with implications for genome manipulation and gene storage applications in synthetic biology.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Yan H, Li S, Wang W. Reprogramming naturally evolved switches for Streptomyces chassis development. Trends Biotechnol 2024:S0167-7799(24)00179-3. [PMID: 39054219 DOI: 10.1016/j.tibtech.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
The Streptomyces chassis serves as an important platform for efficient biomanufacture of diverse secondary metabolite (SM) compounds, but the current chassis lacks compatibility for integration of these SM biosynthetic pathways reliably and consistently. This forum discusses harnessing naturally evolved multifaceted switches to reprogram the Streptomyces chassis for biomanufacturing applications.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
6
|
Hua HM, Xu JF, Huang XS, Zimin AA, Wang WF, Lu YH. Low-Toxicity and High-Efficiency Streptomyces Genome Editing Tool Based on the Miniature Type V-F CRISPR/Cas Nuclease AsCas12f1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5358-5367. [PMID: 38427033 DOI: 10.1021/acs.jafc.3c09101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Genome editing tools based on SpCas9 and FnCpf1 have facilitated strain improvements for natural product production and novel drug discovery in Streptomyces. However, due to high toxicity, their editing requires high DNA transformation efficiency, which is unavailable in most streptomycetes. The transformation efficiency of an all-in-one editing tool based on miniature Cas nuclease AsCas12f1 was significantly higher than those of SpCas9 and FnCpf1 in tested streptomycetes, which is due to its small size and weak DNA cleavage activity. Using this tool, in Streptomyces coelicolor, we achieved 100% efficiency for single gene or gene cluster deletion and 46.7 and 40% efficiency for simultaneous deletion of two genes and two gene clusters, respectively. AsCas12f1 was successfully extended to Streptomyces hygroscopicus SIPI-054 for efficient genome editing, in which SpCas9/FnCpf1 does not work well. Collectively, this work offers a low-toxicity, high-efficiency genome editing tool for streptomycetes, particularly those with low DNA transformation efficiency.
Collapse
Affiliation(s)
- Hui-Min Hua
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Feng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Shuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Andrei A Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russia
| | - Wen-Fang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
7
|
Boob AG, Chen J, Zhao H. Enabling pathway design by multiplex experimentation and machine learning. Metab Eng 2024; 81:70-87. [PMID: 38040110 DOI: 10.1016/j.ymben.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The remarkable metabolic diversity observed in nature has provided a foundation for sustainable production of a wide array of valuable molecules. However, transferring the biosynthetic pathway to the desired host often runs into inherent failures that arise from intermediate accumulation and reduced flux resulting from competing pathways within the host cell. Moreover, the conventional trial and error methods utilized in pathway optimization struggle to fully grasp the intricacies of installed pathways, leading to time-consuming and labor-intensive experiments, ultimately resulting in suboptimal yields. Considering these obstacles, there is a pressing need to explore the enzyme expression landscape and identify the optimal pathway configuration for enhanced production of molecules. This review delves into recent advancements in pathway engineering, with a focus on multiplex experimentation and machine learning techniques. These approaches play a pivotal role in overcoming the limitations of traditional methods, enabling exploration of a broader design space and increasing the likelihood of discovering optimal pathway configurations for enhanced production of molecules. We discuss several tools and strategies for pathway design, construction, and optimization for sustainable and cost-effective microbial production of molecules ranging from bulk to fine chemicals. We also highlight major successes in academia and industry through compelling case studies.
Collapse
Affiliation(s)
- Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junyu Chen
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
| |
Collapse
|
8
|
Zhang Z, Yang S, Li Z, Wu Y, Tang J, Feng M, Chen S. High-titer production of staurosporine by heterologous expression and process optimization. Appl Microbiol Biotechnol 2023; 107:5701-5714. [PMID: 37480372 DOI: 10.1007/s00253-023-12661-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/24/2023]
Abstract
Staurosporine is the most well-known member of the indolocarbazole alkaloid family; it can induce apoptosis of many types of cells as a strong protein kinase inhibitor, and is used as an important lead compound for the synthesis of the antitumor drugs. However, the low fermentation level of the native producer remains the bottleneck of staurosporine production. Herein, integration of multi-copy biosynthetic gene cluster (BGC) in well characterized heterologous host and optimization of the fermentation process were performed to enable high-level production of staurosporine. First, the 22.5 kb staurosporine BGC was captured by CRISPR/Cas9-mediated TAR (transformation-associated recombination) from the native producer (145 mg/L), and then introduced into three heterologous hosts Streptomyces avermitilis (ATCC 31267), Streptomyces lividans TK24 and Streptomyces albus J1074 to evaluate the staurosporine production capacity. The highest yield was achieved in S. albus J1074 (750 mg/L), which was used for further production improvement. Next, we integrated two additional staurosporine BGCs into the chromosome of strain S-STA via two different attB sites (vwb and TG1), leading to a double increase in the production of staurosporine. And finally, optimization of fermentation process by controlling the pH and glucose feeding could improve the yield of staurosporine to 4568 mg/L, which was approximately 30-fold higher than that of the native producer. This is the highest yield ever reported, paving the way for the industrial production of staurosporine. KEYPOINTS: • Streptomyces albus J1074 was the most suitable heterologous host to express the biosynthetic gene cluster of staurosporine. • Amplification of the biosynthetic gene cluster had obvious effect on improving the production of staurosporine. • The highest yield of staurosporine was achieved to 4568 mg/L by stepwise increase strategy.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai, 201203, People's Republic of China
| | - Songbai Yang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai, 201203, People's Republic of China
| | - Zhenxin Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai, 201203, People's Republic of China
| | - Yuanjie Wu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai, 201203, People's Republic of China
| | - Jiawei Tang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai, 201203, People's Republic of China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 826 Zhangheng Road, Pudong, Shanghai, 201203, People's Republic of China.
