1
|
Li L, Zhou X, Gao Z, Xiong P, Liu X. Production of succinate with two CO 2 fixation reactions from fatty acids in Cupriavidus necator H16. Microb Cell Fact 2024; 23:194. [PMID: 38970033 PMCID: PMC11225152 DOI: 10.1186/s12934-024-02470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Biotransformation of CO2 into high-value-added carbon-based products is a promising process for reducing greenhouse gas emissions. To realize the green transformation of CO2, we use fatty acids as carbon source to drive CO2 fixation to produce succinate through a portion of the 3-hydroxypropionate (3HP) cycle in Cupriavidus necator H16. RESULTS This work can achieve the production of a single succinate molecule from one acetyl-CoA molecule and two CO2 molecules. It was verified using an isotope labeling experiment utilizing NaH13CO3. This implies that 50% of the carbon atoms present in succinate are derived from CO2, resulting in a twofold increase in efficiency compared to prior methods of succinate biosynthesis that relied on the carboxylation of phosphoenolpyruvate or pyruvate. Meanwhile, using fatty acid as a carbon source has a higher theoretical yield than other feedstocks and also avoids carbon loss during acetyl-CoA and succinate production. To further optimize succinate production, different approaches including the optimization of ATP and NADPH supply, optimization of metabolic burden, and optimization of carbon sources were used. The resulting strain was capable of producing succinate to a level of 3.6 g/L, an increase of 159% from the starting strain. CONCLUSIONS This investigation established a new method for the production of succinate by the implementation of two CO2 fixation reactions and demonstrated the feasibility of ATP, NADPH, and metabolic burden regulation strategies in biological carbon fixation.
Collapse
Affiliation(s)
- Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China
| | - Zhuoao Gao
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China.
| | - Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
2
|
Liu X, Li L, Zhao G, Xiong P. Optimization strategies for CO 2 biological fixation. Biotechnol Adv 2024; 73:108364. [PMID: 38642673 DOI: 10.1016/j.biotechadv.2024.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Global sustainable development faces a significant challenge in effectively utilizing CO2. Meanwhile, CO2 biological fixation offers a promising solution. CO2 has the highest oxidation state (+4 valence state), whereas typical multi‑carbon chemicals have lower valence states. The Gibbs free energy (ΔG) changes of CO2 reductive reactions are generally positive and this renders it necessary to input different forms of energy. Although biological carbon fixation processes are friendly to operate, the thermodynamic obstacles must be overcome. To make this reaction occur favorably and efficiently, diverse strategies to enhance CO2 biological fixation efficiency have been proposed by numerous researchers. This article reviews recent advances in optimizing CO2 biological fixation and intends to provide new insights into achieving efficient biological utilization of CO2. It first outlines the thermodynamic characteristics of diverse carbon fixation reactions and proposes optimization directions for CO2 biological fixation. A comprehensive overview of the catalytic mechanisms, optimization strategies, and challenges encountered by common carbon-fixing enzymes is then provided. Subsequently, potential routes for improving the efficiency of biological carbon fixation are discussed, including the ATP supply, reducing power supply, energy supply, reactor design, and carbon enrichment system modules. In addition, effective artificial carbon fixation pathways were summarized and analyzed. Finally, prospects are made for the research direction of continuously improving the efficiency of biological carbon fixation.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| | - Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China.
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| |
Collapse
|
3
|
He W, Marchuk H, Koeberl D, Kasumov T, Chen X, Zhang GF. Fasting alleviates metabolic alterations in mice with propionyl-CoA carboxylase deficiency due to Pcca mutation. Commun Biol 2024; 7:659. [PMID: 38811689 PMCID: PMC11137003 DOI: 10.1038/s42003-024-06362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Propionic acidemia (PA), resulting from Pcca or Pccb gene mutations, impairs propionyl-CoA metabolism and induces metabolic alterations. While speculation exists that fasting might exacerbate metabolic crises in PA patients by accelerating the breakdown of odd-chain fatty acids and amino acids into propionyl-CoA, direct evidence is lacking. Our investigation into the metabolic effects of fasting in Pcca-/-(A138T) mice, a PA model, reveals surprising outcomes. Propionylcarnitine, a PA biomarker, decreases during fasting, along with the C3/C2 (propionylcarnitine/acetylcarnitine) ratio, ammonia, and methylcitrate. Although moderate amino acid catabolism to propionyl-CoA occurs with a 23-h fasting, a significant reduction in microbiome-produced propionate and increased fatty acid oxidation mitigate metabolic alterations by decreasing propionyl-CoA synthesis and enhancing acetyl-CoA synthesis. Fasting-induced gluconeogenesis further facilitates propionyl-CoA catabolism without changing propionyl-CoA carboxylase activity. These findings suggest that fasting may alleviate metabolic alterations in Pcca-/-(A138T) mice, prompting the need for clinical evaluation of its potential impact on PA patients.
