1
|
Reda O, Monde K, Sugata K, Rahman A, Sakhor W, Rajib SA, Sithi SN, Tan BJY, Niimura K, Motozono C, Maeda K, Ono M, Takeuchi H, Satou Y. HIV-Tocky system to visualize proviral expression dynamics. Commun Biol 2024; 7:344. [PMID: 38509308 PMCID: PMC10954732 DOI: 10.1038/s42003-024-06025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.
Collapse
Affiliation(s)
- Omnia Reda
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wajihah Sakhor
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sharmin Nahar Sithi
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Koki Niimura
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Chihiro Motozono
- Division of Infection and Immunology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Hiroaki Takeuchi
- Department of High-risk Infectious Disease Control, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Horvath RM, Brumme ZL, Sadowski I. CDK8 inhibitors antagonize HIV-1 reactivation and promote provirus latency in T cells. J Virol 2023; 97:e0092323. [PMID: 37671866 PMCID: PMC10537590 DOI: 10.1128/jvi.00923-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2023] [Accepted: 07/15/2023] [Indexed: 09/07/2023] Open
Abstract
Latent HIV-1 provirus represents the barrier toward a cure for infection and is dependent upon the host RNA Polymerase (Pol) II machinery for reemergence. Here, we find that inhibitors of the RNA Pol II mediator kinases CDK8/19, Senexin A and BRD6989, inhibit induction of HIV-1 expression in response to latency-reversing agents and T cell signaling agonists. These inhibitors were found to impair recruitment of RNA Pol II to the HIV-1 LTR. Furthermore, HIV-1 expression in response to several latency reversal agents was impaired upon disruption of CDK8 by shRNA or gene knockout. However, the effects of CDK8 depletion did not entirely mimic CDK8/19 kinase inhibition suggesting that the mediator kinases are not functionally redundant. Additionally, treatment of CD4+ peripheral blood mononuclear cells isolated from people living with HIV-1 and who are receiving antiretroviral therapy with Senexin A inhibited induction of viral replication in response to T cell stimulation by PMA and ionomycin. These observations indicate that the mediator kinases, CDK8 and CDK19, play a significant role for regulation of HIV-1 transcription and that small molecule inhibitors of these enzymes may contribute to therapies designed to promote deep latency involving the durable suppression of provirus expression. IMPORTANCE A cure for HIV-1 infection will require novel therapies that can force elimination of cells that contain copies of the virus genome inserted into the cell chromosome, but which is shut off, or silenced. These are known as latently-infected cells, which represent the main reason why current treatment for HIV/AIDS cannot cure the infection because the virus in these cells is unaffected by current drugs. Our results indicate that chemical inhibitors of Cdk8 also inhibit the expression of latent HIV provirus. Cdk8 is an important enzyme that regulates the expression of genes in response to signals to which cells need to respond and which is produced by a gene that is frequently mutated in cancers. Our observations indicate that Cdk8 inhibitors may be employed in novel therapies to prevent expression from latent provirus, which might eventually enable infected individuals to cease treatment with antiretroviral drugs.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
4
|
Khan N, Halcrow PW, Afghah Z, Baral A, Geiger J, Chen X. HIV-1 Tat endocytosis and retention in endolysosomes affects HIV-1 Tat-induced LTR transactivation in astrocytes. FASEB J 2022; 36:e22184. [PMID: 35113458 PMCID: PMC9627655 DOI: 10.1096/fj.202101722r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Peter W. Halcrow
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Zahra Afghah
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Aparajita Baral
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Xuesong Chen
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| |
Collapse
|
5
|
Castaño-Arcila M, Aguilera LU, Rodríguez-González J. Modeling the intracellular dynamics of the dengue viral infection and the innate immune response. J Theor Biol 2020; 509:110529. [PMID: 33129952 DOI: 10.1016/j.jtbi.2020.110529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
The interplay between the dengue virus and the innate immune response is not fully understood. Here, we use deterministic and stochastic approaches to investigate the dynamics of the interaction between the interferon-mediated innate immune response and the dengue virus. We aim to develop a quantitative representation of these complex interactions and predict their system-level dynamics. Our simulation results predict bimodal and bistable dynamics that represent viral clearance and virus-producing states. Under normal conditions, we determined that the viral infection outcome is modulated by the innate immune response and the positive-strand viral RNA concentration. Additionally, we tested system perturbations by external stimulation, such as the direct induction of the innate immune response by interferon, and a therapeutic intervention consisting of the direct application of mRNA encoding for several interferon-stimulated genes. Our simulation results suggest optimal regimes for the studied intervention approaches.
