1
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
2
|
Dey A, Patil A, Arumugam S, Maiti S. Single-Molecule Maps of Membrane Insertion by Amyloid-β Oligomers Predict Their Toxicity. J Phys Chem Lett 2024; 15:6292-6298. [PMID: 38855822 DOI: 10.1021/acs.jpclett.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The interaction of small Amyloid-β (Aβ) oligomers with the lipid membrane is an important component of the pathomechanism of Alzheimer's disease (AD). However, oligomers are heterogeneous in size. How each type of oligomer incorporates into the membrane, and how that relates to their toxicity, is unknown. Here, we employ a single molecule technique called Q-SLIP (Quencher-induced Step Length Increase in Photobleaching) to measure the membrane insertion of each monomeric unit of individual oligomers of Aβ42, Aβ40, and Aβ40-F19-Cyclohexyl alanine (Aβ40-F19Cha), and correlate it with their toxicity. We observe that the N-terminus of Aβ42 inserts close to the center of the bilayer, the less toxic Aβ40 inserts to a shallower depth, and the least toxic Aβ40-F19Cha has no specific distribution. This oligomer-specific map provides a mechanistic representation of membrane-mediated Aβ toxicity and should be a valuable tool for AD research.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Abhishek Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
3
|
Thakur GCN, Uday A, Cebecauer M, Roos WH, Cwiklik L, Hof M, Jurkiewicz P, Melcrová A. Charge of a transmembrane peptide alters its interaction with lipid membranes. Colloids Surf B Biointerfaces 2024; 235:113765. [PMID: 38309153 DOI: 10.1016/j.colsurfb.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.
Collapse
Affiliation(s)
- Garima C N Thakur
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic.
| | - Adéla Melcrová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
4
|
Zerbetto De Palma G, Recoulat Angelini AA, Vitali V, González Flecha FL, Alleva K. Cooperativity in regulation of membrane protein function: phenomenological analysis of the effects of pH and phospholipids. Biophys Rev 2023; 15:721-731. [PMID: 37681089 PMCID: PMC10480370 DOI: 10.1007/s12551-023-01095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 09/09/2023] Open
Abstract
Interaction between membrane proteins and ligands plays a key role in governing a wide spectrum of cellular processes. These interactions can provide a cooperative-type regulation of protein function. A wide variety of proteins, including enzymes, channels, transporters, and receptors, displays cooperative behavior in their interactions with ligands. Moreover, the ligands involved encompass a vast diversity and include specific molecules or ions that bind to specific binding sites. In this review, our particular focus is on the interaction between integral membrane proteins and ligands that can present multiple "binding sites", such as protons or membrane phospholipids. The study of the interaction that protons or lipids have with membrane proteins often presents challenges for classical mechanistic modeling approaches. In this regard, we show that, like Hill's pioneering work on hemoglobin regulation, phenomenological modeling constitutes a powerful tool for capturing essential features of these systems.
Collapse
Affiliation(s)
- Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Villa Tesei, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alvaro A. Recoulat Angelini
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Vitali
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F. Luis. González Flecha
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Alleva
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Grusky DS, Moss FR, Boxer SG. Recombination between 13C and 2H to Form Acetylide ( 13C 22H -) Probes Nanoscale Interactions in Lipid Bilayers via Dynamic Secondary Ion Mass Spectrometry: Cholesterol and GM 1 Clustering. Anal Chem 2022; 94:9750-9757. [PMID: 35759338 PMCID: PMC10075087 DOI: 10.1021/acs.analchem.2c01336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it is thought that there is lateral heterogeneity of lipid and protein components within biological membranes, probing this heterogeneity has proven challenging. The difficulty in such experiments is due to both the small length scale over which such heterogeneity can occur, and the significant perturbation resulting from fluorescent or spin labeling on the delicate interactions within bilayers. Atomic recombination during dynamic nanoscale secondary ion imaging mass spectrometry (NanoSIMS) is a non-perturbative method for examining nanoscale bilayer interactions. Atomic recombination is a variation on conventional NanoSIMS imaging, whereby an isotope on one molecule combines with a different isotope on another molecule during the ionization process, forming an isotopically enriched polyatomic ion in a distance-dependent manner. We show that the recombinant ion, 13C22H-, is formed in high yield from 13C- and 2H-labeled lipids. The low natural abundance of triply labeled acetylide also makes it an ideal ion to probe GM1 clusters in model membranes and the effects of cholesterol on lipid-lipid interactions. We find evidence supporting the cholesterol condensation effect as well as the presence of nanoscale GM1 clusters in model membranes.
Collapse
Affiliation(s)
- Dashiel S Grusky
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Bartucci R, Aloi E. Librational Dynamics of Spin-Labeled Membranes at Cryogenic Temperatures From Echo-Detected ED-EPR Spectra. Front Mol Biosci 2022; 9:923794. [PMID: 35847982 PMCID: PMC9277068 DOI: 10.3389/fmolb.2022.923794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methods of electron spin echo of pulse electron paramagnetic resonance (EPR) spectroscopy are increasingly employed to investigate biophysical properties of nitroxide-labeled biosystems at cryogenic temperatures. Two-pulse echo-detected ED-spectra have proven to be valuable tools to describe the librational dynamics in the low-temperature phases of both lipids and proteins in membranes. The motional parameter, α2τC, given by the product of the mean-square angular amplitude, α2, and the rotational correlation time, τC, of the motion, is readily determined from the nitroxide ED-spectra as well as from the W-relaxation rate curves. An independent evaluation of α2 is obtained from the motionally averaged 14N-hyperfine splitting separation in the continuous wave cw-EPR spectra. Finally, the rotational correlation time τC can be estimated by combining ED- and cw-EPR data. In this mini-review, results on the librational dynamics in model and natural membranes are illustrated.
