1
|
Masse MM, Guzman-Luna V, Varela AE, Mahfuza Shapla U, Hutchinson RB, Srivastava A, Wei W, Fuchs AM, Cavagnero S. Nascent chains derived from a foldable protein sequence interact with specific ribosomal surface sites near the exit tunnel. Sci Rep 2024; 14:12324. [PMID: 38811604 PMCID: PMC11137106 DOI: 10.1038/s41598-024-61274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
In order to become bioactive, proteins must be translated and protected from aggregation during biosynthesis. The ribosome and molecular chaperones play a key role in this process. Ribosome-bound nascent chains (RNCs) of intrinsically disordered proteins and RNCs bearing a signal/arrest sequence are known to interact with ribosomal proteins. However, in the case of RNCs bearing foldable protein sequences, not much information is available on these interactions. Here, via a combination of chemical crosslinking and time-resolved fluorescence-anisotropy, we find that nascent chains of the foldable globin apoHmp1-140 interact with ribosomal protein L23 and have a freely-tumbling non-interacting N-terminal compact region comprising 63-94 residues. Longer RNCs (apoHmp1-189) also interact with an additional yet unidentified ribosomal protein, as well as with chaperones. Surprisingly, the apparent strength of RNC/r-protein interactions does not depend on nascent-chain sequence. Overall, foldable nascent chains establish and expand interactions with selected ribosomal proteins and chaperones, as they get longer. These data are significant because they reveal the interplay between independent conformational sampling and nascent-protein interactions with the ribosomal surface.
Collapse
Affiliation(s)
- Meranda M Masse
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Angela E Varela
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ummay Mahfuza Shapla
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aniruddha Srivastava
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McGaw Medical Center, Northwestern University, Chicago, IL, 60611, USA
| | - Wanting Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- AIDS Vaccine Research Laboratory, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
2
|
Masse M, Hutchinson RB, Morgan CE, Allaman HJ, Guan H, Yu EW, Cavagnero S. Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex. ACS CENTRAL SCIENCE 2024; 10:385-401. [PMID: 38435509 PMCID: PMC10906257 DOI: 10.1021/acscentsci.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
Interactions between ribosome-bound nascent chains (RNCs) and ribosomal components are critical to elucidate the mechanism of cotranslational protein folding. Nascent protein-ribosome contacts within the ribosomal exit tunnel were previously assessed mostly in the presence of C-terminal stalling sequences, yet little is known about contacts taking place in the absence of these strongly interacting motifs. Further, there is nearly no information about ribosomal proteins (r-proteins) interacting with nascent chains within the outer surface of the ribosome. Here, we combine chemical cross-linking, single-particle cryo-EM, and fluorescence anisotropy decays to determine the structural features of ribosome-bound apomyoglobin (apoMb). Within the ribosomal exit tunnel core, interactions are similar to those identified in previous reports. However, once the RNC enters the tunnel vestibule, it becomes more dynamic and interacts with ribosomal RNA (rRNA) and the L23 r-protein. Remarkably, on the outer surface of the ribosome, RNCs interact mainly with a highly conserved nonpolar patch of the L23 r-protein. RNCs also comprise a compact and dynamic N-terminal region lacking contact with the ribosome. In all, apoMb traverses the ribosome and interacts with it via its C-terminal region, while N-terminal residues sample conformational space and form a compact subdomain before the entire nascent protein sequence departs from the ribosome.
Collapse
Affiliation(s)
- Meranda
M. Masse
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Rachel B. Hutchinson
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Christopher E. Morgan
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather J. Allaman
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hongqing Guan
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Edward W. Yu
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Addabbo RM, Hutchinson RB, Allaman HJ, Dalphin MD, Mecha MF, Liu Y, Staikos A, Cavagnero S. Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System. J Phys Chem B 2023; 127:3990-4014. [PMID: 37130318 PMCID: PMC10829761 DOI: 10.1021/acs.jpcb.2c08485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.
