1
|
Sadi M, Carvalho N, Léger C, Vitorge B, Ladant D, Guijarro JI, Chenal A. B2LiVe, a label-free 1D-NMR method to quantify the binding of amphitropic peptides or proteins to membrane vesicles. CELL REPORTS METHODS 2023; 3:100624. [PMID: 37909050 PMCID: PMC10694493 DOI: 10.1016/j.crmeth.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Amphitropic proteins and peptides reversibly partition from solution to membrane, a key process that regulates their functions. Experimental approaches classically used to measure protein partitioning into lipid bilayers, such as fluorescence and circular dichroism, are hardly usable when the peptides or proteins do not exhibit significant polarity and/or conformational changes upon membrane binding. Here, we describe binding to lipid vesicles (B2LiVe), a simple, robust, and widely applicable nuclear magnetic resonance (NMR) method to determine the solution-to-membrane partitioning of unlabeled proteins or peptides. B2LiVe relies on previously described proton 1D-NMR fast-pulsing techniques. Membrane partitioning induces a large line broadening, leading to a loss of protein signals; therefore, the decrease of the NMR signal directly measures the fraction of membrane-bound protein. The method uses low polypeptide concentrations and has been validated on several membrane-interacting polypeptides, ranging from 3 to 54 kDa, with membrane vesicles of different sizes and various lipid compositions.
Collapse
Affiliation(s)
- Mirko Sadi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Corentin Léger
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Bruno Vitorge
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France.
| |
Collapse
|
2
|
Xu LT, Xie KX, Cao SH, Weng YH, Chen M, Li Z, Li YQ. Simultaneous monitoring of the fluorescence and refractive index by surface plasmon coupled emission: A proof-of-concept study. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Xu LT, Chen M, Weng YH, Xie KX, Wang J, Cao SH, Li YQ. Label-Free Fluorescent Nanofilm Sensor Based on Surface Plasmon Coupled Emission: In Situ Monitoring the Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:6430-6435. [PMID: 35446014 DOI: 10.1021/acs.analchem.1c05349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have proposed a universal label-free fluorescent nanofilm sensor based on surface plasmon coupled emission (SPCE). A metal-dye-dielectric (MDD) structure was fabricated to mediate the label-free monitoring based on SPCE. The nonfluorescent dielectric film smartly borrowed the fluorescence signal from the bottom dye layer and led to a new SPCE response through the adjacent metal film. The fluorescence emission angle and polarization strongly depended on the thickness of the nonfluorescent dielectric film on the MDD structure. As a demonstration, the growth of a two-dimensional zeolitic imidazolate framework film (ZIF-L) was in situ monitored in the liquid phase by MDD-SPCE for the first time. The label-free fluorescent sensors are facilely prepared by a spin coating technique, with the potential to be widely spread for in situ studies, especially toward nanomaterial growth processes.
Collapse
Affiliation(s)
- Lin-Tao Xu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu-Hua Weng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai-Xin Xie
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Jin Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
4
|
Bompard J, Maniti O, Aboukhachfe R, Ausserre D, Girard-Egrot A. BALM: Watching the Formation of Tethered Bilayer Lipid Membranes with Submicron Lateral Resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9457-9471. [PMID: 34324820 DOI: 10.1021/acs.langmuir.1c01184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tethered bilayer lipid membranes (tBLMs) are artificial membranes largely used for the in situ study of biological membranes and membrane-associated proteins. To date, the formation of these membranes was essentially monitored by surface averaging techniques like surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D), which cannot provide both local and real-time information in a single approach. Here, we report an original application of backside absorbing layer microscopy (BALM), a novel white-light wide-field optical microscopy, to study tBLMs. Thanks to the combination of sensitivity and resolution, BALM not only allowed the real-time quantitative monitoring of tBLM formation but also enabled the high-resolution visualization of local fluxes and matter exchanges taking place at each step of the process. Quantitative BALM measurements of the final layer thickness, reproduced in parallel with SPR, were consistent with the achievement of a continuous lipid bilayer. This finding was confirmed by BALM imaging, which additionally revealed the heterogeneity of the bilayer during its formation. While established real-time techniques, like SPR or QCM-D, view the surface as homogeneous, BALM showed the presence of surface patterns appearing in the first step of the tBLM formation process and governing subsequent matter adsorption or desorption steps. Finally, matter fluxes persisting even after rinsing at the end of the tBLM formation demonstrated the lasting presence of dispersed vesicular pockets with laterally fluctuating positions over the final single and continuous lipid bilayer. These new mechanistic insights into the tBLM formation process demonstrate the great potential of BALM in the study of complex biological systems.
