1
|
Zhang H, Wu S, Itzhaki LS, Perrett S. Interaction between huntingtin exon 1 and HEAT repeat structure probed by chimeric model proteins. Protein Sci 2023; 32:e4810. [PMID: 37853955 PMCID: PMC10659953 DOI: 10.1002/pro.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Huntington disease (HD) is associated with aggregation of huntingtin (HTT) protein containing over 35 continuous Q residues within the N-terminal exon 1 encoded region. The C-terminal of the HTT protein consists mainly of HEAT repeat structure which serves as a scaffold for multiple cellular activities. Structural and biochemical analysis of the intact HTT protein has been hampered by its huge size (~300 kDa) and most in vitro studies to date have focused on the properties of the exon 1 region. To explore the interaction between HTT exon 1 and the HEAT repeat structure, we constructed chimeric proteins containing the N-terminal HTT exon 1 region and the HEAT repeat protein PR65/A. The results indicate that HTT exon 1 slightly destabilizes the downstream HEAT repeat structure and endows the HEAT repeat structure with more conformational flexibility. Wild-type and pathological lengths of polyQ did not show differences in the interaction between HTT exon 1 and the HEAT repeats. With the C-terminal fusion of PR65/A, HTT exon 1 containing pathological lengths of polyQ could still form amyloid fibrils, but the higher-order architecture of fibrils and kinetics of fibril formation were affected by the C-terminal fusion of HEAT repeats. This indicates that interaction between HTT exon 1 and HEAT repeat structure is compatible with both normal function of HTT protein and the pathogenesis of HD, and this study provides a potential model for further exploration.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
- Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | | | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Sanchez-Rodriguez D, Gonzalez-Figueroa I, Alvarez-Berríos MP. Chaperone Activity and Protective Effect against Aβ-Induced Cytotoxicity of Artocarpus camansi Blanco and Amaranthus dubius Mart. ex Thell Seed Protein Extracts. Pharmaceuticals (Basel) 2023; 16:820. [PMID: 37375767 DOI: 10.3390/ph16060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is listed as the sixth-leading cause of death in the United States. Recent findings have linked AD to the aggregation of amyloid beta peptides (Aβ), a proteolytic fragment of 39-43 amino acid residues derived from the amyloid precursor protein. AD has no cure; thus, new therapies to stop the progression of this deadly disease are constantly being searched for. In recent years, chaperone-based medications from medicinal plants have gained significant interest as an anti-AD therapy. Chaperones are responsible for maintaining the three-dimensional shape of proteins and play an important role against neurotoxicity induced by the aggregation of misfolded proteins. Therefore, we hypothesized that proteins extracted from the seeds of Artocarpus camansi Blanco (A. camansi) and Amaranthus dubius Mart. ex Thell (A. dubius) could possess chaperone activity and consequently may exhibit a protective effect against Aβ1-40-induced cytotoxicity. To test this hypothesis, the chaperone activity of these protein extracts was measured using the enzymatic reaction of citrate synthase (CS) under stress conditions. Then, their ability to inhibit the aggregation of Aβ1-40 using a thioflavin T (ThT) fluorescence assay and DLS measurements was determined. Finally, the neuroprotective effect against Aβ1-40 in SH-SY5Y neuroblastoma cells was evaluated. Our results demonstrated that A. camansi and A. dubius protein extracts exhibited chaperone activity and inhibited Aβ1-40 fibril formation, with A. dubius showing the highest chaperone activity and inhibition at the concentration assessed. Additionally, both protein extracts showed neuroprotective effects against Aβ1-40-induced toxicity. Overall, our data demonstrated that the plant-based proteins studied in this research work can effectively overcome one of the most important characteristics of AD.