| | - Shaoxin Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
9
|
Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody GL, Martinez-Baird J, Riley LA, Simmons T, Coleman-Derr D, Guss AM, Egbert RG. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. SCIENCE ADVANCES 2023; 9:eade1285. [PMID: 36897939 PMCID: PMC10005180 DOI: 10.1126/sciadv.ade1285] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/01/2023] [Indexed: 05/31/2023]
Abstract
Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.
Collapse
Affiliation(s)
- Joshua R. Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gara N. Dexter
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Henri Baldino
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jay D. Huenemann
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Ryan Francis
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jessica Martinez-Baird
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Lauren A. Riley
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Tuesday Simmons
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
| | - Devin Coleman-Derr
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Robert G. Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
10
|
WEI W, WANG W, LI C, TANG Y, GUO Z, CHEN Y. Construction and heterologous expression of the di-AFN A1 biosynthetic gene cluster in Streptomyces model strains. Chin J Nat Med 2022; 20:873-880. [DOI: 10.1016/s1875-5364(22)60197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/23/2022]
|
11
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Cheng ZH, Wu J, Liu JQ, Min D, Liu DF, Li WW, Yu HQ. Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences. Nucleic Acids Res 2022; 50:7739-7750. [PMID: 35776123 PMCID: PMC9303307 DOI: 10.1093/nar/gkac554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023] Open
Abstract
Genomic integration techniques offer opportunities for generation of engineered microorganisms with improved or even entirely new functions but are currently limited by inability for efficient insertion of long genetic payloads due to multiplexing. Herein, using Shewanella oneidensis MR-1 as a model, we developed an optimized CRISPR-associated transposase from cyanobacteria Scytonema hofmanni (ShCAST system), which enables programmable, RNA-guided transposition of ultra-long DNA sequences (30 kb) onto bacterial chromosomes at ∼100% efficiency in a single orientation. In this system, a crRNA (CRISPR RNA) was used to target multicopy loci like insertion-sequence elements or combining I-SceI endonuclease, thereby allowing efficient single-step multiplexed or iterative DNA insertions. The engineered strain exhibited drastically improved substrate diversity and extracellular electron transfer ability, verifying the success of this system. Our work greatly expands the application range and flexibility of genetic engineering techniques and may be readily extended to other bacteria for better controlling various microbial processes.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Wu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Liu K, Lin GH, Liu K, Liu YJ, Tao XY, Gao B, Zhao M, Wei DZ, Wang FQ. Multiplexed site-specific genome engineering in Mycolicibacterium neoaurum by Att/Int system. Synth Syst Biotechnol 2022; 7:1002-1011. [PMID: 35782483 PMCID: PMC9213222 DOI: 10.1016/j.synbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.
Collapse
|
14
|
Lyu ZY, Bu QT, Fang JL, Zhu CY, Xu WF, Ma L, Gao WL, Chen XA, Li YQ. Improving the Yield and Quality of Daptomycin in Streptomyces roseosporus by Multilevel Metabolic Engineering. Front Microbiol 2022; 13:872397. [PMID: 35509317 PMCID: PMC9058172 DOI: 10.3389/fmicb.2022.872397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic with a significant antibacterial action against antibiotic-resistant Gram-positive bacteria. Despite numerous attempts to enhance daptomycin yield throughout the years, the production remains unsatisfactory. This study reports the application of multilevel metabolic engineering strategies in Streptomyces roseosporus to reconstruct high-quality daptomycin overproducing strain L2797-VHb, including precursor engineering (i.e., refactoring kynurenine pathway), regulatory pathway reconstruction (i.e., knocking out negative regulatory genes arpA and phaR), byproduct engineering (i.e., removing pigment), multicopy biosynthetic gene cluster (BGC), and fermentation process engineering (i.e., enhancing O2 supply). The daptomycin titer of L2797-VHb arrived at 113 mg/l with 565% higher comparing the starting strain L2790 (17 mg/l) in shake flasks and was further increased to 786 mg/l in 15 L fermenter. This multilevel metabolic engineering method not only effectively increases daptomycin production, but can also be applied to enhance antibiotic production in other industrial strains.