Collapse
Affiliation(s)
- Rosa Bartucci
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende (CS), Italy
- *Correspondence: Rosa Bartucci,
| | - Erika Aloi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende (CS), Italy
| |
Collapse
|
7
|
Castillo-Sánchez JC, Roldán N, García-Álvarez B, Batllori E, Galindo A, Cruz A, Perez-Gil J. The highly packed and dehydrated structure of pre-formed unexposed human pulmonary surfactant isolated from amniotic fluid. Am J Physiol Lung Cell Mol Physiol 2021; 322:L191-L203. [PMID: 34851730 DOI: 10.1152/ajplung.00230.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggest that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of non-lamellar phases. The surface activity of AFS is not only comparable to that of NS under physiologically-meaningful conditions, but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.
Collapse
Affiliation(s)
- José Carlos Castillo-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Nuria Roldán
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Begoña García-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Emma Batllori
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Alberto Galindo
- Department of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre. Red de Salud Materno Infantil y del Desarrollo (SAMID). Instituto de Investigación Hospital 12 de Octubre (imas12). Universidad Complutense de Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| |
Collapse
|
8
|
Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183808. [PMID: 34687755 DOI: 10.1016/j.bbamem.2021.183808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) stabilizes the respiratory surface by forming a film at the alveolar air-liquid interface that reduces surface tension and minimizes the work of breathing. Typically, this surface-active agent has been isolated from animal lungs both for research and biomedical applications. However, these materials are constituted by complex membranous architectures including surface-active and inactive lipid/protein assemblies. In this work, we describe the composition, structure and surface activity of discrete membranous entities that are part of a LS preparation isolated from bronchoalveolar lavages of porcine lungs. Seven different fractions could be resolved from whole surfactant subjected to sucrose density gradient centrifugation. Detailed compositional characterization revealed differences in protein and cholesterol content but no distinct saturated:unsaturated phosphatidylcholine ratios. Moreover, no significant differences were detected regarding apparent hydration at the headgroup region of membranes, as reported by the probe Laurdan, and lipid chain mobility analysed by electron spin resonance (ESR) in spite of the variety of membranous assemblies observed by transmission electron microscopy. In addition, six of the seven separated LS subfractions formed similar, essentially disordered-like, interfacial films and performed efficient surface activity, under physiologically relevant conditions. Altogether, our work show that a LS isolated from porcine lungs is comprised by a heterogenous population of membranous assemblies lacking freshly secreted unused LS complexes sustaining highly dehydrated and ordered membranous assemblies as previously reported. We propose that surfactant subfractions may illustrate intermediates in sequential structural steps within the structural transformations occurring along the respiratory compression-expansion cycles.
Collapse
|
9
|
Hoffmann M, Haselberger D, Hofmann T, Müller L, Janson K, Meister A, Das M, Vargas C, Keller S, Kastritis PL, Schmidt C, Hinderberger D. Nanoscale Model System for the Human Myelin Sheath. Biomacromolecules 2021; 22:3901-3912. [PMID: 34324309 DOI: 10.1021/acs.biomac.1c00714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are among the most common diseases in modern society. However, the molecular bases of diseases such as multiple sclerosis or Charcot-Marie-Tooth disease remain far from being fully understood. Research in this field is limited by the complex nature of native myelin and by difficulties in obtaining good in vitro model systems of myelin. Here, we introduce an easy-to-use model system of the myelin sheath that can be used to study myelin proteins in a native-like yet well-controlled environment. To this end, we present myelin-mimicking nanodiscs prepared through one of the amphiphilic copolymers styrene/maleic acid (SMA), diisobutylene/maleic acid (DIBMA), and styrene/maleimide sulfobetaine (SMA-SB). These nanodiscs were tested for their lipid composition using chromatographic (HPLC) and mass spectrometric (MS) methods and, utilizing spin probes within the nanodisc, their comparability with liposomes was studied. In addition, their binding behavior with bovine myelin basic protein (MBP) was scrutinized to ensure that the nanodiscs represent a suitable model system of myelin. Our results suggest that both SMA and SMA-SB are able to solubilize the myelin-like (cytoplasmic) liposomes without preferences for specific lipid headgroups or fatty acyl chains. In nanodiscs of both SMA and SMA-SB (called SMA(-SB)-lipid particles, short SMALPs or SMA-SBLPs, respectively), the polymers restrict the lipids' motion in the hydrophobic center of the bilayer. The headgroups of the lipids, however, are sterically less hindered in nanodiscs when compared with liposomes. Myelin-like SMALPs are able to bind bovine MBP, which can stack the lipid bilayers like in native myelin, showing the usability of these simple, well-controlled systems in further studies of protein-lipid interactions of native myelin.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - David Haselberger
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Tommy Hofmann
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Lisa Müller
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Kevin Janson
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstraße 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Interdisciplinary Research Center HALOmem, Martin Luther University (MLU) Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany.,Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
10
|
Geometry and water accessibility of the inhibitor binding site of Na +-pump: Pulse- and CW-EPR study. Biophys J 2021; 120:2679-2690. [PMID: 34087213 PMCID: PMC8390900 DOI: 10.1016/j.bpj.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Spin labels based on cinobufagin, a specific inhibitor of the Na,K-ATPase, have proved valuable tools to characterize the binding site of cardiotonic steroids (CTSs), which also constitutes the extracellular cation pathway. Because existing literature suggests variations in the physiological responses caused by binding of different CTSs, we extended the original set of spin-labeled inhibitors to the more potent bufalin derivatives. Positioning of the spin labels within the Na,K-ATPase site was defined and visualized by molecular docking. Although the original cinobufagin labels exhibited lower affinity, continuous-wave electron paramagnetic resonance spectra of spin-labeled bufalins and cinobufagins revealed a high degree of pairwise similarity, implying that these two types of CTS bind in the same way. Further analysis of the spectral lineshapes of bound spin labels was performed with emphasis on their structure (PROXYL vs. TEMPO), as well as length and rigidity of the linkers. For comparable structures, the dynamic flexibility increased in parallel with linker length, with the longest linker placing the spin label at the entrance to the binding site. Temperature-related changes in spectral lineshapes indicate that six-membered nitroxide rings undergo boat-chair transitions, showing that the binding-site cross section can accommodate the accompanying changes in methyl-group orientation. D2O-electron spin echo envelope modulation in pulse-electron paramagnetic resonance measurements revealed high water accessibilities and similar polarity profiles for all bound spin labels, implying that the vestibule leading to steroid-binding site and cation-binding sites is relatively wide and water-filled.
