1
|
Sturmlechner I, Sine CC, Jeganathan KB, Zhang C, Fierro Velasco RO, Baker DJ, Li H, van Deursen JM. Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nat Commun 2022; 13:3722. [PMID: 35764649 PMCID: PMC9240076 DOI: 10.1038/s41467-022-31239-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chance C Sine
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Sturmlechner I, Zhang C, Sine CC, van Deursen EJ, Jeganathan KB, Hamada N, Grasic J, Friedman D, Stutchman JT, Can I, Hamada M, Lim DY, Lee JH, Ordog T, Laberge RM, Shapiro V, Baker DJ, Li H, van Deursen JM. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science 2021; 374:eabb3420. [PMID: 34709885 PMCID: PMC8985214 DOI: 10.1126/science.abb3420] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)–dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Chance C. Sine
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Erik-Jan van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Naomi Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Jan Grasic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - David Friedman
- Department of Immunology, Mayo Clinic, Rochester MN, United States
| | - Jeremy T. Stutchman
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Ismail Can
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Do Young Lim
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Jeong-Heon Lee
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester MN, United States
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, United States
| | - Remi-Martin Laberge
- Unity Biotechnology, 285 E Grand Ave., South San Francisco, California 94080, USA
| | - Virginia Shapiro
- Department of Immunology, Mayo Clinic, Rochester MN, United States
| | - Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
3
|
Bedekovics T, Hussain S, Zhang Y, Ali A, Jeon YJ, Galardy PJ. USP24 Is a Cancer-Associated Ubiquitin Hydrolase, Novel Tumor Suppressor, and Chromosome Instability Gene Deleted in Neuroblastoma. Cancer Res 2021; 81:1321-1331. [PMID: 33355202 DOI: 10.1158/0008-5472.can-20-1777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Deubiquitinating enzymes are increasingly recognized to play important roles in cancer, with many acting as oncogenes or tumor suppressors. In this study, we employed a bioinformatics approach to screen for enzymes from this family involved in cancer and found USP24 as a potent predictor of poor outcomes in neuroblastoma, an aggressive childhood cancer. USP24 resides in a region commonly deleted in neuroblastoma, yet was independently associated with poor outcomes in this disease. Deletion of Usp24 in a murine model resulted in degradation of collapsin response mediator protein 2 (CRMP2), a regulator of axon growth, guidance, and neuronal polarity. Cells lacking USP24 had significant increases in spindle defects, chromosome missegregation, and aneuploidy, phenotypes that were rescued by the restoration of CRMP2. USP24 prevented aneuploidy by maintaining spindle-associated CRMP2, which is required for mitotic accuracy. Our findings further indicate that USP24 is a tumor suppressor that may play an important role in the pathogenesis of neuroblastoma. SIGNIFICANCE: This study identifies the chromosome instability gene USP24 as frequently deleted in neuroblastoma and provides important insight into the pathogenesis of this aggressive childhood cancer.
Collapse
Affiliation(s)
- Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Young J Jeon
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Pharmacology, Chosun University College of Medicine, Gwangju, South Korea
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
He Y, Lu J, Ye Z, Hao S, Wang L, Kohli M, Tindall DJ, Li B, Zhu R, Wang L, Huang H. Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res 2019; 46:1895-1911. [PMID: 29309643 PMCID: PMC5829742 DOI: 10.1093/nar/gkx1306] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Androgen receptor (AR) splice variants (ARVs) are implicated in development of castration-resistant prostate cancer (CRPC). Upregulation of ARVs often correlates with persistent AR activity after androgen deprivation therapy (ADT). However, the genomic and epigenomic characteristics of ARV-dependent cistrome and the disease relevance of ARV-mediated transcriptome remain elusive. Through integrated chromatin immunoprecipitation coupled sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, we identified ARV-preferential-binding sites (ARV-PBS) and a set of genes preferentially transactivated by ARVs in CRPC cells. ARVs preferentially bind to enhancers located in nucleosome-depleted regions harboring the full AR-response element (AREfull), while full-length AR (ARFL)-PBS are enhancers resided in closed chromatin regions containing the composite FOXA1-nnnn-AREhalf motif. ARV-PBS exclusively overlapped with AR binding sites in castration-resistant (CR) tumors in patients and ARV-preferentially activated genes were up-regulated in abiraterone-resistant patient specimens. Expression of ARV-PBS target genes, such as oncogene RAP2A and cell cycle gene E2F7, were significantly associated with castration resistance, poor survival and tumor progression. We uncover distinct genomic and epigenomic features of ARV-PBS, highlighting that ARVs are useful tools to depict AR-regulated oncogenic genome and epigenome landscapes in prostate cancer. Our data also suggest that the ARV-preferentially activated transcriptional program could be targeted for effective treatment of CRPC.