Collapse
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Rachel B. Hutchinson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Heather J. Allaman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
4
|
Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins. Int J Biol Macromol 2022; 213:210-225. [DOI: 10.1016/j.ijbiomac.2022.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
5
|
Hutchinson RB, Chen X, Zhou N, Cavagnero S. Fluorescence Anisotropy Decays and Microscale-Volume Viscometry Reveal the Compaction of Ribosome-Bound Nascent Proteins. J Phys Chem B 2021; 125:6543-6558. [PMID: 34110829 PMCID: PMC8741338 DOI: 10.1021/acs.jpcb.1c04473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This work introduces a technology that combines fluorescence anisotropy decay with microscale-volume viscometry to investigate the compaction and dynamics of ribosome-bound nascent proteins. Protein folding in the cell, especially when nascent chains emerge from the ribosomal tunnel, is poorly understood. Previous investigations based on fluorescence anisotropy decay determined that a portion of the ribosome-bound nascent protein apomyoglobin (apoMb) forms a compact structure. This work, however, could not assess the size of the compact region. The combination of fluorescence anisotropy with microscale-volume viscometry, presented here, enables identifying the size of compact nascent-chain subdomains using a single fluorophore label. Our results demonstrate that the compact region of nascent apoMb contains 57-83 amino acids and lacks residues corresponding to the two native C-terminal helices. These amino acids are necessary for fully burying the nonpolar residues in the native structure, yet they are not available for folding before ribosome release. Therefore, apoMb requires a significant degree of post-translational folding for the generation of its native structure. In summary, the combination of fluorescence anisotropy decay and microscale-volume viscometry is a powerful approach to determine the size of independently tumbling compact regions of biomolecules. This technology is of general applicability to compact macromolecules linked to larger frameworks.
Collapse
Affiliation(s)
| | - Xi Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ningkun Zhou
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Hart SM, Chen WJ, Banal JL, Bricker WP, Dodin A, Markova L, Vyborna Y, Willard AP, Häner R, Bathe M, Schlau-Cohen GS. Engineering couplings for exciton transport using synthetic DNA scaffolds. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Addabbo RM, Dalphin MD, Mecha MF, Liu Y, Staikos A, Guzman-Luna V, Cavagnero S. Complementary Role of Co- and Post-Translational Events in De Novo Protein Biogenesis. J Phys Chem B 2020; 124:6488-6507. [DOI: 10.1021/acs.jpcb.0c03039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Zerbetto M, Angles d'Ortoli T, Polimeno A, Widmalm G. Differential Dynamics at Glycosidic Linkages of an Oligosaccharide as Revealed by 13C NMR Spin Relaxation and Stochastic Modeling. J Phys Chem B 2018; 122:2287-2294. [PMID: 29385337 DOI: 10.1021/acs.jpcb.7b12478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among biomolecules, carbohydrates are unique in that not only can linkages be formed through different positions, but the structures may also be branched. The trisaccharide β-d-Glcp-(1→3)[β-d-Glcp-(1→2)]-α-d-Manp-OMe represents a model of a branched vicinally disubstituted structure. A 13C site-specific isotopologue, with labeling in each of the two terminal glucosyl residues, enabled the acquisition of high-quality 13C NMR relaxation parameters, T1 and T2, and heteronuclear NOE, with standard deviations of ≤0.5%. For interpretation of the experimental NMR data, a diffusive chain model was used, in which the dynamics of the glycosidic linkages is coupled to the global reorientation motion of the trisaccharide. Brownian dynamics simulations relying on the potential of mean force at the glycosidic linkages were employed to evaluate spectral densities of the spin probes. Calculated NMR relaxation parameters showed a very good agreement with experimental data, deviating <3%. The resulting dynamics are described by correlation times of 196 and 174 ps for the β-(1→2)- and β-(1→3)-linked glucosyl residues, respectively, i.e., different and linkage dependent. Notably, the devised computational protocol was performed without any fitting of parameters.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Thibault Angles d'Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Majumdar A, Mukhopadhyay S. Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:347-381. [DOI: 10.1016/bs.mie.2018.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Koubek J, Chang YC, Yang SYC, Huang JJT. Trigger Factor-Induced Nascent Chain Dynamics Changes Suggest Two Different Chaperone-Nascent Chain Interactions during Translation. J Mol Biol 2017; 429:1733-1745. [PMID: 28385637 DOI: 10.1016/j.jmb.2017.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