Collapse
|
11
|
Aloi E, Rizzuti B, Guzzi R, Bartucci R. Binding of warfarin differently affects the thermal behavior and chain packing of anionic, zwitterionic and cationic lipid membranes. Arch Biochem Biophys 2020; 694:108599. [PMID: 32979389 DOI: 10.1016/j.abb.2020.108599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Warfarin is a coumarin derivative drug widely used for its anticoagulant properties. The interaction of warfarin with fully hydrated lipid bilayers has been studied by combining differential scanning calorimetry, spectrophotometry, electron spin resonance of chain-labelled lipids and molecular docking. Bilayers formed by lipids with different chemico-physical properties were considered, namely dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG), and dioleoyltrimethyl-ammoniumpropane (DOTAP). We observed in all cases the binding of warfarin in proximity of the surface of the bilayers, leading to a variety of distinct effects on key molecular properties of the membranes. The drug associates with the lipid bilayers in the deprotonated open chain form, with an association constant similar for DMPC and DMPG (1.27·104 and 2.82·104 M-1, respectively) and lower for DOTAP (0.46·104 M-1). In DMPC bilayers, which are zwitterionic and with saturated symmetrical chains, warfarin at 10 mol% suppresses the pre-transition, slightly stabilizes the fluid state and reduces the cooperativity of the main transition. Moreover, it alters the lateral packing density of the chain segments close to the polar/apolar interface at any temperature through the gel phase. In anionic DMPG bilayers, the drug slightly perturbs the thermotropic phase behavior, and at 10 mol% markedly loosens the compact gel phase packing of the first chain segments. In cationic DOTAP bilayers, possessing unsaturated acyl chains, the drug induces a slightly higher degree of order and motional restriction in the outer hydrocarbon region in the frozen state. In all cases, as a surface adsorbed molecule, warfarin does not affect the segmental chain order and dynamics for temperatures in the fluid phase. The overall results provide an outline of the action of warfarin on membranes formed by lipids of different types.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics and Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, 87036, Italy
| | - Rita Guzzi
- Department of Physics and Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy; CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, 87036, Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies and Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
12
|
Förster Resonance Energy Transfer as a Tool for Quantification of Protein-Lipid Selectivity. Methods Mol Biol 2019; 2003:369-382. [PMID: 31218626 DOI: 10.1007/978-1-4939-9512-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
This chapter addresses the determination of protein-lipid selectivity, here described as the preference of a protein for having a specific type of lipid in its vicinity, from Förster resonance energy transfer methodologies. These allow a quantification of the effect, that is, the determination of the biasing in distribution of the lipid under study around the protein, as compared to its bulk membrane distribution, with advantages over established approaches that have been used for the same purpose, such as electron spin resonance spectroscopy. The experiment can be carried out with steady-state instrumentation, the formalisms are described in detail, and the model can be applied to a membrane protein of any size.
Collapse
|
13
|
Rasmussen T, Rasmussen A, Yang L, Kaul C, Black S, Galbiati H, Conway SJ, Miller S, Blount P, Booth IR. Interaction of the Mechanosensitive Channel, MscS, with the Membrane Bilayer through Lipid Intercalation into Grooves and Pockets. J Mol Biol 2019; 431:3339-3352. [PMID: 31173776 DOI: 10.1016/j.jmb.2019.05.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
All membrane proteins have dynamic and intimate relationships with the lipids of the bilayer that may determine their activity. Mechanosensitive channels sense tension through their interaction with the lipids of the membrane. We have proposed a mechanism for the bacterial channel of small conductance, MscS, that envisages variable occupancy of pockets in the channel by lipid chains. Here, we analyze protein-lipid interactions for MscS by quenching of tryptophan fluorescence with brominated lipids. By this strategy, we define the limits of the bilayer for TM1, which is the most lipid exposed helix of this protein. In addition, we show that residues deep in the pockets, created by the oligomeric assembly, interact with lipid chains. On the cytoplasmic side, lipids penetrate as far as the pore-lining helices and lipid molecules can align along TM3b perpendicular to lipids in the bilayer. Cardiolipin, free fatty acids, and branched lipids can access the pockets where the latter have a distinct effect on function. Cholesterol is excluded from the pockets. We demonstrate that introduction of hydrophilic residues into TM3b severely impairs channel function and that even "conservative" hydrophobic substitutions can modulate the stability of the open pore. The data provide important insights into the interactions between phospholipids and MscS and are discussed in the light of recent developments in the study of Piezo1 and TrpV4.