Collapse
Affiliation(s)
- Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ji Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Siyuan Hao
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donald J Tindall
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Runzhi Zhu
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Hooker SE, Woods-Burnham L, Bathina M, Lloyd S, Gorjala P, Mitra R, Nonn L, Kimbro KS, Kittles RA. Genetic Ancestry Analysis Reveals Misclassification of Commonly Used Cancer Cell Lines. Cancer Epidemiol Biomarkers Prev 2019; 28:1003-1009. [PMID: 30787054 PMCID: PMC6548687 DOI: 10.1158/1055-9965.epi-18-1132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Given the scarcity of cell lines from underrepresented populations, it is imperative that genetic ancestry for these cell lines is characterized. Consequences of cell line mischaracterization include squandered resources and publication retractions. METHODS We calculated genetic ancestry proportions for 15 cell lines to assess the accuracy of previous race/ethnicity classification and determine previously unknown estimates. DNA was extracted from cell lines and genotyped for ancestry informative markers representing West African (WA), Native American (NA), and European (EUR) ancestry. RESULTS Of the cell lines tested, all previously classified as White/Caucasian were accurately described with mean EUR ancestry proportions of 97%. Cell lines previously classified as Black/African American were not always accurately described. For instance, the 22Rv1 prostate cancer cell line was recently found to carry mixed genetic ancestry using a much smaller panel of markers. However, our more comprehensive analysis determined the 22Rv1 cell line carries 99% EUR ancestry. Most notably, the E006AA-hT prostate cancer cell line, classified as African American, was found to carry 92% EUR ancestry. We also determined the MDA-MB-468 breast cancer cell line carries 23% NA ancestry, suggesting possible Afro-Hispanic/Latina ancestry. CONCLUSIONS Our results suggest predominantly EUR ancestry for the White/Caucasian-designated cell lines, yet high variance in ancestry for the Black/African American-designated cell lines. In addition, we revealed an extreme misclassification of the E006AA-hT cell line. IMPACT Genetic ancestry estimates offer more sophisticated characterization leading to better contextualization of findings. Ancestry estimates should be provided for all cell lines to avoid erroneous conclusions in disparities literature.
Collapse
Affiliation(s)
- Stanley E Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Stacy Lloyd
- Department of Molecular and Cellular Biology and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Priyatham Gorjala
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada
| | - Ranjana Mitra
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada
| | - Larisa Nonn
- The Department of Pathology, University of Illinois, Chicago, Illinois
| | - K Sean Kimbro
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, North Carolina
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
6
|
Kanakkanthara A, Jeganathan KB, Limzerwala JF, Baker DJ, Hamada M, Nam HJ, van Deursen WH, Hamada N, Naylor RM, Becker NA, Davies BA, van Ree JH, Mer G, Shapiro VS, Maher LJ, Katzmann DJ, van Deursen JM. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science 2017; 353:1549-1552. [PMID: 27708105 DOI: 10.1126/science.aaf7463] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022]
Abstract
Cyclin A2 activates the cyclin-dependent kinases Cdk1 and Cdk2 and is expressed at elevated levels from S phase until early mitosis. We found that mutant mice that cannot elevate cyclin A2 are chromosomally unstable and tumor-prone. Underlying the chromosomal instability is a failure to up-regulate the meiotic recombination 11 (Mre11) nuclease in S phase, which leads to impaired resolution of stalled replication forks, insufficient repair of double-stranded DNA breaks, and improper segregation of sister chromosomes. Unexpectedly, cyclin A2 controlled Mre11 abundance through a C-terminal RNA binding domain that selectively and directly binds Mre11 transcripts to mediate polysome loading and translation. These data reveal cyclin A2 as a mechanistically diverse regulator of DNA replication combining multifaceted kinase-dependent functions with a kinase-independent, RNA binding-dependent role that ensures adequate repair of common replication errors.