Collapse
Affiliation(s)
- Zhong-Yuan Lyu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Jiao-Le Fang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Chen-Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wei-Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Lie Ma
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
- *Correspondence: Yong-Quan Li,
| |
Collapse
|
15
|
Liu B, Wei Q, Yang M, Shi L, Zhang K, Ge B. Effect of toyF on wuyiencin and toyocamycin production by Streptomyces albulus CK-15. World J Microbiol Biotechnol 2022; 38:65. [PMID: 35229201 DOI: 10.1007/s11274-022-03234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Streptomyces albulus CK-15 produces various secondary metabolites, including the antibiotics wuyiencin and toyocamycin, which can reportedly control a broad range of plant fungal diseases. The production of these nucleoside antibiotics in CK-15 is regulated by two biosynthesis gene clusters. To investigate the potential effect of toyocamycin biosynthesis on wuyiencin production, we herein generated S. albulus strains in which a key gene in the toyocamycin biosynthesis gene cluster, namely toyF, was either deleted or overexpressed. The toyF deletion mutant ∆toyF did not produce toyocamycin, while the production of wuyiencin increased by 23.06% in comparison with that in the wild-type (WT) strain. In addition, ΔtoyF reached the highest production level of wuyiencin 4 h faster than the WT strain (60 h vs. and 64 h). Further, toyocamycin production by the toyF overexpression strain was two-fold higher than by the WT strain, while wuyiencin production was reduced by 29.10%. qRT-PCR showed that most genes in the toyocamycin biosynthesis gene cluster were expressed at lower levels in ∆toyF as compared with those in the WT strain, while the expression levels of genes in the wuyiencin biosynthesis gene cluster were upregulated. Finally, the growth rate of ∆toyF was much faster than that of the WT strain when cultured on solid or liquid medium. Based on our findings, we report that in industrial fermentation processes, ∆toyF has the potential to increase the production of wuyiencin and reduce the timeframe of fermentation.
Collapse
Affiliation(s)
- Binghua Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Qiuhe Wei
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoling Yang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
16
|
Jiang YH, Liu YF, Wang K, Zhou JY, Guo F, Zhao QW, Mao XM. Fine-Tuning Cas9 Activity with a Cognate Inhibitor AcrIIA4 to Improve Genome Editing in Streptomyces. ACS Synth Biol 2021; 10:2833-2841. [PMID: 34734710 DOI: 10.1021/acssynbio.1c00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient enabling technology is required for synthetic biology in Streptomyces due to its natural product reservoir. Though the CRISPR-Cas9 system is powerful for genome editing in this genus, the proposed Cas9 toxicity has limited its application. Here on the basis of previous inducible Cas9 expression at the transcriptional and translational levels coupled with atpD overexpression, a Cas9 cognate inhibitor AcrIIA4 was further introduced to fine-tune the Cas9 activity. In both laboratory and industrial Streptomyces species, we showed that, compared to the constitutively expressed Cas9, incorporating AcrIIA4 increased the conjugation efficiency from 700- to 7000-fold before induction, while a comparable 65%-90% editing efficiency was obtained even on multiple loci for simultaneous deletion after Cas9 expression was induced, along with no significant off-targets. Thus, AcrIIA4 could be a modulator to control Cas9 activity to significantly improve genome editing, and this new toolkit would be widely adaptable and fasten genetic engineering in Streptomyces.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Fan Liu
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Kai Wang
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jing-Yi Zhou
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Fengzhu Guo
- Zhejiang Silver-Elephant Bio-engineering Co., Ltd. No 18 Shifeng Road E., Fuxi Sub-district, Tiantai 317200, Zhejiang Province China
| | - Qing-Wei Zhao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xu-Ming Mao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
17
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
18
|
Wang P, Wang X, Yin Y, He M, Tan W, Gao W, Wen J. Increasing the Ascomycin Yield by Relieving the Inhibition of Acetyl/Propionyl-CoA Carboxylase by the Signal Transduction Protein GlnB. Front Microbiol 2021; 12:684193. [PMID: 34122395 PMCID: PMC8187598 DOI: 10.3389/fmicb.2021.684193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ascomycin (FK520) is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. In this study, we demonstrated that the inactivation of GlnB, a signal transduction protein belonging to the PII family, can increase the production of ascomycin by strengthening the supply of the precursors malonyl-CoA and methylmalonyl-CoA, which are produced by acetyl-CoA carboxylase and propionyl-CoA carboxylase, respectively. Bioinformatics analysis showed that Streptomyces hygroscopicus var. ascomyceticus contains two PII family signal transduction proteins, GlnB and GlnK. Protein co-precipitation experiments demonstrated that GlnB protein could bind to the α subunit of acetyl-CoA carboxylase, and this binding could be disassociated by a sufficient concentration of 2-oxoglutarate. Coupled enzyme activity assays further revealed that the interaction between GlnB