Collapse
Affiliation(s)
- J Bompard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - O Maniti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - R Aboukhachfe
- Lebanese University, Faculty of Technology, Hisbe Street, Saida, Lebanon
| | - D Ausserre
- Institut Molecules & Matériaux du Mans, IMMM CNRS UMR 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France
| | - A Girard-Egrot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Why Do Tethered-Bilayer Lipid Membranes Suit for Functional Membrane Protein Reincorporation? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane proteins (MPs) are essential for cellular functions. Understanding the functions of MPs is crucial as they constitute an important class of drug targets. However, MPs are a challenging class of biomolecules to analyze because they cannot be studied outside their native environment. Their structure, function and activity are highly dependent on the local lipid environment, and these properties are compromised when the protein does not reside in the cell membrane. Mammalian cell membranes are complex and composed of different lipid species. Model membranes have been developed to provide an adequate environment to envisage MP reconstitution. Among them, tethered-Bilayer Lipid Membranes (tBLMs) appear as the best model because they allow the lipid bilayer to be decoupled from the support. Thus, they provide a sufficient aqueous space to envisage the proper accommodation of large extra-membranous domains of MPs, extending outside. Additionally, as the bilayer remains attached to tethers covalently fixed to the solid support, they can be investigated by a wide variety of surface-sensitive analytical techniques. This review provides an overview of the different approaches developed over the last two decades to achieve sophisticated tBLMs, with a more and more complex lipid composition and adapted for functional MP reconstitution.
Collapse
|
6
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
7
|
Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations. Biochimie 2014; 107 Pt A:135-42. [PMID: 24998327 DOI: 10.1016/j.biochi.2014.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/25/2014] [Indexed: 01/19/2023]
Abstract
Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes.
Collapse
|
8
|
Gaitzsch J, Appelhans D, Janke A, Strempel M, Schwille P, Voit B. Cross-linked and pH sensitive supported polymer bilayers from polymersomes - studies concerning thickness, rigidity and fluidity. SOFT MATTER 2014; 10:75-82. [PMID: 24651668 DOI: 10.1039/c3sm52016a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polymersomes are at the leading edge of biomedical and nanoparticle research. In order to get closer insights into their mechanical properties, the bilayer forming them needs to be studied thoroughly. Here, we report on the bilayer formation, swelling behaviour, rigidity and fluidity of our membranes derived from pH sensitive and photo-cross-linkable polymersomes.
Collapse
Affiliation(s)
- Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Gericke A, Leslie NR, Lösche M, Ross AH. PtdIns(4,5)P2-mediated cell signaling: emerging principles and PTEN as a paradigm for regulatory mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:85-104. [PMID: 23775692 DOI: 10.1007/978-94-007-6331-9_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) is a relatively common anionic lipid that regulates cellular functions by multiple mechanisms. Hydrolysis of PtdIns(4,5)P2 by phospholipase C yields inositol trisphosphate and diacylglycerol. Phosphorylation by phosphoinositide 3-kinase yields PtdIns(3,4,5)P3, which is a potent signal for survival and proliferation. Also, PtdIns(4,5)P2 can bind directly to integral and peripheral membrane proteins. As an example of regulation by PtdIns(4,5)P2, we discuss phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in detail. PTEN is an important tumor suppressor and hydrolyzes PtdIns(3,4,5)P3. PtdIns(4,5)P2 enhances PTEN association with the plasma membrane and activates its phosphatase activity. This is a critical regulatory mechanism, but a detailed description of this process from a structural point of view is lacking. The disordered lipid bilayer environment hinders structural determinations of membrane-bound PTEN. A new method to analyze membrane-bound protein measures neutron reflectivity for proteins bound to tethered phospholipid membranes. These methods allow determination of the orientation and shape of membrane-bound proteins. In combination with molecular dynamics simulations, these studies will provide crucial structural information that can serve as a foundation for our understanding of PTEN regulation in normal and pathological processes.