Collapse
Affiliation(s)
- Wentao He
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takhar Kasumov
- Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xiaoxin Chen
- Department of Surgery, Surgical Research Lab, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA.
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
4
|
Lin F, Li W, Wang D, Hu G, Qin Z, Xia X, Hu L, Liu X, Luo R. Advances in succinic acid production: the enhancement of CO 2 fixation for the carbon sequestration benefits. Front Bioeng Biotechnol 2024; 12:1392414. [PMID: 38605985 PMCID: PMC11007169 DOI: 10.3389/fbioe.2024.1392414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.
Collapse
Affiliation(s)
| | | | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Mitrea L, Teleky BE, Nemes SA, Plamada D, Varvara RA, Pascuta MS, Ciont C, Cocean AM, Medeleanu M, Nistor A, Rotar AM, Pop CR, Vodnar DC. Succinic acid - A run-through of the latest perspectives of production from renewable biomass. Heliyon 2024; 10:e25551. [PMID: 38327454 PMCID: PMC10848017 DOI: 10.1016/j.heliyon.2024.e25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Succinic acid (SA) production is continuously rising, as its applications in diverse end-product generation are getting broader and more expansive. SA is an eco-friendly bulk product that acts as a valuable intermediate in different processes and might substitute other petrochemical-based products due to the inner capacity of microbes to biosynthesize it. Moreover, large amounts of SA can be obtained through biotechnological ways starting from renewable resources, imprinting at the same time the concept of a circular economy. In this context, the target of the present review paper is to bring an overview of SA market demands, production, biotechnological approaches, new strategies of production, and last but not least, the possible limitations and the latest perspectives in terms of natural biosynthesis of SA.
Collapse
Affiliation(s)
- Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemes
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Mihaela-Stefana Pascuta
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Calina Ciont
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Ana-Maria Cocean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Madalina Medeleanu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Alina Nistor
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Ancuta-Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Carmen-Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Zhou Y, Zhang S, Huang S, Fan X, Su H, Tan T. De novo biosynthesis of 2-hydroxyterephthalic acid, the monomer for high-performance hydroxyl modified PBO fiber, by enzymatic Kolbe-Schmitt reaction with CO 2 fixation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:179. [PMID: 37986026 PMCID: PMC10662693 DOI: 10.1186/s13068-023-02413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND High-performance poly(p-phenylenebenzobisoxazole) (PBO) fiber, with excellent mechanical properties (stiffness, strength, and toughness), high thermal stability combined and light weight, are widely employed in automotive and aerospace composites, body armor and sports goods. Hydroxyl modified PBO (HPBO) fiber shows better photostability and interfacial shear strength. 2-Hydroxyterephthalic acid (2-HTA), the monomer for the HPBO fiber, is usually synthesized by chemical method, which has poor space selectivity and high energy consumption. The enzymatic Kolbe-Schmitt reaction, which carboxylates phenolic substrates to generate hydroxybenzoic acids with bicarbonate/CO2, was applied in de novo biosynthesis of 2-HTA with CO2 fixation. RESULTS The biosynthesis of 2-HTA was achieved by the innovative application of hydroxybenzoic acid (de)carboxylases to carboxylation of 3-hydroxybenzoic acid (3-HBA) at the para-position of the benzene carboxyl group, known as enzymatic Kolbe-Schmitt reaction. 2,3-Dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) were expressed in recombinant E. coli and showed highest activity. The yield of 2-HTA was 108.97 ± 2.21 μg/L/mg protein in the whole-cell catalysis. In addition, two amino acid substitutions, F27G and T62A, proved to be of great help in improving 2,3-DHBD activity. The double site mutation F27G/T62A increased the production of 2-HTA in the whole-cell catalysis by 24.7-fold, reaching 2.69 ± 0.029 mg/L/mg protein. Moreover, de novo biosynthetic pathway of 2-HTA was constructed by co-expression of 2,3-DHBD_Ao and 3-hydroxybenzoate synthase Hyg5 in S. cerevisiae S288C with Ura3, Aro7 and Trp3 knockout. The engineered strain synthesized 45.40 ± 0.28 μg/L 2-HTA at 36 h in the CO2 environment. CONCLUSIONS De novo synthesis of 2-HTA has been achieved, using glucose as a raw material to generate shikimic acid, chorismic acid, and 3-HBA, and finally 2-HTA. We demonstrate the strong potential of hydroxybenzoate (de)carboxylase to produce terephthalic acid and its derivatives with CO2 fixation.