Collapse
Affiliation(s)
- David Sanchez-Rodriguez
- Department of Science and Technology, Inter American University of Puerto Rico at Ponce, Ponce, PR 00715-1602, USA
| | - Idsa Gonzalez-Figueroa
- Department of Science and Technology, Inter American University of Puerto Rico at Ponce, Ponce, PR 00715-1602, USA
| | - Merlis P Alvarez-Berríos
- Department of Science and Technology, Inter American University of Puerto Rico at Ponce, Ponce, PR 00715-1602, USA
| |
Collapse
|
3
|
Ghosh S, Tugarinov V, Clore GM. Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation. Proc Natl Acad Sci U S A 2023; 120:e2305823120. [PMID: 37186848 PMCID: PMC10214214 DOI: 10.1073/pnas.2305823120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aβ42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 μM Aβ42 at 20 °C), Aβ42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aβ42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aβ42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
4
|
Bortoletto AS, Graham WV, Trout G, Bonito‐Oliva A, Kazmi MA, Gong J, Weyburne E, Houser BL, Sakmar TP, Parchem RJ. Human Islet Amyloid Polypeptide (hIAPP) Protofibril-Specific Antibodies for Detection and Treatment of Type 2 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202342. [PMID: 36257905 PMCID: PMC9731688 DOI: 10.1002/advs.202202342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Indexed: 05/27/2023]
Abstract
Type 2 diabetes mellitus (T2D) is a major public health concern and is characterized by sustained hyperglycemia due to insulin resistance and destruction of insulin-producing β cells. One pathological hallmark of T2D is the toxic accumulation of human islet amyloid polypeptide (hIAPP) aggregates. Monomeric hIAPP is a hormone normally co-secreted with insulin. However, increased levels of hIAPP in prediabetic and diabetic patients can lead to the formation of hIAPP protofibrils, which are toxic to β cells. Current therapies fail to address hIAPP aggregation and current screening modalities do not detect it. Using a stabilizing capping protein, monoclonal antibodies (mAbs) can be developed against a previously nonisolatable form of hIAPP protofibrils, which are protofibril specific and do not engage monomeric hIAPP. Shown here are two candidate mAbs that can detect hIAPP protofibrils in serum and hIAPP deposits in pancreatic islets in a mouse model of rapidly progressing T2D. Treatment of diabetic mice with the mAbs delays disease progression and dramatically increases overall survival. These results demonstrate the potential for using novel hIAPP protofibril-specific mAbs as a diagnostic screening tool for early detection of T2D, as well as therapeutically to preserve β cell function and target one of the underlying pathological mechanisms of T2D.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene TherapyStem Cells and Regenerative Medicine CenterDepartment of NeuroscienceDepartment of Molecular and Cellular BiologyTranslational Biology and Molecular Medicine ProgramMedical Scientist Training ProgramBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| | - W. Vallen Graham
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
| | - Gabriella Trout
- Center for Cell and Gene TherapyStem Cells and Regenerative Medicine CenterDepartment of NeuroscienceDepartment of Molecular and Cellular BiologyTranslational Biology and Molecular Medicine ProgramMedical Scientist Training ProgramBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| | - Alessandra Bonito‐Oliva
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
| | - Manija A. Kazmi
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
| | - Jing Gong
- Celdara Medical16 Cavendish CourtLebanonNH03766USA
| | | | | | - Thomas P. Sakmar
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
- Department of Neurobiology, Care Sciences, and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolna17164Sweden
| | - Ronald J. Parchem
- Center for Cell and Gene TherapyStem Cells and Regenerative Medicine CenterDepartment of NeuroscienceDepartment of Molecular and Cellular BiologyTranslational Biology and Molecular Medicine ProgramMedical Scientist Training ProgramBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| |
Collapse
|
5
|
Wang Y, Wu C. The effect of mechanical shocks on the initial aggregation behavior of yeast prion protein Sup35NM. Int J Biol Macromol 2022; 212:465-473. [PMID: 35618091 DOI: 10.1016/j.ijbiomac.2022.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
To study the effect of mechanical shocks on the neurodegenerative-related fibril-formation protein, the aggregation process, especially the initial oligomerization of a model yeast prion protein Sup35NM, was followed and analyzed by using a combination of laser light scattering, the Smoluchowski coagulation analysis, Thioflavin T fluorescence assay, and transmission electron microscopy. We find that an initial short-time mechanical shock (ultrasonication or circular shaking) affects the in vitro association kinetics of neurodegenerative-related Sup35NM proteins in dilute PBS solutions by generating a relatively larger number of smaller non-structured oligomers that further serve as tiny "crystallization" seeds in promoting the formation of longer fibrils. Our study provides an effective and quantitative method to investigate the initial oligomerization kinetics of amyloid fibrils formation. Furthermore, the current results may shed light on the molecular understanding on how environmental factors increase the risk of neurodegenerative diseases such as dementia.