Collapse
Affiliation(s)
- Tim Rasmussen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Akiko Rasmussen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Limin Yang
- Department of Physiology, U.T. Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9040, USA.
| | - Corinna Kaul
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Susan Black
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Heloisa Galbiati
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Samantha Miller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Paul Blount
- Department of Physiology, U.T. Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9040, USA.
| | - Ian Rylance Booth
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
14
|
Páli T, Kóta Z. Studying Lipid-Protein Interactions with Electron Paramagnetic Resonance Spectroscopy of Spin-Labeled Lipids. Methods Mol Biol 2019; 2003:529-561. [PMID: 31218632 DOI: 10.1007/978-1-4939-9512-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin-label EPR spectroscopy is the technique of choice to characterize the protein solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin-labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intramembranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to a so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intramembranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature (see ref. Marsh, Eur Biophys J 39:513-525, 2010 for a recent review), here we focus more on how to spin label model membranes and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a previous methodological paper (Marsh, Methods 46:83-96, 2008). The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
Affiliation(s)
- Tibor Páli
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Zoltán Kóta
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| |
Collapse
|
15
|
Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, D'Errico G, Pavone V, Lombardi A, Del Vecchio P, Notomista E, Nastri F, Petraccone L. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep 2018; 8:8888. [PMID: 29892005 PMCID: PMC5995839 DOI: 10.1038/s41598-018-27231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are a promising alternative to treat multidrug-resistant bacteria, which have developed resistance to all the commonly used antimicrobial, and therefore represent a serious threat to human health. One of the major drawbacks of CAMPs is their sensitivity to proteases, which drastically limits their half-life. Here we describe the design and synthesis of three nine-residue CAMPs, which showed high stability in serum and broad spectrum antimicrobial activity. As for all peptides a very low selectivity between bacterial and eukaryotic cells was observed, we performed a detailed biophysical characterization of the interaction of one of these peptides with liposomes mimicking bacterial and eukaryotic membranes. Our results show a surface binding on the DPPC/DPPG vesicles, coupled with lipid domain formation, and, above a threshold concentration, a deep insertion into the bilayer hydrophobic core. On the contrary, mainly surface binding of the peptide on the DPPC bilayer was observed. These observed differences in the peptide interaction with the two model membranes suggest a divergence in the mechanisms responsible for the antimicrobial activity and for the observed high toxicity toward mammalian cell lines. These results could represent an important contribution to unravel some open and unresolved issues in the development of synthetic CAMPs.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Katia Pane
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini, 5, I-80131, Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy.
| |
Collapse
|
16
|
Ether-linked lipids: Spin-label EPR and spin echoes. Chem Phys Lipids 2018; 212:130-137. [DOI: 10.1016/j.chemphyslip.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/22/2022]
|
17
|
Abstract
For the physicochemical studies aimed at elucidating the dynamic of gangliosides in membranes and their interaction with proteins and membrane lipids, photoactivatable and paramagnetic ganglioside derivatives have proved to be invaluable tools. Here, protocols for the synthesis of such ganglioside derivatives are described. These derivatives bear in their ceramide portion either a highly photoreactive (3-trifluoromethyl)phenyldiazirinyl- or a spin active doxyl-labeled acyl chain in place of their natural acyl chain.
Collapse
Affiliation(s)
- Günter Schwarzmann
- LIMES, c/o Kekulé-Institut f. Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Musatov A, Sedlák E. Role of cardiolipin in stability of integral membrane proteins. Biochimie 2017; 142:102-111. [PMID: 28842204 DOI: 10.1016/j.biochi.2017.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid with a dimeric structure having four acyl chains and two phosphate groups found almost exclusively in certain membranes of bacteria and of mitochondria of eukaryotes. CL interacts with numerous proteins and has been implicated in function and stabilization of several integral membrane proteins (IMPs). While both functional and stabilization roles of CL in IMPs has been generally acknowledged, there are, in fact, only limited number of quantitative analysis that support this function of CL. This is likely caused by relatively complex determination of parameters characterizing stability of IMPs and particularly intricate assessment of role of specific phospholipids such as CL in IMPs stability. This review aims to summarize quantitative findings regarding stabilization role of CL in IMPs reported up to now.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| | - Erik Sedlák
- Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia.