protein and the α subunit inhibited both the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, and this inhibition could be relieved by 2-oxoglutarate in a concentration-dependent manner. Because GlnK protein can act redundantly to maintain metabolic homeostasis under the control of the global nitrogen regulator GlnR, the deletion of GlnB protein enhanced the supply of malonyl-CoA and methylmalonyl-CoA by restoring the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, thereby improving the production of ascomycin to 390 ± 10 mg/L. On this basis, the co-overexpression of the β and ε subunits of propionyl-CoA carboxylase further increased the ascomycin yield to 550 ± 20 mg/L, which was 1.9-fold higher than that of the parent strain FS35 (287 ± 9 mg/L). Taken together, this study provides a novel strategy to increase the production of ascomycin, providing a reference for improving the yield of other antibiotics.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wei Tan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wenting Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Li YP, Bu QT, Li JF, Xie H, Su YT, Du YL, Li YQ. Genome-based rational engineering of Actinoplanes deccanensis for improving fidaxomicin production and genetic stability. BIORESOURCE TECHNOLOGY 2021; 330:124982. [PMID: 33743279 DOI: 10.1016/j.biortech.2021.124982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Microbial fermentation is currently still the major way to produce structural complicated clinical drugs. Yet, the low productivity and genetic instability of producing strains remain the bottlenecks in microbial pharmaceutical industry. Fidaxomicin is a microbial drug against the Clostridium difficile infection. Here, a genome-based combinatorial engineering strategy was established to improve both fidaxomicin production and the genetic stability of Actinoplanes deccanensis YP-1. Guided by genomic analysis, several genetic instability-associated elements were cumulatively deleted, generating a more genetically stable mutant. Further rational engineering approaches including elimination of a pigment pathway, duplication of the fidaxomicin gene cluster, overexpression of a positive regulator and optimization of the fermentation medium, led to an overall 27-folds improvement in fidaxomicin production. Taken together, the genome-based rational combinatorial engineering strategy was efficient to enhance the fidaxomicin production and ameliorate the genetic stability of YP-1, it can also be widely used in other industrial actinomycetes for strain improvement.
Collapse
Affiliation(s)
- Yue-Ping Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Ji-Feng Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Huang Xie
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ting Su
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ling Du
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
20
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
21
|
Pikl Š, Carrillo Rincón AF, Slemc L, Goranovič D, Avbelj M, Gjuračić K, Sucipto H, Stare K, Baebler Š, Šala M, Guo M, Luzhetskyy A, Petković H, Magdevska V. Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers. Microb Cell Fact 2021; 20:47. [PMID: 33596911 PMCID: PMC7890619 DOI: 10.1186/s12934-021-01522-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Natural products are a valuable source of biologically active compounds that have applications in medicine and agriculture. One disadvantage with natural products is the slow, time-consuming strain improvement regimes that are necessary to ensure sufficient quantities of target compounds for commercial production. Although great efforts have been invested in strain selection methods, many of these technologies have not been improved in decades, which might pose a serious threat to the economic and industrial viability of such important bioprocesses. Results In recent years, introduction of extra copies of an entire biosynthetic pathway that encodes a target product in a single microbial host has become a technically feasible approach. However, this often results in minor to moderate increases in target titers. Strain stability and process reproducibility are the other critical factors in the industrial setting. Industrial Streptomyces rimosus strains for production of oxytetracycline are one of the most economically efficient strains ever developed, and thus these represent a very good industrial case. To evaluate the applicability of amplification of an entire gene cluster in a single host strain, we developed and evaluated various gene tools to introduce multiple copies of the entire oxytetracycline gene cluster into three different Streptomyces rimosus strains: wild-type, and medium and high oxytetracycline-producing strains. We evaluated the production levels of these engineered S. rimosus strains with extra copies of the oxytetracycline gene cluster and their stability, and the oxytetracycline gene cluster expression profiles; we also identified the chromosomal integration sites. Conclusions This study shows that stable and reproducible increases in target secondary metabolite titers can be achieved in wild-type and in high oxytetracycline-producing strains, which always reflects the metabolic background of each independent S. rimosus strain. Although this approach is technically very demanding and requires systematic effort, when combined with modern strain selection methods, it might constitute a very valuable approach in industrial process development.