Collapse
Affiliation(s)
- Mauricio Castaño-Arcila
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, CP 66600 Apodaca, NL, Mexico
| | - Luis U Aguilera
- Department of Chemical and Biological Engineering, Colorado State University Fort Collins, CO 80523, USA
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201, Parque PIIT, CP 66600 Apodaca, NL, Mexico.
| |
Collapse
|
6
|
A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat. J Virol 2020; 94:JVI.00503-20. [PMID: 32669338 DOI: 10.1128/jvi.00503-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The magnitude of transcription factor binding site variation emerging in HIV-1 subtype C (HIV-1C), especially the addition of NF-κB motifs by sequence duplication, makes the examination of transcriptional silence challenging. How can HIV-1 establish and maintain latency despite having a strong long terminal repeat (LTR)? We constructed panels of subgenomic reporter viral vectors with varying copy numbers of NF-κB motifs (0 to 4 copies) and examined the profile of latency establishment in Jurkat cells. Surprisingly, we found that the stronger the viral promoter, the faster the latency establishment. Importantly, at the time of commitment to latency and subsequent points, Tat levels in the cell were not limiting. Using highly sensitive strategies, we demonstrate the presence of Tat in the latent cell, recruited to the latent LTR. Our data allude, for the first time, to Tat establishing a negative feedback loop during the late phases of viral infection, leading to the rapid silencing of the viral promoter.IMPORTANCE Over the past 10 to 15 years, HIV-1 subtype C (HIV-1C) has been evolving rapidly toward gaining stronger transcriptional activity by sequence duplication of major transcription factor binding sites. The duplication of NF-κB motifs is unique and exclusive to HIV-1C, a property not shared with any of the other eight HIV-1 genetic families. What mechanism(s) does HIV-1C employ to establish and maintain transcriptional silence despite the presence of a strong promoter and concomitant strong, positive transcriptional feedback is the primary question that we attempted to address in the present manuscript. The role that Tat plays in latency reversal is well established. Our work with the most common HIV-1 subtype, HIV-1C, offers crucial leads toward Tat possessing a dual role in serving as both a transcriptional activator and repressor at different phases of viral infection of the cell. The leads that we offer through the present work have significant implications for HIV-1 cure research.
Collapse
|
7
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
8
|
Giaretta A, Toffolo GM, Elston TC. Stochastic modeling of human papillomavirusearly promoter gene regulation. J Theor Biol 2020; 486:110057. [PMID: 31672406 PMCID: PMC6937396 DOI: 10.1016/j.jtbi.2019.110057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
High risk forms of human papillomaviruses (HPVs) promote cancerous lesions and are implicated in almost all cervical cancer. Of particular relevance to cancer progression is regulation of the early promoter that controls gene expression in the initial phases of infection and can eventually lead to pre-cancer progression. Our goal was to develop a stochastic model to investigate the control mechanisms that regulate gene expression from the HPV early promoter. Our model integrates modules that account for transcriptional, post-transcriptional, translational and post-translational regulation of E1 and E2 early genes to form a functioning gene regulatory network. Each module consists of a set of biochemical steps whose stochastic evolution is governed by a chemical Master Equation and can be simulated using the Gillespie algorithm. To investigate the role of noise in gene expression, we compared our stochastic simulations with solutions to ordinary differential equations for the mean behavior of the system that are valid under the conditions of large molecular abundances and quasi-equilibrium for fast reactions. The model produced results consistent with known HPV biology. Our simulation results suggest that stochasticity plays a pivotal role in determining the dynamics of HPV gene expression. In particular, the combination of positive and negative feedback regulation generates stochastic bursts of gene expression. Analysis of the model reveals that regulation at the promoter affects burst amplitude and frequency, whereas splicing is more specialized to regulate burst frequency. Our results also suggest that splicing enhancers are a significant source of stochasticity in pre-mRNA abundance and that the number of viruses infecting the host cell represents a third important source of stochasticity in gene expression.