| |
Collapse
|
19
|
Genheden S, Essex JW, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:268-281. [DOI: 10.1016/j.bbamem.2016.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 12/01/2016] [Indexed: 01/20/2023]
|
20
|
Evaluation of diacylphospholipids as boundary lipids for bacteriorhodopsin from structural and functional aspects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2106-2115. [DOI: 10.1016/j.bbamem.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022]
|
21
|
Bolivar JH, Muñoz-García JC, Castro-Dopico T, Dijkman PM, Stansfeld PJ, Watts A. Interaction of lipids with the neurotensin receptor 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1278-87. [DOI: 10.1016/j.bbamem.2016.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
22
|
Alpha-synuclein and familial variants affect the chain order and the thermotropic phase behavior of anionic lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1206-1214. [PMID: 27177693 DOI: 10.1016/j.bbapap.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 05/07/2016] [Indexed: 12/15/2022]
Abstract
Alpha-synuclein (aSN) is a presynaptic protein with a pathological role in Parkinson's disease (PD). The mutants A30P, E46K and A53T are involved in PD early-onset forms. aSN is natively unfolded but can self-assemble to oligomers and fibrils and binds anionic membranes in a helical conformation. We study the influence of wild-type (wt) aSN and familial variants on the chain order and thermotropic phase behavior of anionic dimyristoylphosphatidylglycerol (DMPG) bilayers by using electron spin resonance and calorimetry, respectively. The alpha-helical conformation of the proteins in the membrane-bound state is assessed by circular dichroism thermal scans. wt and mutated aSN upon binding to fluid DMPG vesicles progressively increase chain order. Lipid:protein molar binding stoichiometries correspond to 50 for A30P, 35-36 for aSN and A53T, 30 for E46K. The temperature range over which the variants assume the α-helical fold correlates directly with the density of proteins on vesicle surfaces. All variants preserve the characteristic chain flexibility gradient and impart motional restriction in the lipid chain. This is evident at the first CH2 segments and is markedly reduced at the chain termini, disappearing completely for A30P. The proteins slightly reduce DMPG main transition temperature, revealing preferential affinity for the fluid phase, and broaden the transition, promoting gel-fluid phase coexistence. The overall results are consistent with protein surface association in which the degree of binding correlates with the degree of folding and perturbation of the membrane bilayer. However, the degree of binding of monomer to membrane does not correlate directly with aSN toxicity in vivo.
Collapse
|
23
|
Guzzi R, Bartucci R. Electron spin resonance of spin-labeled lipid assemblies and proteins. Arch Biochem Biophys 2015; 580:102-11. [PMID: 26116378 DOI: 10.1016/j.abb.2015.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/29/2023]
Abstract
Spin-label electron spin resonance (ESR) spectroscopy is a valuable means to study molecular mobility and interactions in biological systems. This paper deals with conventional, continuous wave ESR of nitroxide spin-labels at 9-GHz providing an introduction to the basic principles of the technique and applications to self-assembled lipid aggregates and proteins. Emphasis is given to segmental lipid chain order and rotational dynamics of lipid structures, environmental polarity of membranes and proteins, structure and conformational dynamics of proteins.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, University of Calabria, 87036 Rende (CS), Italy
| | - Rosa Bartucci
- Department of Physics, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
24
|
Guzzi R, Bartucci R, Esmann M, Marsh D. Lipid Librations at the Interface with the Na,K-ATPase. Biophys J 2015; 108:2825-32. [PMID: 26083922 DOI: 10.1016/j.bpj.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022] Open
Abstract
Transitions between conformational substates of membrane proteins can be driven by torsional librations in the protein that may be coupled to librational fluctuations of the lipid chains. Here, librational motion of spin-labeled lipid chains in membranous Na,K-ATPase is investigated by spin-echo electron paramagnetic resonance. Lipids at the protein interface are targeted by using negatively charged spin-labeled fatty acids that display selectivity of interaction with the Na,K-ATPase. Echo-detected electron paramagnetic resonance spectra from native membranes are corrected for the contribution from the bilayer regions of the membrane by using spectra from dispersions of the extracted membrane lipids. Lipid librations at the protein interface have a flat profile with chain position, whereas librational fluctuations of the bilayer lipids increase pronouncedly from C-9 onward, then flatten off toward the terminal methyl end of the chains. This difference is accounted for by increased torsional amplitude at the chain ends in bilayers, while the amplitude remains restricted throughout the chain at the protein interface with a limited lengthening in correlation time. The temperature dependence of chain librations at the protein interface strongly resembles that of the spin-labeled protein side chains, suggesting solvent-mediated transitions in the protein are driven by fluctuations in the lipid environment.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Material Unit, University of Calabria, Ponte P. Bucci, Rende, Italy
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Material Unit, University of Calabria, Ponte P. Bucci, Rende, Italy
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
25
|
Kalli AC, Sansom MSP, Reithmeier RAF. Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. PLoS Comput Biol 2015; 11:e1004123. [PMID: 25729859 PMCID: PMC4346270 DOI: 10.1371/journal.pcbi.1004123] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a “proton trap” that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane. Symporters are proteins that are responsible for the co-transport of ions and small molecule solutes across cell membranes. UraA is an example of a symporter, and is responsible for the proton-driven uptake of uracil in bacteria like E. coli. Despite its importance as a member of a large family of nucleobase/ascorbate transporters (NAT) and the existence of structural and functional data, the mechanism by which UraA transports uracil across the bacterial membrane, and in particular the role of its diverse and complex lipid environment in the transport mechanism, remains elusive. In this study, we have used a multiscale computational methodology to examine the dynamics of UraA and to elucidate its interactions with lipids that resemble its native environment in the bacterial inner membrane. Our results demonstrate that negatively-charged lipids in the membrane (phosphatidylglycerol and cardiolipin) associate preferentially with UraA and may play a role in its function. Additionally, our simulations resulted in a closed state of UraA, a likely intermediate in the transport mechanism that may not be readily accessible by experimental methods.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
26
|
Bartucci R, Guzzi R, Esmann M, Marsh D. Water penetration profile at the protein-lipid interface in Na,K-ATPase membranes. Biophys J 2015; 107:1375-82. [PMID: 25229145 DOI: 10.1016/j.bpj.2014.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/05/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022] Open
Abstract
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from (2)H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.