Collapse
Affiliation(s)
- Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lucija Slemc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Martina Avbelj
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Hilda Sucipto
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Katja Stare
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Špela Baebler
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
22
|
Wu YJ, Yang SB, Zhang ZY, Chen SX. Improvement of Nemadectin Production by Overexpressing the Regulatory Gene nemR and Nemadectin Biosynthetic Gene Cluster in Streptomyces Cyaneogriseus. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0040-1722746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractNemadectin, a 16-member macrocyclic lactone antiparasitic antibiotic, is produced by Streptomyces cyaneogriseus subspecies noncyanogenus. Moxidectin, a C-23 oximate derivative of nemadectin, is widely used as a pesticide due to its broad-spectrum, highly efficient, and safe anthelmintic activity. NemR, a LAL family regulator, is encoded by nemR and is involved in nemadectin biosynthesis in S. cyaneogriseus. In this report, gene disruption and complementation experiments showed that nemR plays a positive role in the biosynthesis of nemadectin. The transcription level of nemadectin biosynthetic genes in the nemR knockout strain was significantly decreased compared with those in the wild-type strain MOX-101. However, overexpression of nemR under the control of native or strong constitutive promoters resulted in the opposite, increasing the production of nemadectin by 56.5 or 73.5%, respectively, when compared with MOX-101. In addition, the gene cluster of nemadectin biosynthesis was further cloned and overexpressed using a CRISPR method, which significantly increase nemadectin yield by 108.6% (509 mg/L) when compared with MOX-101.
Collapse
Affiliation(s)
- Yuan-Jie Wu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Song-Bai Yang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Zheng-Yu Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Shao-Xin Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Li S, Li Z, Pang S, Xiang W, Wang W. Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces. Curr Opin Biotechnol 2020; 69:26-34. [PMID: 33316577 DOI: 10.1016/j.copbio.2020.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023]
Abstract
The widely used polyketide pharmaceuticals in medicine and agriculture are mainly produced by Streptomyces species. These compounds, as secondary metabolites, are not involved in essential cellular processes and are usually produced during the stationary phase of fermentation. Consequently, their yields and productivities are often low and frequently limited by the availability of the precursors. The precursor pathways, therefore, are key entities for synthetic biology-driven design and optimization. We discuss recent advances in precursor engineering, in both Streptomyces and other bacteria, focusing on the diverse native and heterologous precursor pathways that could be rewired for polyketide titer improvement. We also highlight the coordination of other required factors to direct the precursors towards polyketide biosynthesis. The precursor-supply enhancement tools and strategies covered in this review will facilitate the design and construction of synthetic Streptomyces 'cell-factories' for efficient polyketide production.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Xu M, Wang W, Waglechner N, Culp EJ, Guitor AK, Wright GD. GPAHex-A synthetic biology platform for Type IV-V glycopeptide antibiotic production and discovery. Nat Commun 2020; 11:5232. [PMID: 33067466 PMCID: PMC7567792 DOI: 10.1038/s41467-020-19138-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are essential for the treatment of severe infectious diseases caused by Gram-positive bacteria. The emergence and spread of GPA resistance have propelled the search for more effective GPAs. Given their structural complexity, genetic intractability, and low titer, expansion of GPA chemical diversity using synthetic or medicinal chemistry remains challenging. Here we describe a synthetic biology platform, GPAHex (GPA Heterologous expression), which exploits the genes required for the specialized GPA building blocks, regulation, antibiotic transport, and resistance for the heterologous production of GPAs. Application of the GPAHex platform results in: (1) a 19-fold increase of corbomycin titer compared to the parental strain, (2) the discovery of a teicoplanin-class GPA from an Amycolatopsis isolate, and (3) the overproduction and characterization of a cryptic nonapeptide GPA. GPAHex provides a platform for GPA production and mining of uncharacterized GPAs and provides a blueprint for chassis design for other natural product classes. Expansion of the chemical diversity of glycopeptide antibiotics (GPAs) to deal with the emergence and spread of GPA resistance is challenging. Here, the authors report a GPA synthetic biology platform in Streptomyces coelicolor for Type IV–V glycopeptide antibiotic production and discovery.