Collapse
Affiliation(s)
- Alberto Giaretta
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, United States of America.
| |
Collapse
|
9
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
10
|
Morton EL, Forst CV, Zheng Y, DePaula-Silva AB, Ramirez NGP, Planelles V, D'Orso I. Transcriptional Circuit Fragility Influences HIV Proviral Fate. Cell Rep 2019; 27:154-171.e9. [PMID: 30943398 PMCID: PMC6461408 DOI: 10.1016/j.celrep.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 01/12/2023] Open
Abstract
Transcriptional circuit architectures in several organisms have been evolutionarily selected to dictate precise given responses. Unlike these cellular systems, HIV is regulated through a complex circuit composed of two successive phases (host and viral), which create a positive feedback loop facilitating viral replication. However, it has long remained unclear whether both phases operate identically and to what extent the host phase influences the entire circuit. Here, we report that, although the host phase is regulated by a checkpoint whereby KAP1 mediates transcription activation, the virus evolved a minimalist system bypassing KAP1. Given the complex circuit's architecture, cell-to-cell KAP1 fluctuations impart heterogeneity in the host transcriptional responses, thus affecting the feedback loop. Mathematical modeling of a complete circuit reveals how these oscillations ultimately influence homogeneous reactivation potential of a latent virus. Thus, although HIV drives molecular innovation to fuel robust gene activation, it experiences transcriptional fragility, thereby influencing viral fate and cure efforts.
Collapse
Affiliation(s)
- Emily L Morton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yue Zheng
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ana B DePaula-Silva
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nora-Guadalupe P Ramirez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Hashemi P, Barreto K, Bernhard W, Lomness A, Honson N, Pfeifer TA, Harrigan PR, Sadowski I. Compounds producing an effective combinatorial regimen for disruption of HIV-1 latency. EMBO Mol Med 2019; 10:160-174. [PMID: 29246970 PMCID: PMC5838563 DOI: 10.15252/emmm.201708193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has improved the outlook for the HIV epidemic, but does not provide a cure. The proposed “shock‐and‐kill” strategy is directed at inducing latent HIV reservoirs, which may then be purged via boosted immune response or targeting infected cells. We describe five novel compounds that are capable of reversing HIV latency without affecting the general T‐cell activation state. The new compounds exhibit synergy for reactivation of latent provirus with other latency‐reversing agents (LRAs), in particular ingenol‐3‐angelate/PEP005. One compound, designated PH02, was efficient at reactivating viral transcription in several cell lines bearing reporter HIV‐1 at different integration sites. Furthermore, it was capable of reversing latency in resting CD4+ T lymphocytes from latently infected aviremic patient cells on HAART, while producing minimal cellular toxicity. The combination of PH02 and PEP005 produces a strong synergistic effect for reactivation, as demonstrated through a quantitative viral outgrowth assay (qVOA), on CD4+ T lymphocytes from HIV‐1‐infected individuals. We propose that the PH02/PEP005 combination may represent an effective novel treatment for abrogating persistent HIV‐1 infection.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kris Barreto
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Bernhard
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Adam Lomness
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nicolette Honson
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Tom A Pfeifer
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Abstract
The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The "shock-and-kill" strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat-transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the "block and lock" strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.
Collapse
|
13
|
Cotterell J, Neely GG. A strategy for effective latent HIV reactivation using subtherapeutic drug doses. Sci Rep 2017; 7:16644. [PMID: 29192171 PMCID: PMC5709488 DOI: 10.1038/s41598-017-00097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2014] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
Cell state switches underlie a plethora of biological phenomena and disease treatment strategies. Hence the ability to efficiently switch states in a chosen direction is of central importance in a number of scenarios. Increasing the concentration of an effector that results in a given switch is often limited by side effects. Approaches are thus increasingly sought to bypass these constraints, increasing the frequency of state switching without increasing the frequency of the side effect. Here, we employ dynamical systems theory to uncover a simple strategy as to how to maximize the probability of reactivating latent Human immunodeficiency virus (HIV) whilst maintaining minimal side effects. We demonstrate that continuous supply of an effector is significantly more likely to result in a switch with minimal side effects than the same effector supplied in temporally discrete doses. Importantly this continual dosage is likely to occur far below the Minimum effective dose at a concentration that has classically been thought subtherapeutic. We therefore suggest that in many interventional settings there exists potential to reduce drug dose much further than has previously been thought possible yet still maintaining efficacy.