Collapse
Affiliation(s)
- Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory and CNISM Unit, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory and CNISM Unit, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|
27
|
|
28
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens. Exp Eye Res 2014; 120:138-51. [PMID: 24486794 DOI: 10.1016/j.exer.2014.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
Abstract
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Effects of azole treatments on the physical properties of Candida albicans plasma membrane: a spin probe EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:465-73. [PMID: 24184423 DOI: 10.1016/j.bbamem.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022]
Abstract
EPR spectroscopy was applied to investigate the effects of the treatment of Candida albicans cells with fluconazole (FLC) and two newly synthesized azoles (CPA18 and CPA109), in a concentration not altering yeast morphology, on the lipid organization and dynamics of the plasma membrane. Measurements were performed in the temperature range between 0°C and 40°C using 5-doxyl- (5-DSA) and 16-doxyl- (16-DSA) stearic acids as spin probes. 5-DSA spectra were typical of lipids in a highly ordered environment, whereas 16-DSA spectra consisted of two comparable components, one corresponding to a fluid bulk lipid domain in the membrane and the other to highly ordered and motionally restricted lipids interacting with integral membrane proteins. A line shape analysis allowed the relative proportion and the orientational order and dynamic parameters of the spin probes in the different environments to be determined. Smaller order parameters, corresponding to a looser lipid packing, were found for the treated samples with respect to the control one in the region close to the membrane surface probed by 5-DSA. On the other hand, data on 16-DSA indicated that azole treatments hamper the formation of ordered lipid domains hosting integral proteins and/or lead to a decrease in integral protein content in the membrane. The observed effects are mainly ascribable to the inhibition of ergosterol biosynthesis by the antifungal agents, although a direct interaction of the CPA compounds with the membrane bilayer in the region close to the lipid polar head groups cannot be excluded.
Collapse
|
30
|
On the mechanism of ion transport through lipid membranes mediated by PEGylated cyclic oligosaccharides (CyPLOS): An ESR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2074-82. [DOI: 10.1016/j.bbamem.2013.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 04/19/2013] [Accepted: 05/15/2013] [Indexed: 12/25/2022]
|
31
|
Blaskó Á, Mike N, Gróf P, Gazdag Z, Czibulya Z, Nagy L, Kunsági-Máté S, Pesti M. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe. Food Chem Toxicol 2013; 59:636-42. [DOI: 10.1016/j.fct.2013.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
32
|
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
|
33
|
Kálmán N, Gazdag Z, Čertík M, Belágyi J, Selim SA, Pócsi I, Pesti M. Adaptation totert-butyl hydroperoxide at a plasma membrane level in the fission yeastSchizosaccharomyces pombeparental strain and itst-BuOOH-resistant mutant. J Basic Microbiol 2013; 54:215-25. [DOI: 10.1002/jobm.201200580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Nikoletta Kálmán
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
34
|
Loura LMS, Prieto M, Fernandes F. Förster resonance energy transfer as a tool for quantification of protein-lipid selectivity. Methods Mol Biol 2013; 974:219-232. [PMID: 23404278 DOI: 10.1007/978-1-62703-275-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This chapter addresses the determination of protein-lipid selectivity, here described as the preference of a protein for having a specific type of lipid in its vicinity (annular lipids), from Förster resonance energy transfer methodologies. These allow a quantification of the effect, i.e., the determination of the biasing in distribution of the lipid under study around the protein, as compared to its bulk membrane distribution, with advantages over established approaches that have been used for the same purpose, such as electron spin resonance spectroscopy. The experiment can be carried out with steady-state instrumentation, the formalisms are described in detail, and the model can be applied to a membrane protein of any size.
Collapse
Affiliation(s)
- Luís M S Loura
- Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal.
| | | | | |
Collapse
|
35
|
Ionova IV, Livshits VA, Marsh D. Phase diagram of ternary cholesterol/palmitoylsphingomyelin/palmitoyloleoyl-phosphatidylcholine mixtures: spin-label EPR study of lipid-raft formation. Biophys J 2012; 102:1856-65. [PMID: 22768941 DOI: 10.1016/j.bpj.2012.03.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 01/28/2023] Open
Abstract
For canonical lipid raft mixtures of cholesterol (chol), N-palmitoylsphingomyelin (PSM), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), electron paramagnetic resonance (EPR) of spin-labeled phospholipids--which is insensitive to domain size--is used to determine the ternary phase diagram at 23°C. No phase boundaries are found for binary POPC/chol mixtures, nor for ternary mixtures with PSM content <24 mol %. EPR lineshapes indicate that conversion from the liquid-disordered (L(α)) to liquid-ordered (L(o)) phase occurs continuously in this region. Two-component EPR spectra and several tie lines attributable to coexistence of gel (L(β)) and fluid phases are found for ternary mixtures with low cholesterol or low POPC content. For PSM/POPC alone, coexistence of L(α) and L(β) phases occurs over the range 50-95.5 mol % PSM. A further tie line is found at 3 mol % chol with endpoints at 50 and ≥77 mol % PSM. For PSM/chol, L(β)-L(o) coexistence occurs over the range 10-38 mol % chol and further tie lines are found at 4.5 and 7 mol % POPC. Two-component EPR spectra indicative of fluid-fluid (L(α)-L(o)) phase separation are found for lipid compositions: 25%<PSM<65%, 5%<chol<30-35%, 65%>POPC>10%, and confirmed by nonlinear EPR. Tie lines are identified in the L(α)-L(o) coexistence region, indicating that the fluid domains are of sufficient size to obey the phase rule. The three-phase triangle is bounded approximately by the compositions 40 and 75 mol % PSM with 10 mol % chol, and 60 mol % PSM with 25 mol % chol. These studies define the compositions of raft-like L(o) phases for a minimal realistic biological lipid mixture.