Collapse
Affiliation(s)
- Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
10
|
Hardy GJ, Lam Y, Stewart SM, Anasti K, Alam SM, Zauscher S. Screening the interactions between HIV-1 neutralizing antibodies and model lipid surfaces. J Immunol Methods 2011; 376:13-9. [PMID: 22033342 DOI: 10.1016/j.jim.2011.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/20/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
Our work is motivated by the observation that rare, broadly neutralizing antibodies (NAbs), 4E10 and 2F5, associate with HIV-1 lipids as part of a required first step in neutralization before binding to membrane-proximal antigens. Subsequently, induction of these types of NAbs may be limited by immunologic tolerance due to autoreactivity with host cell membranes. Despite the significance of this lipid reactivity there is little experimental evidence detailing NAb-membrane interactions. Simple and efficient screening assays are needed to select antibodies that have similar lipid reactivity as known NAbs. To this end we have developed a surface plasmon resonance (SPR) spectroscopy based assay that monitors antibody binding to thiol self-assembled monolayers (SAMs) that replicate salient lipid surface chemistries and NAb binding to lipid surfaces. Specifically, we probed the relative importance of charge and hydrophobicity on antibody-surface interactions. We found that NAb binding to hydrophobic thiol surfaces was significantly greater than that of control monoclonal antibodies (mAbs). Furthermore, we confirmed the importance of charge-mediated antibody surface interactions, originally suggested by results from mAb interactions with conventional lipid vesicle/bilayer surfaces. Our approach, using self-assembled thiol monolayers that replicate the binding behavior of NAbs on lipid surfaces, thus provides an efficient and useful tool to screen interactions of mAbs and lipid-reactive NAbs.
Collapse
Affiliation(s)
- Gregory J Hardy
- Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
11
|
Stöckl M, Herrmann A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1444-56. [DOI: 10.1016/j.bbamem.2009.12.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/30/2009] [Accepted: 12/21/2009] [Indexed: 01/17/2023]
|
12
|
Abstract
The implementation of surface plasmon-enhanced fluorescence spectroscopy (SPFS) to surface plasmon resonance (SPR) biosensors enables increasing their sensitivity by several orders of magnitude. In SPR-based biosensors, surface plasmons probe the binding of target molecules contained in a liquid sample by their affinity partners attached to a metallic sensor surface. SPR biosensors relying on the detection of refractive index changes allow for direct observation of the binding of large and medium size molecules that produces sufficiently large refractive index changes. In SPR biosensors exploiting SPFS, the capture of fluorophore-labeled molecules to the sensor surface is observed by the detection of fluorescence light emitted from the surface. This technique takes advantage of the enhanced intensity of electromagnetic field accompanied with the resonant excitation of surface plasmons. The interaction with surface plasmons can greatly increase the measured fluorescence signal through enhancing the excitation rate of fluorophores and by more efficient collecting of fluorescence light. SPFS-based biosensors were shown to enable the analysis of samples with extremely low analyte concentrations and the detection of small molecules. In this review, we describe the fundamental principles, implementations, and current state of the art applications of SPFS biosensors. This review focuses on SPFS-based biosensors employing the excitation of surface plasmons on continuous metal-dielectric interfaces.