Collapse
Affiliation(s)
- James Cotterell
- The Garvan Institute for Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - G Gregory Neely
- The Garvan Institute for Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.,The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
14
|
Jung U, Takahashi M, Rossi JJ, Burnett JC. LGIT In Vitro Latency Model in Primary and T Cell Lines to Test HIV-1 Reactivation Compounds. Methods Mol Biol 2016; 1354:255-264. [PMID: 26714717 DOI: 10.1007/978-1-4939-3046-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
Persistent latent HIV-1 reservoirs pose a major barrier for combinatorial antiretroviral therapy (cART) to achieve eradication of the virus. A variety of mechanisms likely contribute to HIV-1 persistence, including establishment of post-integration latency in resting CD4+ T-lymphocytes, the proliferation of these latently infected cells, and the induced or spontaneous reactivation of latent virus. To elucidate the mechanisms of latency and to investigate therapeutic strategies for reactivating and purging the latent reservoir, investigators have developed in vitro models of HIV-1 latency using primary CD4+ T-lymphocytes and CD4+ T-cell lines. Several types of in vitro latency models range from replication-competent to single-round, replication-deficient viruses exhibiting different degrees of viral genomic deletion. Working under the hypothesis that HIV-1 post-integration latency is directly linked to HIV-1 promoter activity, which can be obscured by additional proteins expressed during replication, we focus here on the creation of latently infected primary human T-cells and cell lines through the single-round, replication deficient HIV-1 LGIT model. In this model the long terminal repeat (LTR) of the HIV-1 virus drives a cassette of GFP-IRES-Tat that allows testing of reactivating components and initiates a positive feedback loop through Tat expression.
Collapse
Affiliation(s)
- Ulrike Jung
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Mayumi Takahashi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Fox North, 1001A, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - John C Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Fox North, 1001A, 1500 Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
15
|
Distinct promoter activation mechanisms modulate noise-driven HIV gene expression. Sci Rep 2015; 5:17661. [PMID: 26666681 PMCID: PMC4678399 DOI: 10.1038/srep17661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.
Collapse
|
16
|
Abstract
To preserve fitness in unpredictable, fluctuating environments, a range of biological systems probabilistically generate variant phenotypes--a process often referred to as 'bet-hedging', after the financial practice of diversifying assets to minimize risk in volatile markets. The molecular mechanisms enabling bet-hedging have remained elusive. Here, we review how HIV makes a bet-hedging decision between active replication and proviral latency, a long-lived dormant state that is the chief barrier to an HIV cure. The discovery of a virus-encoded bet-hedging circuit in HIV revealed an ancient evolutionary role for latency and identified core regulatory principles, such as feedback and stochastic 'noise', that enable cell-fate decisions. These core principles were later extended to fate selection in stem cells and cancer, exposed new therapeutic targets for HIV, and led to a potentially broad strategy of using 'noise modulation' to redirect cell fate.
Collapse
Affiliation(s)
- Leor S Weinberger
- Gladstone Institutes (Virology and Immunology), Department of Biochemistry & Biophysics, University of California, San Francisco, United States.
| |
Collapse
|
17
|
Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A hardwired HIV latency program. Cell 2015; 160:990-1001. [PMID: 25723172 DOI: 10.1016/j.cell.2015.02.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Biological circuits can be controlled by two general schemes: environmental sensing or autonomous programs. For viruses such as HIV, the prevailing hypothesis is that latent infection is controlled by cellular state (i.e., environment), with latency simply an epiphenomenon of infected cells transitioning from an activated to resting state. However, we find that HIV expression persists despite the activated-to-resting cellular transition. Mathematical modeling indicates that HIV's Tat positive-feedback circuitry enables this persistence and strongly controls latency. To overcome the inherent crosstalk between viral circuitry and cellular activation and to directly test this hypothesis, we synthetically decouple viral dependence on cellular environment from viral transcription. These circuits enable control of viral transcription without cellular activation and show that Tat feedback is sufficient to regulate latency independent of cellular activation. Overall, synthetic reconstruction demonstrates that a largely autonomous, viral-encoded program underlies HIV latency—potentially explaining why cell-targeted latency-reversing agents exhibit incomplete penetrance.