Collapse
Affiliation(s)
- Irina V Ionova
- Centre of Photochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
36
|
Bolivar JH, East JM, Marsh D, Lee AG. Effects of Lipid Structure on the State of Aggregation of Potassium Channel KcsA. Biochemistry 2012; 51:6010-6. [DOI: 10.1021/bi3006253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan H. Bolivar
- Centre for Biological Sciences,
Life Sciences Building, University of Southampton, Southampton SO17 1BJ, U.K
| | - J. Malcolm East
- Centre for Biological Sciences,
Life Sciences Building, University of Southampton, Southampton SO17 1BJ, U.K
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen,
Germany
| | - Anthony G. Lee
- Centre for Biological Sciences,
Life Sciences Building, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
37
|
Dodes Traian MM, Cattoni DI, Levi V, González Flecha FL. A two-stage model for lipid modulation of the activity of integral membrane proteins. PLoS One 2012; 7:e39255. [PMID: 22723977 PMCID: PMC3378530 DOI: 10.1371/journal.pone.0039255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/22/2012] [Indexed: 01/23/2023] Open
Abstract
Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes.
Collapse
Affiliation(s)
- Martín M Dodes Traian
- Laboratorio de Biofísica Molecular - Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
38
|
Marsh D, Páli T. Orientation and conformation of lipids in crystals of transmembrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:119-46. [PMID: 22644500 DOI: 10.1007/s00249-012-0816-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/04/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
Abstract
Orientational order parameters and individual dihedral torsion angles are evaluated for phospholipid and glycolipid molecules that are resolved in X-ray structures of integral transmembrane proteins in crystals. The order parameters of the lipid chains and glycerol backbones in protein crystals are characterised by a much wider distribution of orientational order than is found in fluid lipid bilayers and reconstituted lipid-protein membranes. This indicates that the lipids that are resolved in crystals of membrane proteins are mostly not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from C-C bonds in energetically disallowed skew conformations. This suggests configurational heterogeneity of the lipids at a single binding site: eclipsed conformations occur also in the glycerol backbone torsion angles and the C-C torsion angles of the lipid head groups. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid head-group conformations in the protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phosphodiester, that is characteristic of phospholipid bilayer membranes. Stereochemical violations in the protein-bound lipids are evidenced by ester carboxyl groups in non-planar configurations, and even in the cis configuration. Some lipids have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in the phytanyl chains associated with bacteriorhodopsin have the incorrect S configuration.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070, Göttingen, Germany.
| | | |
Collapse
|
39
|
Bolivar JH, Smithers N, East JM, Marsh D, Lee AG. Multiple binding sites for fatty acids on the potassium channel KcsA. Biochemistry 2012; 51:2889-98. [PMID: 22409348 PMCID: PMC3336937 DOI: 10.1021/bi300153v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions of fatty acids with the potassium channel KcsA were studied using Trp fluorescence quenching and electron paramagnetic resonance (EPR) techniques. The brominated analogue of oleic acid was shown to bind to annular sites on KcsA and to the nonannular sites at each protein-protein interface in the homotetrameric structure with binding constants relative to dioleoylphosphatidylcholine of 0.67 ± 0.04 and 0.87 ± 0.08, respectively. Mutation of the two Arg residues close to the nonannular binding sites had no effect on fatty acid binding. EPR studies with a spin-labeled analogue of stearic acid detected a high-affinity binding site for the fatty acid with strong immobilization. Fluorescence quenching studies with the spin-labeled analogue showed that the binding site detected in the EPR experiments could not be one of the annular or nonannular binding sites. Instead, it is proposed that the EPR studies detect binding to the central hydrophobic cavity of the channel, with a binding constant in the range of ~0.1-1 μM.
Collapse
Affiliation(s)
- Juan H Bolivar
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
40
|
Falanga A, Tarallo R, Vitiello G, Vitiello M, Perillo E, Cantisani M, D'Errico G, Galdiero M, Galdiero S. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus. PLoS One 2012; 7:e32186. [PMID: 22384173 PMCID: PMC3285657 DOI: 10.1371/journal.pone.0032186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.