Collapse
Affiliation(s)
- Yanjing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Chi Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Nagaraj M, Najarzadeh Z, Pansieri J, Biverstål H, Musteikyte G, Smirnovas V, Matthews S, Emanuelsson C, Johansson J, Buxbaum JN, Morozova-Roche L, Otzen DE. Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chem Sci 2022; 13:536-553. [PMID: 35126986 PMCID: PMC8729806 DOI: 10.1039/d1sc05790a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022] Open
Abstract
Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated.
Collapse
Affiliation(s)
- Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, S – 141 83 Huddinge, Sweden
| | - Greta Musteikyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Janne Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, S – 141 83 Huddinge, Sweden
| | - Joel N. Buxbaum
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Marvastizadeh N, Dabirmanesh B, Sajedi RH, Khajeh K. Anti-amyloidogenic effect of artemin on α-synuclein. Biol Chem 2021; 401:1143-1151. [PMID: 32673279 DOI: 10.1515/hsz-2019-0446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
α-Synuclein fibrillation is now regarded as a major pathogenic process in Parkinson's disease and its proteinaceous deposits are also detected in other neurological disorders including Alzheimer's disease. Therefore anti-amyloidegenic compounds may delay or prevent the progression of synucleinopathies disease. Molecular chaperones are group of proteins which mediate correct folding of proteins by preventing unsuitable interactions which may lead to aggregation. The objective of this study was to investigate the anti-amyloidogenic effect of molecular chaperone artemin on α-synuclein. As the concentration of artemin was increased up to 4 μg/ml, a decrease in fibril formation of α-synuclein was observed using thioflavin T (ThT) fluorescence and congo red (CR) assay. Transmission electron microscopy (TEM) images also demonstrated a reduction in fibrils in the presence of artemin. The secondary structure of α-synuclein was similar to its native form prior to fibrillation when incubated with artemin. A cell-based assay has shown that artemin inhibits α-synuclein aggregation and reduce cytotoxicity, apoptosis and reactive oxygen species (ROS) production. Our results revealed that artemin has efficient chaperon activity for preventing α-synuclein fibril formation and toxicity.
Collapse
Affiliation(s)
- Narges Marvastizadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
8
|
Panuganti V, Roy I. Oligomers, fibrils and aggregates formed by alpha-synuclein: role of solution conditions. J Biomol Struct Dyn 2020; 40:4389-4398. [PMID: 33292065 DOI: 10.1080/07391102.2020.1856721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The classical Hofmeister series orders ions into kosmotropes and chaotropes, based on their interaction with the solvent, water. The role of protein is mostly ignored probably because most of the proteins studied are natively folded and broadly follow this classification pattern. Recent reports suggest that the interaction of ions is different with solvent molecules of proximal layer and bulk. Intrinsically disordered proteins (IDPs) differ from globular proteins in the fraction of polar vis-à-vis hydrophobic amino acids and the absence of distinct secondary and tertiary structures. The kosmotrope, ammonium sulphate, increases the compactness of the polypeptide conformation, with differing effects for globular proteins and IDPs. For globular proteins, lowered flexibility corresponds to a more stable native structure. Using oligomer-specific and aggregation-specific antibodies and comparing with fibrillation results, we show for alpha-synuclein, an IDP, ammonium sulphate-induced compaction results in the formation of the aggregation-prone hydrophobic core, which combines with other similar moieties to form the fibrillar 'seed'. SEC-HPLC and SAXS analysis show the presence of the threshold oligomers. In the presence of the aggregation suppressor, arginine too, an oligomer is formed. This oligomer, however, is 'dead', and does not move further along the aggregation pathway. Thus, alpha-synuclein undergoes compaction in the presence of protein stabilisers, with differing consequences. In case of the chaotropes, KSCN and urea, aggregation of alpha-synuclein is partially inhibited. However, the amounts and types of aggregates formed are different in the two cases. Thus, the classical catalogue of molecules into protein stabilisers and destabilisers requires a relook for IDPs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Venkataharsha Panuganti
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