Protein biogenesis is poorly understood due to the ribosome that perturbs measurement attempted on the ribosome-bound nascent chain (RNC). Investigating nascent chain dynamics may provide invaluable insight into the co-translational processes such as structure formation or interaction with a chaperone [e.g., the bacterial trigger factor (TF)]. In this study, we aim to establish a platform for studying nascent chain dynamics by exploring the local environment near the fluorescent dye on site-specifically labeled RNCs with time-resolved fluorescence anisotropy. To prepare a quantitative model of fluorescence depolarization, we utilized intrinsically disordered protein bound to ribosome, which helped us couple the sub-nanosecond depolarization with the motion of the nascent chain backbone. This was consistent with zinc-finger-domain-containing RNCs, where the extent of sub-nanosecond motion decreased upon the addition of zinc when the fluorophore was in close proximity of the domain. After the characterization of disordered nascent chain dynamics, we investigated the synthesis of a model cytosolic protein, Entner-Doudoroff aldolase, labeled at different sites during various stages of translation. Depending on the stage of translation, the addition of the TF to the nascent chain led to two different responses in the nascent chain dynamics serendipitously, suggesting steric hindrance between the nascent chain and the chaperone as a mechanism for TF dissociation from the ribosome during translation. Overall, our study demonstrates the possible use of site-specific labeling and time-resolved anisotropy to gain insight on chaperone binding event at various stages of translation and hints on TF co-translational mechanism.
Collapse
Affiliation(s)
- Jiří Koubek
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | - Yi-Che Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | | | | |
Collapse
|
12
|
Koubek J, Chen YR, Cheng RP, Huang JJT. Nonorthogonal tRNA(cys)(Amber) for protein and nascent chain labeling. RNA (NEW YORK, N.Y.) 2015; 21:1672-82. [PMID: 26194135 PMCID: PMC4536326 DOI: 10.1261/rna.051805.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 05/14/2023]
Abstract
In vitro-transcribed suppressor tRNAs are commonly used in site-specific fluorescence labeling for protein and ribosome-bound nascent chains (RNCs) studies. Here, we describe the production of nonorthogonal Bacillus subtilis tRNA(cys)(Amber) from Escherichia coli, a process that is superior to in vitro transcription in terms of yield, ease of manipulation, and tRNA stability. As cysteinyl-tRNA synthetase was previously shown to aminoacylate tRNA(cys)(Amber) with lower efficiency, multiple tRNA synthetase mutants were designed to optimize aminoacylation. Aminoacylated tRNA was conjugated to a fluorophore to produce BODIPY FL-cysteinyl-tRNA(cys)(Amber), which was used to generate ribosome-bound nascent chains of different lengths with the fluorophore incorporated at various predetermined sites. This tRNA tool may be beneficial in the site-specific labeling of full-length proteins as well as RNCs for biophysical and biological research.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Bacillus subtilis/genetics
- Cell-Free System
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fluorescent Dyes/chemistry
- In Vitro Techniques
- Models, Molecular
- Protein Biosynthesis
- RNA Stability
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Jiří Koubek
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Nankang, Taipei 11529, Taiwan Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Richard Ping Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
13
|
Atta D, Okasha A. Single molecule laser spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:1173-1179. [PMID: 25156641 DOI: 10.1016/j.saa.2014.07.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/10/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
In this article, we discussed some single molecule spectroscopy techniques and methods. We have chosen the simplicity in this survey based on our laboratory experience in this field. We concentrated on the imaging by both techniques the wide field and the scanning microscopes. Other imaging enhancements on the technique like extended resolution wide field, the total internal reflection imaging, and its derivatives are also reviewed. In addition to the imaging techniques, some diffusion techniques also are discussed like fluorescence correlation spectroscopy. The related methods like Forester resonance transfer, photo-induced electron transfer and anisotropy (steady state and time decay) are also discussed. In addition, we elucidated some simple details about the theory behind the FCS and its resulting curve fitting. This review is preceded by general introduction and ended with the conclusion.