Collapse
Affiliation(s)
- Annarita Falanga
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
| | - Rossella Tarallo
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
| | - Giuseppe Vitiello
- Department of Chemistry, University of Naples “Federico II” and Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
| | | | - Emiliana Perillo
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
| | - Marco Cantisani
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
| | - Gerardino D'Errico
- Department of Chemistry, University of Naples “Federico II” and Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
| | - Massimiliano Galdiero
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
- Department of Experimental Medicine, II University of Naples, Napoli, Italy
| | - Stefania Galdiero
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| |
Collapse
|
41
|
Mainali L, Raguz M, O'Brien WJ, Subczynski WK. Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens. Exp Eye Res 2012; 97:117-29. [PMID: 22326289 DOI: 10.1016/j.exer.2012.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/21/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
Abstract
The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eye lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes, because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes-namely, the domain formed by boundary lipids and the domain formed by trapped lipids-were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
42
|
Vitiello G, Grimaldi M, D’Ursi AM, D’Errico G. The iAβ5p β-breaker peptide regulates the Aβ(25–35) interaction with lipid bilayers through a cholesterol-mediated mechanism. Biochem Biophys Res Commun 2012; 417:88-92. [DOI: 10.1016/j.bbrc.2011.11.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022]
|
43
|
D'Errico G, Ercole C, Lista M, Pizzo E, Falanga A, Galdiero S, Spadaccini R, Picone D. Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3007-15. [DOI: 10.1016/j.bbamem.2011.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022]
|
44
|
Parton DL, Klingelhoefer JW, Sansom MSP. Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys J 2011; 101:691-9. [PMID: 21806937 DOI: 10.1016/j.bpj.2011.06.048] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 01/26/2023] Open
Abstract
Aggregation of transmembrane proteins is important for many biological processes, such as protein sorting and cell signaling, and also for in vitro processes such as two-dimensional crystallization. We have used large-scale simulations to study the lateral organization and dynamics of lipid bilayers containing multiple inserted proteins. Using coarse-grained molecular dynamics simulations, we have studied model membranes comprising ∼7000 lipids and 16 identical copies of model cylindrical proteins of either α-helical or β-barrel types. Through variation of the lipid tail length and hence the degree of hydrophobic mismatch, our simulations display levels of protein aggregation ranging from negligible to extensive. The nature and extent of aggregation are shown to be influenced by membrane curvature and the shape or orientation of the protein. Interestingly, a model β-barrel protein aggregates to form one-dimensional strings within the bilayer plane, whereas a model α-helical bundle forms two-dimensional clusters. Overall, it is clear that the nature and extent of membrane protein aggregation is dependent on several aspects of the proteins and lipids, including hydrophobic mismatch, protein class and shape, and membrane curvature.
Collapse
Affiliation(s)
- Daniel L Parton
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
45
|
Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type I glycoproteins B and H with biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2517-26. [DOI: 10.1016/j.bbamem.2011.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/01/2011] [Accepted: 07/12/2011] [Indexed: 02/05/2023]
|
46
|
Virág E, Belagyi J, Gazdag Z, Vágvölgyi C, Pesti M. Direct in vivo interaction of the antibiotic primycin with the plasma membrane of Candida albicans: an EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:42-8. [PMID: 21978596 DOI: 10.1016/j.bbamem.2011.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
The direct interaction of the antibiotic primycin with the plasma membrane was investigated by employing the well-characterized ergosterol-producing, amphotericin B-sensitive parental Candida albicans strain 33erg(+) and its ergosterol-less amphotericin B-resistant plasma membrane mutant erg-2. The growth inhibition concentration in shaken liquid medium was 64 μgml(-1) for 33erg(+) and 128 μgml(-1) for erg-2, suggesting that the plasma membrane composition influences the mode of action of primycin. To determine the primycin-induced changes in the plasma membrane dynamic, electron paramagnetic resonance (EPR) spectroscopy methods were used, the spin-labeled fatty acid 5-(4,4-dimethyloxazolidine-N-oxyl)stearic acid) being applied for the in vivo measurements. The phase transition temperatures of untreated strain 33erg(+) and its mutant erg-2 were 12.5°C and 11°C, respectively. After 128 μgml(-1) primycin treatment, these values increased to 17.5°C and 16°C, revealing a significant reduction in the phospholipid flexibility. Saturation transfer EPR measurements demonstrated that, the rotational correlation times of the spin label molecule for the control samples of 33erg(+) and erg-2 were 60 ns and 100 ns. These correlation times gradually decreased on the addition of increasing primycin concentrations, reaching 8 μs and 1 μs. The results indicate the plasma membrane "rigidizing" effect of primycin, a feature that may stem from its ability to undergo complex formation with membrane constituent fatty acid molecules, causing alterations in the structures of phospholipids in the hydrophobic surface near the fatty acid chain region.
Collapse
Affiliation(s)
- Eszter Virág
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | |
Collapse
|
47
|
Lee AG. Biological membranes: the importance of molecular detail. Trends Biochem Sci 2011; 36:493-500. [PMID: 21855348 DOI: 10.1016/j.tibs.2011.06.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
Are lipid interactions with membrane proteins best described in terms of the physical properties of the lipid bilayer or in terms of direct molecular interactions between particular lipid molecules and particular sites on a protein? A molecular interpretation is more challenging because it requires detailed knowledge of the 3D structure of a membrane protein, but recent studies have suggested that a molecular interpretation is necessary. Here, the idea is explored that lipid molecules modify the ways that transmembrane α-helices pack into bundles, by penetrating between the helices and by binding into clefts between the helices, and that these effects on helix packing will modulate the activity of a membrane protein.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
48
|
Marsh D. Molecular volumes of phospholipids and glycolipids in membranes. Chem Phys Lipids 2010; 163:667-77. [DOI: 10.1016/j.chemphyslip.2010.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/17/2022]
|
49
|
Horváth E, Papp G, Belágyi J, Gazdag Z, Vágvölgyi C, Pesti M. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe. Food Chem Toxicol 2010; 48:1898-904. [DOI: 10.1016/j.fct.2010.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/25/2010] [Accepted: 04/21/2010] [Indexed: 11/30/2022]
|
50
|
Marsh D. Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2010; 39:513-25. [PMID: 19669751 PMCID: PMC2841276 DOI: 10.1007/s00249-009-0512-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid-protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10x slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments.
Collapse
Affiliation(s)
- Derek Marsh
- Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|