9
|
Paul A, Huber A, Rand D, Gosselet F, Cooper I, Gazit E, Segal D. Naphthoquinone–Dopamine Hybrids Inhibit α‐Synuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregate‐Induced Toxicity. Chemistry 2020; 26:16486-16496. [DOI: 10.1002/chem.202003374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Fabien Gosselet
- UR 2465 Blood-brain barrier Laboratory (LBHE) Artois University 62300 Lens France
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Sagol Interdisciplinary School of Neuroscience Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
10
|
Paul A, Zhang BD, Mohapatra S, Li G, Li YM, Gazit E, Segal D. Novel Mannitol-Based Small Molecules for Inhibiting Aggregation of α-Synuclein Amyloids in Parkinson's Disease. Front Mol Biosci 2019; 6:16. [PMID: 30968030 PMCID: PMC6438916 DOI: 10.3389/fmolb.2019.00016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022] Open
Abstract
The aggregation of the amyloidogenic protein α-synuclein (α-Syn) into toxic oligomers and mature fibrils is the major pathological hallmark of Parkinson's disease (PD). Small molecules that inhibit α-Syn aggregation thus may be useful therapeutics for PD. Mannitol and naphthoquinone-tryptophan (NQTrp) have been shown in the past to inhibit α-Syn aggregation by different mechanisms. Herein, we tested whether the conjugation of Mannitol and NQTrp may result in enhance efficacy toward α-Syn. The molecules were conjugated either by a click linker or via a PEG linker. The effect of the conjugate molecules on α-Syn aggregation in vitro was monitored using Thioflavin T fluorescence assay, circular dichroism, transmission electron microscopy, and Congo red birefringence assay. One of the conjugate molecules was found to be more effective than the two parent molecules and as effective as a mixture of the two. The conjugate molecules attenuated the disruptive effect of α-Syn on artificial membrane of Large Unilamellar Vesicles as monitored by dye leakage assay. The conjugates were found to be have low cytotoxicity and reduced toxicity of α-Syn toward SH-SY5Y neuroblastoma cells. These novel designed entities can be attractive scaffold for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Ashim Paul
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bo-Dou Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Satabdee Mohapatra
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gao Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yan-Mei Li
- Department of Chemistry, Tsinghua University, Beijing, China.,Institute of Parkinson Disease, Beijing Institute for Brain Disorders, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Ehud Gazit
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Segal
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Probing the mechanism of inhibition of amyloid-β(1-42)-induced neurotoxicity by the chaperonin GroEL. Proc Natl Acad Sci U S A 2018; 115:E11924-E11932. [PMID: 30509980 DOI: 10.1073/pnas.1817477115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human chaperonin Hsp60 is thought to play a role in the progression of Alzheimer's disease by mitigating against intracellular β-amyloid stress. Here, we show that the bacterial homolog GroEL (51% sequence identity) reduces the neurotoxic effects of amyloid-β(1-42) (Aβ42) on human neural stem cell-derived neuronal cultures. To understand the mechanism of GroEL-mediated abrogation of neurotoxicity, we studied the interaction of Aβ42 with GroEL using a variety of biophysical techniques. Aβ42 binds to GroEL as a monomer with a lifetime of ∼1 ms, as determined from global analysis of multiple relaxation-based NMR experiments. Dynamic light scattering demonstrates that GroEL dissolves small amounts of high-molecular-weight polydisperse aggregates present in fresh soluble Aβ42 preparations. The residue-specific transverse relaxation rate profile for GroEL-bound Aβ42 reveals the presence of three anchor-binding regions (residues 16-21, 31-34, and 40-41) located within the hydrophobic GroEL-consensus binding sequences. Single-molecule FRET analysis of Aβ42 binding to GroEL results in no significant change in the FRET efficiency of a doubly labeled Aβ42 construct, indicating that Aβ42 samples a random coil ensemble when bound to GroEL. Finally, GroEL substantially slows down the disappearance of NMR visible Aβ42 species and the appearance of Aβ42 protofibrils and fibrils as monitored by electron and atomic force microscopies. The latter observations correlate with the effect of GroEL on the time course of Aβ42-induced neurotoxicity. These data provide a physical basis for understanding how Hsp60 may serve to slow down the progression of Alzheimer's disease.