Collapse
Affiliation(s)
- Arun Kanakkanthara
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jazeel F Limzerwala
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Naomi Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Naylor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Weng Y, Shi Y, Xia X, Zhou W, Wang H, Wang C. A multi-shRNA vector enhances the silencing efficiency of exogenous and endogenous genes in human cells. Oncol Lett 2017; 13:1553-1562. [PMID: 28454290 PMCID: PMC5403481 DOI: 10.3892/ol.2017.5672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/27/2016] [Indexed: 01/10/2023] Open
Abstract
RNA interference (RNAi) is a powerful technology for suppressing gene function. In most studies, small interfering RNAs (siRNAs) consist of one short hairpin RNA (shRNA) and, therefore, are often unable to achieve loss-of-function of their target genes. In the current study, an RNAi vector containing three shRNAs under the control of three RNA polymerase III U6 promoters was constructed. RNAi vectors containing one or two shRNAs were generated for comparisons. A pilot study targeting exogenously expressed DsRed in the HEK293 cell line revealed promising effects and a high selectivity for the multi-shRNA RNAi vector. Akt2 is constitutively expressed in cultured SKOV3 human ovarian cancer cells, and the multi-shRNA RNAi vector showed a strong efficiency for downregulating the expression of Akt2 in these cells, with no apparent interferon response. In addition, the Akt2-3shRNA vector, containing three shRNAs targeting Akt2, showed the best effect of all the shRNA vectors in reversing paclitaxel-induced resistance in SKOV3 cells. This study developed a widely applicable resource for enhancing the efficiency of gene silencing and a novel technique for performing complex loss-of-function screens in mammalian cells.
Collapse
Affiliation(s)
- Yanjie Weng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying Shi
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xi Xia
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Gynecology and Obstetrics, Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Wenjuan Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongyan Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Changyu Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Her YF, Nelson-Holte M, Maher LJ. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS One 2015; 10:e0127471. [PMID: 25985299 PMCID: PMC4436181 DOI: 10.1371/journal.pone.0127471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023] Open
Abstract
Familial paraganglioma (PGL) is a rare neuroendocrine cancer associated with defects in the genes encoding the subunits of succinate dehydrogenase (SDH), a tricarboxylic acid (TCA) cycle enzyme. For unknown reasons, a higher prevalence of PGL has been reported for humans living at higher altitude, with increased disease aggressiveness and morbidity. In this study, we evaluate the effects of oxygen on epigenetic changes due to succinate accumulation in three SDH loss cell culture models. We test the hypothesis that the mechanism of α-ketoglutarate (α-KG)-dependent dioxygenase enzymes explains the inhibitory synergy of hypoxia and succinate accumulation. We confirm that SDH loss leads to profound succinate accumulation. We further show that hypoxia and succinate accumulation synergistically inhibit α-KG-dependent dioxygenases leading to increased stabilization of transcription factor HIF1α, HIF2α, and hypermethylation of histones and DNA. Increasing oxygen suppresses succinate inhibition of α-KG-dependent dioxygenases. This result provides a possible explanation for the association between hypoxia and PGL, and suggests hyperoxia as a potential novel therapy.
Collapse
Affiliation(s)
- Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
- Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First St. SW, Rochester, MN, 55905, United States of America
| | - Molly Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
9
|
TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014; 88:9704-17. [PMID: 24942577 DOI: 10.1128/jvi.01397-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED HIV-1 utilizes the cellular protein LEDGF/p75 as a chromosome docking and integration cofactor. The LEDGF/p75 gene, PSIP1, is a potential therapeutic target because, like CCR5, depletion of LEDGF/p75 is tolerated well by human CD4+ T cells, and knockout mice have normal immune systems. RNA interference (RNAi) has been useful for studying LEDGF/p75, but the potent cofactor activity of small protein residua can be confounding. Here, in human cells with utility for HIV research (293T and Jurkat), we used transcription activator-like effector nucleases (TALENs) to completely eradicate all LEDGF/p75 expression. We performed two kinds of PSIP1 knockouts: whole-gene deletion and deletion of the integrase binding domain (IBD)-encoding exons. HIV-1 integration was inhibited, and spreading viral replication was severely impaired in PSIP1-/- Jurkat cells infected at high multiplicity. Furthermore, frameshifting the gene in the first coding exon with a single TALEN pair yielded trace LEDGF/p75 levels that were virologically active, affirming the cofactor's potency and the value