Collapse
Affiliation(s)
- Diaa Atta
- Spectroscopy Department, Physics Division, National Research Center, 12311 Dokki, Cairo, Egypt.
| | - Ali Okasha
- Spectroscopy Department, Physics Division, National Research Center, 12311 Dokki, Cairo, Egypt
| |
Collapse
|
14
|
Samatanga B, Klostermeier D. DEAD-box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition. Nucleic Acids Res 2014; 42:10644-54. [PMID: 25123660 PMCID: PMC4176333 DOI: 10.1093/nar/gku747] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DEAD-box helicases catalyze the non-processive unwinding of double-stranded RNA (dsRNA) at the expense of adenosine triphosphate (ATP) hydrolysis. Nucleotide and RNA binding and unwinding are mediated by the RecA domains of the helicase core, but their cooperation in these processes remains poorly understood. We therefore investigated dsRNA and nucleotide binding by the helicase cores and the isolated N- and C-terminal RecA domains (RecA_N, RecA_C) of the DEAD-box proteins Hera and YxiN by steady-state and time-resolved fluorescence methods. Both helicases bind nucleotides predominantly via RecA_N, in agreement with previous studies on Mss116, and with a universal, modular function of RecA_N in nucleotide recognition. In contrast, dsRNA recognition is different: Hera interacts with dsRNA in the absence of nucleotide, involving both RecA domains, whereas for YxiN neither RecA_N nor RecA_C binds dsRNA, and the complete core only interacts with dsRNA after nucleotide has been bound. DEAD-box proteins thus cover a continuum from complete functional independence of their domains, exemplified by Mss116, to various degrees of inter-domain cooperation in dsRNA binding. The different degrees of domain communication and of thermodynamic linkage between dsRNA and nucleotide binding have important implications on the mechanism of dsRNA unwinding, and may help direct RNA helicases to their respective cellular processes.
Collapse
Affiliation(s)
- Brighton Samatanga
- Institute for Physical Chemistry, University of Muenster, Correnstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Muenster, Correnstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
15
|
Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem Biol 2013; 8:1195-204. [PMID: 23517476 DOI: 10.1021/cb400030n] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crucial molecular events accompanying protein folding in the cell are still largely unexplored. As nascent polypeptides emerge from the ribosomal exit tunnel, they come in close proximity with the highly negatively charged ribosomal surface. How is the nascent polypeptide influenced by the ribosomal surface? We address this question via the intrinsically disordered protein PIR and a number of its variably charged mutants. Two different populations are identified: one is highly spatially biased, and the other is highly dynamic. The more negatively charged nascent polypeptides emerging from the ribosome are richer in the extremely dynamic population. Hence, nascent proteins with a net negative charge are less likely to interact with the ribosome. Surprisingly, the amplitude of the local motions of the highly dynamic population is much wider than that of disordered polypeptides under physiological conditions, implying that proximity to the ribosomal surface enhances the molecular flexibility of a subpopulation of the nascent protein, much like a denaturing agent would. This effect could be important for a proper structural channeling of the nascent protein and the prevention of cotranslational kinetic trapping. Interestingly, a significant population of the highly spatially biased nascent chain, probably interacting extensively with the ribosome, is present even for very negatively charged nascent proteins. This "sticking" effect likely serves to protect nascent proteins (e.g., from cotranslational aggregation). In all, our results highlight the influence of the ribosome in nascent protein dynamics and show that the ribosome's function in protein biogenesis extends well beyond catalysis of peptide bond formation.