Collapse
|
12
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Ahsan N, Siddique IA, Gupta S, Surolia A. A routinely used protein staining dye acts as an inhibitor of wild type and mutant alpha-synuclein aggregation and modulator of neurotoxicity. Eur J Med Chem 2018; 143:1174-1184. [DOI: 10.1016/j.ejmech.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
14
|
Wang Y, Wu C. Quantitative Study of the Oligomerization of Yeast Prion Sup35NM Proteins. Biochemistry 2017; 56:6575-6584. [DOI: 10.1021/acs.biochem.7b00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yanjing Wang
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chi Wu
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Chaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein. Proc Natl Acad Sci U S A 2017; 114:9104-9109. [PMID: 28784759 DOI: 10.1073/pnas.1711645114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied the interaction of the prototypical chaperonin GroEL with the prion domain of the Het-s protein using solution and solid-state NMR, electron and atomic force microscopies, and EPR. While GroEL accelerates Het-s protofibril formation by several orders of magnitude, the rate of appearance of fibrils is reduced. GroEL remains bound to Het-s throughout the aggregation process and densely decorates the fibrils at a regular spacing of ∼200 Å. GroEL binds to the Het-s fibrils via its apical domain located at the top of the large open ring. Thus, apo GroEL and bullet-shaped GroEL/GroES complexes in which only a single ring is capped by GroES interact with the Het-s fibrils; no evidence is seen for any interaction with football-shaped GroEL/GroES complexes in which both rings are capped by GroES. EPR spectroscopy shows that rotational motion of a nitroxide spin label, placed at the N-terminal end of the first β-strand of Het-s fibrils, is significantly reduced in both Het-s/GroEL aggregates and Het-s fibrils, but virtually completely eliminated in Het-s/GroEL fibrils, suggesting that in the latter, GroEL may come into close proximity to the nitroxide label. Solid-state NMR measurements indicate that GroEL binds to the mobile regions of the Het-s fibril comprising the N-terminal tail and a loop connecting β-strands 4 and 5, consistent with interactions involving GroEL binding consensus sequences located therein.