Collapse
Affiliation(s)
- Yali Zhou
- National Energy R&D Center for Biorefnery, Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North 3Rd Ring Rd East, Beijing, 100029, People's Republic of China
| | - Shiding Zhang
- National Energy R&D Center for Biorefnery, Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North 3Rd Ring Rd East, Beijing, 100029, People's Republic of China
| | - Shiming Huang
- National Energy R&D Center for Biorefnery, Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North 3Rd Ring Rd East, Beijing, 100029, People's Republic of China
| | - Xuanhe Fan
- National Energy R&D Center for Biorefnery, Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North 3Rd Ring Rd East, Beijing, 100029, People's Republic of China
| | - Haijia Su
- National Energy R&D Center for Biorefnery, Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North 3Rd Ring Rd East, Beijing, 100029, People's Republic of China
| | - Tianwei Tan
- National Energy R&D Center for Biorefnery, Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North 3Rd Ring Rd East, Beijing, 100029, People's Republic of China.
| |
Collapse
|
7
|
Guo L, Liu M, Bi Y, Qi Q, Xian M, Zhao G. Using a synthetic machinery to improve carbon yield with acetylphosphate as the core. Nat Commun 2023; 14:5286. [PMID: 37648707 PMCID: PMC10468489 DOI: 10.1038/s41467-023-41135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In microbial cell factory, CO2 release during acetyl-CoA production from pyruvate significantly decreases the carbon atom economy. Here, we construct and optimize a synthetic carbon conserving pathway named as Sedoheptulose-1,7-bisphosphatase Cycle with Trifunctional PhosphoKetolase (SCTPK) in Escherichia coli. This cycle relies on a generalist phosphoketolase Xfspk and converts glucose into the stoichiometric amounts of acetylphosphate (AcP). Furthermore, genetic circuits responding to AcP positively or negatively are created. Together with SCTPK, they constitute a gene-metabolic oscillator that regulates Xfspk and enzymes converting AcP into valuable chemicals in response to intracellular AcP level autonomously, allocating metabolic flux rationally and improving the carbon atom economy of bioconversion process. Using this synthetic machinery, mevalonate is produced with a yield higher than its native theoretical yield, and the highest titer and yield of 3-hydroxypropionate via malonyl-CoA pathway are achieved. This study provides a strategy for improving the carbon yield of microbial cell factories.
Collapse
Affiliation(s)
- Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yujia Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
8
|
Qian J, Zheng P. Fixation of CO2 from ethanol fermentation for succinic acid production in a dual-chamber bioreactor system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Abstract
Carbon dioxide is a major greenhouse gas, and its fixation and transformation are receiving increasing attention. Biofixation of CO2 is an eco–friendly and efficient way to reduce CO2, and six natural CO2 fixation pathways have been identified in microorganisms and plants. In this review, the six pathways along with the most recent identified variant pathway were firstly comparatively characterized. The key metabolic process and enzymes of the CO2 fixation pathways were also summarized. Next, the enzymes of Rubiscos, biotin-dependent carboxylases, CO dehydrogenase/acetyl-CoA synthase, and 2-oxoacid:ferredoxin oxidoreductases, for transforming inorganic carbon (CO2, CO, and bicarbonate) to organic chemicals, were specially analyzed. Then, the factors including enzyme properties, CO2 concentrating, energy, and reducing power requirements that affect the efficiency of CO2 fixation were discussed. Recent progress in improving CO2 fixation through enzyme and metabolic engineering was then summarized. The artificial CO2 fixation pathways with thermodynamical and/or energetical advantages or benefits and their applications in biosynthesis were included as well. The challenges and prospects of CO2 biofixation and conversion are discussed.