Collapse
Affiliation(s)
- Min Xu
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Wenliang Wang
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas Waglechner
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elizabeth J Culp
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison K Guitor
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
25
|
Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. The plant endosphere world - bacterial life within plants. Environ Microbiol 2020; 23:1812-1829. [PMID: 32955144 DOI: 10.1111/1462-2920.15240] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
The plant endosphere is colonized by complex microbial communities and microorganisms, which colonize the plant interior at least part of their lifetime and are termed endophytes. Their functions range from mutualism to pathogenicity. All plant organs and tissues are generally colonized by bacterial endophytes and their diversity and composition depend on the plant, the plant organ and its physiological conditions, the plant growth stage as well as on the environment. Plant-associated microorganisms, and in particular endophytes, have lately received high attention, because of the increasing awareness of the importance of host-associated microbiota for the functioning and performance of their host. Some endophyte functions are known from mostly lab assays, genome prediction and few metagenome analyses; however, we have limited understanding on in planta activities, particularly considering the diversity of micro-environments and the dynamics of conditions. In our review, we present recent findings on endosphere environments, their physiological conditions and endophyte colonization. Furthermore, we discuss microbial functions, the interaction between endophytes and plants as well as methodological limitations of endophyte research. We also provide an outlook on needs of future research to improve our understanding on the role of microbiota colonizing the endosphere on plant traits and ecosystem functioning.
Collapse
Affiliation(s)
- Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| | | | | | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| | - Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V4C7, Canada
| | - Angela Sessitsch
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| |
Collapse
|
26
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
27
|
Cao M, Tran VG, Zhao H. Unlocking nature's biosynthetic potential by directed genome evolution. Curr Opin Biotechnol 2020; 66:95-104. [PMID: 32721868 DOI: 10.1016/j.copbio.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
Microorganisms have been increasingly explored as microbial cell factories for production of fuels, chemicals, drugs, and materials. Among the various metabolic engineering strategies, directed genome evolution has emerged as one of the most powerful tools to unlock the full biosynthetic potential of microorganisms. Here we summarize the directed genome evolution strategies that have been developed in recent years, including adaptive laboratory evolution and various targeted genome-scale engineering strategies, and discuss their applications in basic and applied biological research.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
28
|
Zhao Y, Yao Z, Ploessl D, Ghosh S, Monti M, Schindler D, Gao M, Cai Y, Qiao M, Yang C, Cao M, Shao Z. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories. ACS Synth Biol 2020; 9:1736-1752. [PMID: 32396718 DOI: 10.1021/acssynbio.0c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We broadened the usage of DNA transposon technology by demonstrating its capacity for the rapid creation of expression libraries for long biochemical pathways, which is beyond the classical application of building genome-scale knockout libraries in yeasts. This strategy efficiently leverages the readily available fine-tuning impact provided by the diverse transcriptional environment surrounding each random integration locus. We benchmark the transposon-mediated integration against the nonhomologous end joining-mediated strategy. The latter strategy was demonstrated for achieving pathway random integration in other yeasts but is associated with a high false-positive rate in the absence of a high-throughput screening method. Our key innovation of a nonreplicable circular DNA platform increased the possibility of identifying top-producing variants to 97%. Compared to the classical DNA transposition protocol, the design of a nonreplicable circular DNA skipped the step of counter-selection for plasmid removal and thus not only reduced the time required for the step of library creation from 10 to 5 d but also efficiently removed the "transposition escapers", which undesirably represented almost 80% of the entire population as false positives. Using one endogenous product (i.e., shikimate) and one heterologous product (i.e., (S)-norcoclaurine) as examples, we presented a streamlined procedure to rapidly identify high-producing variants with titers significantly higher than the reported data in the literature. We selected Scheffersomyces stipitis, a representative nonconventional yeast, as a demo, but the strategy can be generalized to other nonconventional yeasts. This new exploration of transposon technology, therefore, adds a highly versatile tool to accelerate the development of novel species as microbial cell factories for producing value-added chemicals.