Collapse
|
16
|
Kardani J, Sethi R, Roy I. Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1454-1463. [DOI: 10.1016/j.bbadis.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 11/26/2022]
|
17
|
Liu H, Yu L, Dong X, Sun Y. Synergistic effects of negatively charged hydrophobic nanoparticles and (−)-epigallocatechin-3-gallate on inhibiting amyloid β-protein aggregation. J Colloid Interface Sci 2017; 491:305-312. [DOI: 10.1016/j.jcis.2016.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
18
|
Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Sci Rep 2017; 7:42880. [PMID: 28220836 PMCID: PMC5318909 DOI: 10.1038/srep42880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022] Open
Abstract
During amyloid fibril formation, amyloidogenic polypeptides misfold and self assemble into soluble pre-fibrillar aggregates, i.e., protofibrils, which elongate and mature into insoluble fibrillar aggregates. An emerging class of chaperones, chaperone-like amyloid binding proteins (CLABPs), has been shown to interfere with aggregation of particular misfolded amyloid peptides or proteins. We have discovered that the calcium-binding protein nuclebindin-1 (NUCB1) is a novel CLABP. We show that NUCB1 inhibits aggregation of islet-amyloid polypeptide associated with type 2 diabetes mellitus, a-synuclein associated with Parkinson’s disease, transthyretin V30M mutant associated with familial amyloid polyneuropathy, and Aβ42 associated with Alzheimer’s disease by stabilizing their respective protofibril intermediates. Kinetic studies employing the modeling software AmyloFit show that NUCB1 affects both primary nucleation and secondary nucleation. We hypothesize that NUCB1 binds to the common cross-β-sheet structure of protofibril aggregates to “cap” and stabilize soluble macromolecular complexes. Transmission electron microscopy and atomic force microscopy were employed to characterize the size, shape and volume distribution of multiple sources of NUCB1-capped protofibrils. Interestingly, NUCB1 prevents Aβ42 protofibril toxicity in a cellular assay. NUCB1-stabilized amyloid protofibrils could be used as immunogens to prepare conformation-specific antibodies and as novel tools to develop screens for anti-protofibril diagnostics and therapeutics.
Collapse
|
19
|
Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat Commun 2016; 7:10948. [PMID: 27009901 PMCID: PMC4820785 DOI: 10.1038/ncomms10948] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/03/2016] [Indexed: 12/24/2022] Open
Abstract
It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation. Molecular chaperones are recognized to interfere with protein aggregation, yet the underlying mechanisms are largely unknown. Here, the authors develop a kinetic model that reveals the variety of distinct microscopic mechanisms through which molecular chaperones act to suppress amyloid formation.
Collapse
|
20
|
Wright MA, Aprile FA, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chem Commun (Camb) 2015; 51:14425-34. [PMID: 26328629 PMCID: PMC8597951 DOI: 10.1039/c5cc03689e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
Molecular chaperones are key components of the arsenal of cellular defence mechanisms active against protein aggregation. In addition to their established role in assisting protein folding, increasing evidence indicates that molecular chaperones are able to protect against a range of potentially damaging aspects of protein behaviour, including misfolding and aggregation events that can result in the generation of aberrant protein assemblies whose formation is implicated in the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The interactions between molecular chaperones and different amyloidogenic protein species are difficult to study owing to the inherent heterogeneity of the aggregation process as well as the dynamic nature of molecular chaperones under physiological conditions. As a consequence, understanding the detailed microscopic mechanisms underlying the nature and means of inhibition of aggregate formation remains challenging yet is a key objective for protein biophysics. In this review, we discuss recent results from biophysical studies on the interactions between molecular chaperones and protein aggregates. In particular, we focus on the insights gained from current experimental techniques into the dynamics of the oligomerisation process of molecular chaperones, and highlight the opportunities that future biophysical approaches have in advancing our understanding of the great variety of biological functions of this important class of proteins.
Collapse
Affiliation(s)
- Maya A. Wright
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Francesco A. Aprile
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Paolo Arosio
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Michele Vendruscolo
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Christopher M. Dobson
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| |
Collapse
|
21
|
Mora AK, Murudkar S, Singh PK, Nath S. Effect of fibrillation on the excited state dynamics of tryptophan in serum protein – A time-resolved fluorescence study. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Repalli J, Meruelo D. Screening strategies to identify HSP70 modulators to treat Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:321-31. [PMID: 25609918 PMCID: PMC4294646 DOI: 10.2147/dddt.s72165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease, the most common type of dementia, is a progressive brain disease that destroys cognitive function and eventually leads to death. In patients with Alzheimer’s disease, beta amyloids and tau proteins form plaques/oligomers and oligomers/tangles that affect the ability of neurons to function properly. Heat shock protein 70 (HSP70) has the ability to prevent aggregation/oligomerization of beta amyloid/tau proteins, making it a potential drug target. To determine this potential, it is essential that we have appropriate in vitro and cell-based assays that help identify specific molecules that affect this aggregation or oligomerization through HSP70. Potential drug candidates could be identified through a series of assays, starting with ATPase assays, followed by aggregation assays with enzymes/proteins and cell-based systems. ATPase assays are effective in identification of ATPase modulators but do not determine the effect of the molecule on beta amyloid and tau proteins. Molecules identified through ATPase assays are validated by thioflavin T aggregation assays in the presence of HSP70. These assays help uncover if a molecule affects beta amyloid and tau through HSP70, but are limited by their in vitro nature. Potential drug candidates are further validated through cell-based assays using mammalian, yeast, or bacterial cultures. However, while these assays are able to determine the effect of a specific molecule on beta amyloid and tau, they fail to determine whether the action is HSP70-dependent. The creation of a novel, direct assay that can demonstrate the antiaggregation effect of a molecule as well as its action through HSP70 would reduce the number of false-positive drug candidates and be more cost-effective and time-effective.