Collapse
|
13
|
Imaging of G protein-coupled receptors in solid-supported planar lipid membranes. Biointerphases 2010; 3:FA136. [PMID: 20408663 DOI: 10.1116/1.3054189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This contribution summarizes first some of our efforts in imaging G-protein-coupled receptor (GPCR) functional inserted into planar tethered lipid bilayer membranes (tBLMs) as a novel platform for biophysical studies. The authors introduced recently a novel approach for the functional incorporation of membrane proteins, i.e., by their cell-free expression and in vitro reconstitution in the presence of tBLMs. By the combination of the corresponding coding DNA with the protein synthesis machinery of a cell-extract (in vitro transcription and translation), the authors observe spontaneous and vectorial insertions of an interesting example of the GPCR family into a tethered bimolecular lipid membrane: the olfactory receptor OR5. After synthesis, imaging of the surface area is performed and the resulting signals are analyzed in order to resolve quantity and lateral mobilities. Ligand-independent aggregation behavior of the GPCRs and quantitative analysis of the fluorescent signals are presented in this work.
Collapse
|
14
|
Walker B, Feavers I. Adjuvant effects on antibody titre. Methods Mol Biol 2010; 626:187-198. [PMID: 20099129 DOI: 10.1007/978-1-60761-585-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Antibody titre is a measure of the presence and amount of antibodies specific to an antigen that are present in the blood. In particular, the titre of an antibody sample is a measure of the antibody concentration determined under a defined set of conditions, with the antibody concentration being commonly established by enzyme-linked immunosorbent assay, also called ELISA, or a variation of this technology.Enzyme-linked immunosorbent assay, also called ELISA, enzyme immunoassay or EIA, is a biochemical technique used to detect the presence of an antibody or an antigen in a sample. The ELISA/EIA approach is an extremely robust technology and readily amenable to validation and quality control if adherence to ISO quality standards is required. This chapter describes in detail a specific ELISA protocol which has potential generic application.
Collapse
Affiliation(s)
- Barry Walker
- National Institute for Biological Standards and Controls, Potters Bar, Hertfordshire, UK.
| | | |
Collapse
|
15
|
|
16
|
Soman NR, Lanza GM, Heuser JM, Schlesinger PH, Wickline SA. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. NANO LETTERS 2008; 8:1131-6. [PMID: 18302330 PMCID: PMC2710241 DOI: 10.1021/nl073290r] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The therapeutic potential of cytolytic peptides is plagued by nonspecificity and enzymatic degradation. We report the first stable incorporation of melittin (a 26 amino acid amphipathic peptide) into an outer lipid monolayer of perfluorocarbon nanoparticles. Melittin binds avidly to the nanoparticles (dissociation constant approximately 3.27 nM) and retains its pore-forming activity after contact-mediated delivery to model bilayer membrane (liposomes) thereby demonstrating the effectiveness of perfluorocarbon nanoparticles as unique nanocarriers for cytolytic peptides.
Collapse
Affiliation(s)
| | | | | | - Paul H. Schlesinger
- Corresponding authors: Paul H. Schlesinger, Associate Professor of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Ave., St. Louis, MO 63110. Telephone: 1-314-362-2223. E-mail: . Samuel Wickline, Professor of Medicine, Biomedical Engineering, Physics CTRAIN Group, Washington University School of Medicine, Campus Box 8215, 660 South Euclid Ave., St. Louis, MO 63110. E-mail:
| | - Samuel A. Wickline
- Corresponding authors: Paul H. Schlesinger, Associate Professor of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Ave., St. Louis, MO 63110. Telephone: 1-314-362-2223. E-mail: . Samuel Wickline, Professor of Medicine, Biomedical Engineering, Physics CTRAIN Group, Washington University School of Medicine, Campus Box 8215, 660 South Euclid Ave., St. Louis, MO 63110. E-mail:
| |
Collapse
|