of definitive gene or IBD exon segment deletion. Some recent studies have suggested that LEDGF/p75 may participate in HIV-1 assembly. However, we determined that assembly of infectious viral particles is normal in PSIP1-/- cells. The potency of an allosteric integrase inhibitor, ALLINI-2, for rendering produced virions noninfectious was also unaffected by total eradication of cellular LEDGF/p75. We conclude that HIV-1 particle assembly and the main ALLINI mechanism are LEDGF/p75 independent. The block to HIV-1 propagation in PSIP1-/- human CD4+ T cells raises the possibility of gene targeting PSIP1 combinatorially with CCR5 for HIV-1 cure. IMPORTANCE LEDGF/p75 dependence is universally conserved in the retroviral genus Lentivirus. Once inside the nucleus, lentiviral preintegration complexes are thought to attach to the chromosome when integrase binds to LEDGF/p75. This tethering process is largely responsible for the 2-fold preference for integration into active genes, but the cofactor's full role in the lentiviral life cycle is not yet clear. Effective knockdowns are difficult because even trace residua of this tightly chromatin-bound protein can support integration cofactor function. Here, in experimentally useful human cell lines, we used TALENs to definitively eradicate LEDGF/p75 by deleting either all of PSIP1 or the exons that code for the integrase binding domain. HIV-1 replication was severely impaired in these PSIP1 knockout cells. Experiments in these cells also excluded a role for LEDGF/p75 in HIV-1 assembly and showed that the main ALLINI mechanism is LEDGF/p75 independent. Site-specific gene targeting of PSIP1 may have therapeutic potential for HIV-1 disease.
Collapse
|
10
|
Liu D, Dong Y, Liu Z, Niu B, Wang Y, Gao X. Impact of TREM-2 gene silencing on inflammatory response of endotoxin-induced acute lung injury in mice. Mol Cell Biochem 2014; 394:155-61. [PMID: 24916365 DOI: 10.1007/s11010-014-2091-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/15/2014] [Indexed: 11/24/2022]
Abstract
Acute lung injury (ALI) is one of the critical clinical respiratory diseases, of which infection is the main cause and the first risk factor. This study investigated the impact of triggering receptor of myeloid cells expression (TREM)-2 gene silencing on inflammatory response of endotoxin-induced ALI in mice. Lentivirus-mediated TREM-2-shRNA was transfected into healthy male C57BL/6 mice, and the lipopolysaccharide-induced ALI model was established. The immunohistochemistry, immunofluorescence, fluorescence quantitative PCR, western blot, and ELISA were applied to detect the pathological changes of lung tissue and expressions of TREM-2, tumor necrosis factor-α (TNF-α), and interleukin 10 (IL-10) in bronchoalveolar lavage fluid. The lentivirus group, saline control group, ALI model group, blank control group, and negative control group were set up at the same time. Results found that, in lentivirus group, the pathological change of lung tissue was significantly lighter than ALI model group (P < 0.05), and the expression of TREM-2 was significantly reduced compared with all control groups (P < 0.05). The levels of TNF-α and IL-10 were significantly increased than all control groups (P < 0.05), while above indexes in negative control group and blank control group showed no significant difference with ALI group (P > 0.05). This study indicates that TREM-2 has a protective effect on inflammatory response of endotoxin-induced ALI in mice, which has provided new potential targets for prevention and treatment of ALI.
Collapse
Affiliation(s)
- Dai Liu
- Department of Respiration, The 2nd Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | | | | | | | | |
Collapse
|
11
|
Bancos I, Bida JP, Tian D, Bundrick M, John K, Holte MN, Her YF, Evans D, Saenz DT, Poeschla EM, Hook D, Georg G, Maher LJ. High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. PLoS One 2013; 8:e56827. [PMID: 23451094 PMCID: PMC3579935 DOI: 10.1371/journal.pone.0056827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/15/2013] [Indexed: 01/06/2023] Open
Abstract
Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic acid (TCA) cycle of central metabolism. Loss of SDH initiates PGL through mechanisms that remain unclear. Could this metabolic defect provide a novel opportunity for chemotherapy of PGL? We report the results of high throughput screening to identify compounds differentially toxic to SDH mutant cells using a powerful S. cerevisiae (yeast) model of PGL. Screening more than 200,000 compounds identifies 12 compounds that are differentially toxic to SDH-mutant yeast. Interestingly, two of the agents, dequalinium and tetraethylthiuram disulfide (disulfiram), are anti-malarials with the latter reported to be a glycolysis inhibitor. We show that four of the additional hits are potent inhibitors of yeast alcohol dehydrogenase. Because alcohol dehydrogenase regenerates NAD(+) in glycolytic cells that lack TCA cycle function, this result raises the possibility that lactate dehydrogenase, which plays the equivalent role in human cells, might be a target of interest for PGL therapy. We confirm that human cells deficient in SDH are differentially sensitive to a lactate dehydrogenase inhibitor.