Collapse
Affiliation(s)
- Yuxin Zhao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Saptarshi Ghosh
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Marco Monti
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Daniel Schindler
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Yizhi Cai
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, United States
- Bioeconomy Institute, Iowa State University, Ames, Iowa, United States
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, United States
- The Ames Laboratory, Ames, Iowa, United States
| |
Collapse
|
29
|
Wang H, Cheng X, Liu Y, Li S, Zhang Y, Wang X, Xiang W. Improved milbemycin production by engineering two Cytochromes P450 in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2020; 104:2935-2946. [PMID: 32043186 DOI: 10.1007/s00253-020-10410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Milbemycins and their semisynthetic derivatives are recognized as effective and eco-friendly pesticides, whereas the high price limits their widespread applications in agriculture. One of the pivotal questions is the accumulation of milbemycin-like by-products, which not only reduces the yield of the target products milbemycin A3/A4, but also brings difficulty to the purification. With other analogous by-products abolished, α9/α10 and β-family milbemycins remain to be eliminated. Herein, we solved these issues by engineering of post-modification steps. First, Cyp41, a CYP268 family cytochrome P450, was identified to participate in α9/α10 biosynthesis. By deleting cyp41, milbemycin α9/α10 was eliminated with an increase of milbemycin A3/A4 titer from 2382.5 ± 55.7 mg/L to 2625.6 ± 64.5 mg/L. Then, MilE, a CYP171 family cytochrome P450, was determined to be responsible for the generation of the furan ring between C6 and C8a of milbemycins. By further overexpression of milE, the production of β-family milbemycins was reduced by 77.2%. Finally, the titer of milbemycin A3/A4 was increased by 53.1% to 3646.9 ± 69.9 mg/L. Interestingly, overexpression of milE resulted in increased transcriptional levels of milbemycin biosynthetic genes and production of total milbemycins, which implied that the insufficient function of MilE was a limiting factor to milbemycin biosynthesis. Our research not only provides an efficient engineering strategy to improve the production of a commercially important product milbemycins, but also offers the clues for future study about transcriptional regulation of milbemycin biosynthesis.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
30
|
Yang Z, He J, Wei X, Ju J, Ma J. Exploration and genome mining of natural products from marine Streptomyces. Appl Microbiol Biotechnol 2019; 104:67-76. [PMID: 31773207 DOI: 10.1007/s00253-019-10227-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022]
Abstract
Marine Streptomyces sp. are an important source of bioactive compounds owing to their unique habitats and metabolic pathways. Whole-genome sequencing and bioinformatics analyses have shown that the potential of synthesizing secondary metabolites from marine-derived Streptomyces has been substantially underestimated. Genome mining is an integrated strategy used to discover natural products based on gene cluster sequences and biosynthetic pathways. Its emergence has greatly enhanced the discovery of natural compounds from marine Streptomyces, thereby yielding a large number of bioactive molecules with novel structures and potent activities. In this review, we briefly summarize the current applications of genome mining in marine Streptomyces, such as bioinformatics-based optimization of culture conditions, ribosome engineering, control of regulatory networks, heterologous expression of biosynthetic gene cluster, and combinatorial biosynthesis of natural compounds. Furthermore, we discuss the factors hindering the utilization of marine-derived natural products and conclude with the prospects for this technique.
Collapse
Affiliation(s)
- Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiao He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
31
|
Yu Z, Lv H, Wu Y, Wei T, Yang S, Ju D, Chen S. Enhancement of FK520 production in Streptomyces hygroscopicus by combining traditional mutagenesis with metabolic engineering. Appl Microbiol Biotechnol 2019; 103:9593-9606. [PMID: 31713669 DOI: 10.1007/s00253-019-10192-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
Abstract
FK520 (ascomycin), a 23-membered macrolide with immunosuppressive activity, is produced by Streptomyces hygroscopicus. The problem of low yield and high impurities (mainly FK523) limits the industrialized production of FK520. In this study, the FK520 yield was significantly improved by strain mutagenesis and genetic engineering. First, a FK520 high-producing strain SFK-6-33 (2432.2 mg/L) was obtained from SFK-36 (1588.4 mg/L) through ultraviolet radiation mutation coupled with streptomycin resistance screening. The endogenous crotonyl-CoA carboxylase/reductase (FkbS) was found to play an important role in FK520 biosynthesis, identified with CRISPR/dCas9 inhibition system. FkbS was overexpressed in SFK-6-33 to obtain the engineered strain SFK-OfkbS, which produced 2817.0 mg/L of FK520 resulting from an increase in intracellular ethylmalonyl-CoA levels. In addition, the FK520 levels could be further increased with supplementation of crotonic acid in SFK-OfkbS. Overexpression of acetyl-CoA carboxylase (ACCase), used for the synthesis of malonyl-CoA, was also investigated in SFK-6-33, which improved the FK520 yield to 3320.1 mg/L but showed no significant inhibition in FK523 production. To further enhance FK520 production, FkbS and ACCase combinatorial overexpression strain SFK-OASN was constructed; the FK520 production increased by 44.4% to 3511.4 mg/L, and the FK523/FK520 ratio was reduced from 9.6 to 5.6% compared with that in SFK-6-33. Finally, a fed-batch culture was carried out in a 5-L fermenter, and the FK520 yield reached 3913.9 mg/L at 168 h by feeding glycerol, representing the highest FK520 yield reported thus far. These results demonstrated that traditional mutagenesis combined with metabolic engineering was an effective strategy to improve FK520 production.