Collapse
Affiliation(s)
- Jayanthi Repalli
- Department of Pathology, New York University, Langone Medical Center, New York, NY, USA
| | - Daniel Meruelo
- Department of Pathology, New York University, Langone Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol Sci 2014; 35:127-35. [PMID: 24560688 DOI: 10.1016/j.tips.2013.12.005] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/17/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022]
Abstract
Protein misfolding diseases are becoming increasingly prevalent, yet there are very few effective pharmacological treatments. The onset and progression of these diseases is associated with the aberrant aggregation of normally soluble proteins and peptides into amyloid fibrils. Because genetic and physiological findings suggest that protein aggregation is a key event in pathogenesis, an attractive therapeutic strategy against this class of disorders is the search for compounds able to interfere with this process, in particular by suppressing the formation of soluble toxic oligomeric aggregates. In this review, we discuss how chemical kinetics can contribute to the fundamental understanding of the molecular mechanism of aggregation, and speculate on the implications for the development of therapeutic molecules that inhibit specific steps in the aggregation pathway that are crucial for preventing toxicity.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
24
|
Xu LQ, Wu S, Buell AK, Cohen SIA, Chen LJ, Hu WH, Cusack SA, Itzhaki LS, Zhang H, Knowles TPJ, Dobson CM, Welland ME, Jones GW, Perrett S. Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110410. [PMID: 23530260 PMCID: PMC3638396 DOI: 10.1098/rstb.2011.0410] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Collapse
Affiliation(s)
- Li-Qiong Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, , 15 Datun Road, Chaoyang, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Maj M, Ilhan A, Neziri D, Gartner W, Berggard T, Attems J, Base W, Wagner L. Age related changes in pancreatic beta cells: A putative extra-cerebral site of Alzheimer’s pathology. World J Diabetes 2011; 2:49-53. [PMID: 21537460 PMCID: PMC3083907 DOI: 10.4239/wjd.v2.i4.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 03/29/2011] [Accepted: 04/05/2011] [Indexed: 02/05/2023] Open
Abstract
Frequent concomitant manifestation of type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) has been recently demonstrated by epidemiological studies. This might be due to functional similarities between β-cells and neurons, such as secretion on demand of highly specific molecules in a tightly controlled fashion. An additional similarity represents the age-related alteration of hyperphosphorylated tau in AD patients. Similarly, alterations have been identified in β-cells of T2DM patients. The islet amyloid polypeptide has been associated with β-cell apoptosis. As a consequence of increasing age, the accumulation of highly modified proteins together with decreased regenerative potential might lead to increasing rates of apoptosis. Moreover, reduction of β-cell replication capabilities results in reduction of β-cell mass in mammals, simultaneously with impaired glucose tolerance. The new challenge is to learn much more about age-related protein modifications. This can lead to new treatment strategies for reducing the incidence of T2DM and AD.
Collapse
Affiliation(s)
- Magdalena Maj
- Magdalena Maj, Aysegul Ilhan, Dashurie Neziri, Wolfgang Gartner, Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|