Collapse
Affiliation(s)
- Irina Bancos
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John Paul Bida
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Defeng Tian
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Mary Bundrick
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Kristen John
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Debra Evans
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Dyana T. Saenz
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Derek Hook
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Gunda Georg
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
12
|
Ubiquitin hydrolase UCH-L1 destabilizes mTOR complex 1 by antagonizing DDB1-CUL4-mediated ubiquitination of raptor. Mol Cell Biol 2013; 33:1188-97. [PMID: 23297343 DOI: 10.1128/mcb.01389-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates processes including mRNA translation, proliferation, and survival. By assembling with different cofactors, mTOR forms two complexes with distinct biological functions. Raptor-bound mTOR (mTORC1) governs cap-dependent mRNA translation, whereas mTOR, rictor, and mSin1 (mTORC2) activate the survival and proliferative kinase Akt. How the balance between the competing needs for mTORC1 and -2 is controlled in normal cells and deregulated in disease is poorly understood. Here, we show that the ubiquitin hydrolase UCH-L1 regulates the balance of mTOR signaling by disrupting mTORC1. We find that UCH-L1 impairs mTORC1 activity toward S6 kinase and 4EBP1 while increasing mTORC2 activity toward Akt. These effects are directly attributable to a dramatic rearrangement in mTOR complex assembly. UCH-L1 disrupts a complex between the DDB1-CUL4 ubiquitin ligase complex and raptor and counteracts DDB1-CUL4-mediated raptor ubiquitination. These events lead to mTORC1 dissolution and a secondary increase in mTORC2. Experiments in Uchl1-deficient and transgenic mice suggest that the balance between these pathways is important for preventing neurodegeneration and the development of malignancy. These data establish UCH-L1 as a key regulator of the dichotomy between mTORC1 and mTORC2 signaling.
Collapse
|
13
|
Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 2012. [PMID: 23187126 DOI: 10.1172/jci63084] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy by restraining the activity of the anaphase-promoting complex (APC). The deubiquitinase USP44 was identified as a key regulator of APC activation; however, the physiological importance of USP44 and its impact on cancer biology are unknown. To clarify the role of USP44 in mitosis, we engineered a mouse lacking Usp44. We found that USP44 regulated the mitotic checkpoint and prevented chromosome lagging. Mice lacking Usp44 were prone to the development of spontaneous tumors, particularly in the lungs. Additionally, USP44 was frequently downregulated in human lung cancer, and low expression correlated with a poor prognosis. USP44 inhibited chromosome segregation errors independent of its role in the mitotic checkpoint by regulating centrosome separation, positioning, and mitotic spindle geometry. These functions required direct binding to the centriole protein centrin. Our data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Antiviral restriction factor transgenesis in the domestic cat. Nat Methods 2011; 8:853-9. [PMID: 21909101 PMCID: PMC4006694 DOI: 10.1038/nmeth.1703] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/01/2011] [Indexed: 12/12/2022]
Abstract
This paper reports transgenesis by genetic modification of gametes in the domestic cat. The approach is used to generate transgenic cats expressing a virus restriction factor from rhesus macaque. Studies of the domestic cat have contributed to many scientific advances, including the present understanding of the mammalian cerebral cortex. A practical capability for cat transgenesis is needed to realize the distinctive potential of research on this neurobehaviorally complex, accessible species for advancing human and feline health. For example, humans and cats are afflicted with pandemic AIDS lentiviruses that are susceptible to species-specific restriction factors. Here we introduced genes encoding such a factor, rhesus macaque TRIMCyp, and eGFP, into the cat germline. The method establishes gamete-targeted transgenesis for the first time in a carnivore. We observed uniformly transgenic outcomes, widespread expression, no mosaicism and no F1 silencing. TRIMCyp transgenic cat lymphocytes resisted feline immunodeficiency virus replication. This capability to experimentally manipulate the genome of an AIDS-susceptible species can be used to test the potential of restriction factors for HIV gene therapy and to build models of other infectious and noninfectious diseases.