Collapse
Affiliation(s)
- Zhituo Yu
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Huihui Lv
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yuanjie Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Tengyun Wei
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Songbai Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China.
| | - Shaoxin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
32
|
Xu W, Klumbys E, Ang EL, Zhao H. Emerging molecular biology tools and strategies for engineering natural product biosynthesis. Metab Eng Commun 2019; 10:e00108. [PMID: 32547925 PMCID: PMC7283510 DOI: 10.1016/j.mec.2019.e00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products and their related derivatives play a significant role in drug discovery and have been the inspiration for the design of numerous synthetic bioactive compounds. With recent advances in molecular biology, numerous engineering tools and strategies were established to accelerate natural product synthesis in both academic and industrial settings. However, many obstacles in natural product biosynthesis still exist. For example, the native pathways are not appropriate for research or production; the key enzymes do not have enough activity; the native hosts are not suitable for high-level production. Emerging molecular biology tools and strategies have been developed to not only improve natural product titers but also generate novel bioactive compounds. In this review, we will discuss these emerging molecular biology tools and strategies at three main levels: enzyme level, pathway level, and genome level, and highlight their applications in natural product discovery and development.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Evaldas Klumbys
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Ee Lui Ang
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Huimin Zhao
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Li L, Liu X, Jiang W, Lu Y. Recent Advances in Synthetic Biology Approaches to Optimize Production of Bioactive Natural Products in Actinobacteria. Front Microbiol 2019; 10:2467. [PMID: 31749778 PMCID: PMC6848025 DOI: 10.3389/fmicb.2019.02467] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Actinobacteria represent one of the most fertile sources for the discovery and development of natural products (NPs) with medicinal and industrial importance. However, production titers of actinobacterial NPs are usually low and require optimization for compound characterization and/or industrial production. In recent years, a wide variety of novel enabling technologies for engineering actinobacteria have been developed, which have greatly facilitated the optimization of NPs biosynthesis. In this review, we summarize the recent advances of synthetic biology approaches for overproducing desired drugs, as well as for the discovery of novel NPs in actinobacteria, including dynamic metabolic regulation based on metabolite-responsive promoters or biosensors, multi-copy chromosomal integration of target biosynthetic gene clusters (BGCs), promoter engineering-mediated rational BGC refactoring, and construction of genome-minimized Streptomyces hosts. Integrated with metabolic engineering strategies developed previously, these novel enabling technologies promise to facilitate industrial strain improvement process and genome mining studies for years to come.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Henan University, Kaifeng, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
34
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Niu G, Li W. Next-Generation Drug Discovery to Combat Antimicrobial Resistance. Trends Biochem Sci 2019; 44:961-972. [PMID: 31256981 DOI: 10.1016/j.tibs.2019.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
The widespread emergence of antibiotic-resistant pathogens poses a severe threat to public health. This problem becomes even worse with a coincident decline in the supply of new antibiotics. Conventional bioactivity-guided natural product discovery has failed to meet the urgent need for new antibiotics, largely due to limited resources and high rediscovery rates. Recent advances in cultivation techniques, analytical technologies, and genomics-based approaches have greatly expanded our access to previously underexploited microbial sources. These strategies will enable us to access new reservoirs of microorganisms and unleash their chemical potentials, thus opening new opportunities for the discovery of next-generation drugs to address the growing concerns of antimicrobial resistance.
Collapse
Affiliation(s)
- Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
36
|
Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W. Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. Appl Microbiol Biotechnol 2019; 103:6645-6655. [PMID: 31240365 DOI: 10.1007/s00253-019-09970-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023]
Abstract
High-yielding industrial Streptomyces producer is usually obtained by multiple rounds of random mutagenesis and screening. These strains have great potential to be developed as the versatile chassis for the discovery and titer improvement of desired heterologous products. Here, the industrial strain Streptomyces rimosus 461, which is a high producer of oxytetracycline, has been engineered as a robust host for heterologous expression of chlortetracycline (CTC) biosynthetic gene cluster. First, the industrial chassis strain SR0 was constructed by deleting the whole oxytetracycline gene cluster of S. rimosus 461. Then, the biosynthetic gene cluster ctc of Streptomyces aureofaciens ATCC 10762 was integrated into the chromosome of SR0. With an additional constitutively expressed cluster-situated activator gene ctcB, the CTC titer of the engineering strain SRC1 immediately reached 1.51 g/L in shaking flask. Then, the CTC titers were upgraded to 2.15 and 3.27 g/L, respectively, in the engineering strains SRC2 and SRC3 with the enhanced ctcB expression. Further, two cluster-situated resistance genes were co-overexpressed with ctcB. The resultant strain produced CTC up to 3.80 g/L in shaking flask fermentation, which represents 38 times increase in comparison with that of the original producer. Overall, SR0 presented in this study have great potential to be used for heterologous production of tetracyclines and other type II polyketides.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
37
|
Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 2019; 103:5463-5482. [DOI: 10.1007/s00253-019-09901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
|
38
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|