Collapse
|
10
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
11
|
Aleku GA, Roberts GW, Titchiner GR, Leys D. Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions. CHEMSUSCHEM 2021; 14:1781-1804. [PMID: 33631048 PMCID: PMC8252502 DOI: 10.1002/cssc.202100159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Indexed: 05/11/2023]
Abstract
In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO2 fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO2 to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO2 -fixation cascades.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - George W. Roberts
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Gabriel R. Titchiner
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
12
|
Novel Mode Engineering for β-Alanine Production in Escherichia coli with the Guide of Adaptive Laboratory Evolution. Microorganisms 2021; 9:microorganisms9030600. [PMID: 33803992 PMCID: PMC8000549 DOI: 10.3390/microorganisms9030600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
The strategy of anaerobic biosynthesis of β-alanine by Escherichia coli (E. coli) has been reported. However, the low energy production under anaerobic condition limited cell growth and then affected the production efficiency of β-alanine. Here, the adaptive laboratory evolution was carried out to improve energy production of E. coli lacking phosphoenolpyruvate carboxylase under anaerobic condition. Five mutants were isolated and analyzed. Sequence analysis showed that most of the consistent genetic mutations among the mutants were related with pyruvate accumulation, indicating that pyruvate accumulation enabled the growth of the lethal parent. It is possible that the accumulated pyruvate provides sufficient precursors for energy generation and CO2 fixing reaction catalyzed by phosphoenolpyruvate carboxykinase. B0016-100BB (B0016-090BB, recE::FRT, mhpF::FRT, ykgF::FRT, mhpB:: mhpB *, mhpD:: mhpD *, rcsA:: rcsA *) was engineered based on the analysis of the genetic mutations among the mutants for the biosynthesis of β-alanine. Along with the recruitment of glycerol as the sole carbon source, 1.07 g/L β-alanine was generated by B0016-200BB (B0016-100BB, aspA::FRT) harboring pET24a-panD-AspDH, which was used for overexpression of two key enzymes in β-alanine fermentation process. Compared with the starting strain, which can hardly generate β-alanine under anaerobic condition, the production efficiency of β-alanine of the engineered cell factory was significantly improved.
Collapse
|
13
|
Liu Y, Jiang H. Directed Evolution of Propionyl-CoA Carboxylase for Succinate Biosynthesis. Trends Biotechnol 2021; 39:330-331. [PMID: 33632542 DOI: 10.1016/j.tibtech.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Due to low carboxylase activity, CO2 biotransformation is challenging to achieve using natural CO2 fixation pathways. Liu et al. have improved the activity of propionyl-CoA carboxylase (PCC) 94-fold, enabling the efficient synthesis of succinate from acetyl-CoA and paving the way for CO2 assimilation via the 3-hydroxypropionate (3-HP) bicycle or 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle.
Collapse
Affiliation(s)
- Yuwan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
14
|
Abstract
AbstractThe capture of CO2 by carboxylases is key to sustainable biocatalysis and a carbon-neutral bio-economy, yet currently limited to few naturally existing enzymes. Here, we developed glycolyl-CoA carboxylase (GCC), a new-to-nature enzyme, by combining rational design, high-throughput microfluidics and microplate screens. During this process, GCC’s catalytic efficiency improved by three orders of magnitude to match the properties of natural CO2-fixing enzymes. We verified our active-site redesign with an atomic-resolution, 1.96-Å cryo-electron microscopy structure and engineered two more enzymes that, together with GCC, form a carboxylation module for the conversion of glycolate (C2) to glycerate (C3). We demonstrate how this module can be interfaced with natural photorespiration, ethylene glycol conversion and synthetic CO2 fixation. Based on stoichiometrical calculations, GCC is predicted to increase the carbon efficiency of all of these processes by up to 150% while reducing their theoretical energy demand, showcasing how expanding the solution space of natural metabolism provides new opportunities for biotechnology and agriculture.
Collapse
|