Collapse
|
15
|
Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proc Natl Acad Sci U S A 2010; 107:18652-7. [PMID: 20937889 DOI: 10.1073/pnas.1011948107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current methods for engineering the segmented double-stranded RNA genome of rotavirus (RV) are limited by inefficient recovery of the recombinant virus. In an effort to expand the utility of RV reverse genetics, we developed a method to recover recombinant viruses in which independent selection strategies are used to engineer single-gene replacements. We coupled a mutant SA11 RV encoding a temperature-sensitive (ts) defect in the NSP2 protein with RNAi-mediated degradation of NSP2 mRNAs to isolate a virus containing a single recombinant gene that evades both selection mechanisms. Recovery is rapid and simple; after two rounds of selective passage the recombinant virus reaches titers of ≥10(4) pfu/mL. We used this reverse genetics method to generate a panel of viruses with chimeric NSP2 genes. For one of the chimeric viruses, the introduced NSP2 sequence was obtained from a pathogenic, noncultivated human RV isolate, demonstrating that this reverse genetics system can be used to study the molecular biology of circulating RVs. Combining characterized RV ts mutants and validated siRNA targets should permit the extension of this "two-hit" reverse genetics methodology to other RV genes. Furthermore, application of a dual selection strategy to previously reported reverse genetics methods for RV may enhance the efficiency of recombinant virus recovery.
Collapse
|
16
|
Li J, Guo H, Shi Z, Tu C. In vitro inhibition of CSFV replication by retroviral vector-mediated RNA interference. J Virol Methods 2010; 169:316-21. [PMID: 20691206 PMCID: PMC7112837 DOI: 10.1016/j.jviromet.2010.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/30/2022]
Abstract
Classical swine fever (CSF) is a highly contagious viral disease of pigs which causes major economic losses worldwide. No specific drug is currently available for the effective treatment of CSFV infection. RNA interference (RNAi) technology depends on effective delivery systems, for which several effective vectors have recently been developed. Three retroviral plasmids containing siRNA genes targeting different regions of Npro and NS4A have been constructed, and 3 replication-incompetent retroviral vectors have been produced in the human embryo kidney cell line GP2-293 by retroviral plasmid transfection. PK-15 cells were then infected with these replication-incompetent retroviral vectors and screened for siRNA stably expressing PK-15 cell clones. Growth of CSFV in such siRNA stably expressing cell clones resulted in a 186-fold reduction in viral genome copies and, at 72 h post-infection, only a small % of cells showed infection by indirect immunofluorescence microscopy, and effective inhibition of virus replication persisted for up to 120 h. Retroviral vector-mediated RNAi can therefore be used to study the specific function of viral genes associated with CSFV replication and may have potential therapeutic application.
Collapse
Affiliation(s)
- Jiangnan Li
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 XiAn Da Road, Changchun 130062, China
| | | | | | | |
Collapse
|
17
|
Engelman A. Mechanistic and pharmacological analyses of HIV-1 integration. Methods 2009; 47:225-8. [PMID: 19389610 PMCID: PMC2709961 DOI: 10.1016/j.ymeth.2009.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/16/2009] [Indexed: 11/30/2022] Open
Abstract
Significant advances have transpired in the human immunodeficiency virus type 1 (HIV-1) integration field in recent years. Considering its essential nature, integrase has long been a target of interest for antiviral drug development. The most significant advance was the approval of the Merck compound raltegravir, the first licensed integrase inhibitor, in October 2007. Another milestone was the identification and characterization of specific nucleoprotein complexes that mediate integrase 3' processing and DNA strand transfer activities in vitro. Genome-wide distribution analyses have furthermore revealed that different retroviruses differentially target distinctive regions of chromatin during integration. For examples, lentiviruses favor actively transcribed genes whereas gammaretroviruses such as Moloney murine leukemia virus prefer transcriptional start sites. Though the underlying mechanisms are unknown for most retroviruses, the lentiviral preference is in large part guided through the interaction with the integrase binding protein lens epithelium-derived growth factor (LEDGF)/p75. Experimental methods that formed the foundations for each of these advances, as well as other techniques topical to the study of HIV-1 integration, are described in this issue of Methods.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, CLSB-1010, Boston, MA 02115, USA, Email address: , Tel: +1 617 632 4361, Fax: +1 617 632 4338
| |
Collapse
|