Collapse
Affiliation(s)
- Anders M. Knight
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue,
Madison, Wisconsin 53706, United States
| | - Peter H. Culviner
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue,
Madison, Wisconsin 53706, United States
| | - Neşe Kurt-Yilmaz
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue,
Madison, Wisconsin 53706, United States
| | - Taisong Zou
- Department of Physics, Center
for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - S. Banu Ozkan
- Department of Physics, Center
for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue,
Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Bertz A, Ehlers JE, Wöhl-Bruhn S, Bunjes H, Gericke KH, Menzel H. Mobility of Green Fluorescent Protein in Hydrogel-Based Drug-Delivery Systems Studied by Anisotropy and Fluorescence Recovery After Photobleaching. Macromol Biosci 2012; 13:215-26. [DOI: 10.1002/mabi.201200325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/30/2012] [Indexed: 01/31/2023]
|
17
|
Samiotakis A, Cheung MS. Folding dynamics of Trp-cage in the presence of chemical interference and macromolecular crowding. I. J Chem Phys 2012; 135:175101. [PMID: 22070323 DOI: 10.1063/1.3656691] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins fold and function in the crowded environment of the cell's interior. In the recent years it has been well established that the so-called "macromolecular crowding" effect enhances the folding stability of proteins by destabilizing their unfolded states for selected proteins. On the other hand, chemical and thermal denaturation is often used in experiments as a tool to destabilize a protein by populating the unfolded states when probing its folding landscape and thermodynamic properties. However, little is known about the complicated effects of these synergistic perturbations acting on the kinetic properties of proteins, particularly when large structural fluctuations, such as protein folding, have been involved. In this study, we have first investigated the folding mechanism of Trp-cage dependent on urea concentration by coarse-grained molecular simulations where the impact of urea is implemented into an energy function of the side chain and/or backbone interactions derived from the all-atomistic molecular dynamics simulations with urea through a Boltzmann inversion method. In urea solution, the folding rates of a model miniprotein Trp-cage decrease and the folded state slightly swells due to a lack of contact formation between side chains at the terminal regions. In addition, the equilibrium m-values of Trp-cage from the computer simulations are in agreement with experimental measurements. We have further investigated the combined effects of urea denaturation and macromolecular crowding on Trp-cage's folding mechanism where crowding agents are modeled as hard-spheres. The enhancement of folding rates of Trp-cage is most pronounced by macromolecular crowding effect when the extended conformations of Trp-cast dominate at high urea concentration. Our study makes quantitatively testable predictions on protein folding dynamics in a complex environment involving both chemical denaturation and macromolecular crowding effects.
Collapse
|
18
|
Gershenson A, Gierasch LM. Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 2011; 21:32-41. [PMID: 21112769 PMCID: PMC3072030 DOI: 10.1016/j.sbi.2010.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
It is hard to imagine a more extreme contrast than that between the dilute solutions used for in vitro studies of protein folding and the crowded, compartmentalized, sticky, spatially inhomogeneous interior of a cell. This review highlights recent research exploring protein folding in the cell with a focus on issues that are generally not relevant to in vitro studies of protein folding, such as macromolecular crowding, hindered diffusion, cotranslational folding, molecular chaperones, and evolutionary pressures. The technical obstacles that must be overcome to characterize protein folding in the cell are driving methodological advances, and we draw attention to several examples, such as fluorescence imaging of folding in cells and genetic screens for in-cell stability.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
19
|
Abstract
Over five decades of research have yielded a large body of information on how purified proteins attain their native state when refolded in the test tube, starting from a chemically or thermally denatured state. Nevertheless, we still know little about how proteins fold and unfold in their natural biological habitat: the living cell. Indeed, a variety of cellular components, including molecular chaperones, the ribosome, and crowding of the intracellular medium, modulate folding mechanisms in physiologically relevant environments. This review focuses on the current state of knowledge in protein folding in the cell with emphasis on the early stage of a protein's life, as the nascent polypeptide traverses and emerges from the ribosomal tunnel. Given the vectorial nature of ribosome-assisted translation, the transient degree of chain elongation becomes a relevant variable expected to affect nascent protein foldability, aggregation propensity and extent of interaction with chaperones and the ribosome.
Collapse
Affiliation(s)
- Daria V Fedyukina
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
20
|
Yengo CM, Berger CL. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 2010; 10:731-7. [PMID: 20971683 DOI: 10.1016/j.coph.2010.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/14/2023]
Abstract
Fluorescence spectroscopy/microscopy is a versatile method for examining protein dynamics in vitro and in vivo that can be combined with other techniques to simultaneously examine complementary pharmacological parameters. The following review will highlight the advantages and challenges of using fluorescence spectroscopic methods for examining protein dynamics with a special emphasis on fluorescence resonance energy transfer and fluorescence anisotropy. Both of these methods are amenable to measurements on an ensemble of molecules as well as at the single molecule level, in live cells and in high throughput screening assays, providing a powerful set of tools to aid in the design and testing of new drugs under a variety of experimental conditions.
Collapse
Affiliation(s)
- Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
21
|
|