Collapse
Affiliation(s)
- Brandon S Razooky
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Anand Pai
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Katherine Aull
- Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Igor M Rouzine
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Leor S Weinberger
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; QB3, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158.
| |
Collapse
|
18
|
Aguilera LU, Rodríguez-González J. Studying HIV latency by modeling the interaction between HIV proteins and the innate immune response. J Theor Biol 2014; 360:67-77. [DOI: 10.1016/j.jtbi.2014.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2013] [Revised: 05/30/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
19
|
Zhang HS, Chen XY, Wu TC, Zhang FJ. Tanshinone II A Inhibits Tat-Induced HIV-1 Transactivation Through Redox-Regulated AMPK/Nampt Pathway. J Cell Physiol 2014; 229:1193-201. [DOI: 10.1002/jcp.24552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Hong-Sheng Zhang
- College of Life Science & Bioengineering; Beijing University of Technology; Pingleyuan 100# District of Chaoyang Beijing China
| | - Xin-Yu Chen
- College of Life Science & Bioengineering; Beijing University of Technology; Pingleyuan 100# District of Chaoyang Beijing China
| | - Tong-Chao Wu
- College of Life Science & Bioengineering; Beijing University of Technology; Pingleyuan 100# District of Chaoyang Beijing China
| | - Feng-Juan Zhang
- College of Life Science & Bioengineering; Beijing University of Technology; Pingleyuan 100# District of Chaoyang Beijing China
| |
Collapse
|
20
|
Sherrill-Mix S, Lewinski MK, Famiglietti M, Bosque A, Malani N, Ocwieja KE, Berry CC, Looney D, Shan L, Agosto LM, Pace MJ, Siliciano RF, O'Doherty U, Guatelli J, Planelles V, Bushman FD. HIV latency and integration site placement in five cell-based models. Retrovirology 2013; 10:90. [PMID: 23953889 PMCID: PMC3765678 DOI: 10.1186/1742-4690-10-90] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2013] [Accepted: 08/12/2013] [Indexed: 02/06/2023] Open
Abstract
Background HIV infection can be treated effectively with antiretroviral agents, but the persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from infected individuals. The chromosomal environment of integrated proviruses has been proposed to influence HIV latency, but the determinants of transcriptional repression have not been fully clarified, and it is unclear whether the same molecular mechanisms drive latency in different cell culture models. Results Here we compare data from five different in vitro models of latency based on primary human T cells or a T cell line. Cells were infected in vitro and separated into fractions containing proviruses that were either expressed or silent/inducible, and integration site populations sequenced from each. We compared the locations of 6,252 expressed proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized logistic regression model linking proviral expression status to genomic features revealed no predictors of latency that performed better than chance, though several genomic features were significantly associated with proviral expression in individual models. Proviruses in the same chromosomal region did tend to share the same expressed or silent/inducible status if they were from the same cell culture model, but not if they were from different models. Conclusions The silent/inducible phenotype appears to be associated with chromosomal position, but the molecular basis is not fully clarified and may differ among in vitro models of latency.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
A better understanding of the host cell protein complex that helps HIV replicate inside cells offers the possibility of new therapeutic targets.
Collapse
Affiliation(s)
- Christopher P Hill
- is at the Department of Biochemistry , University of Utah School of Medicine , Salt Lake City , United States
| | | |
Collapse
|
22
|
Konkoli Z, Jesorka A. Fluctuations in Tat copy number when it counts the most: a possible mechanism to battle the HIV latency. Theor Biol Med Model 2013; 10:16. [PMID: 23497153 PMCID: PMC3686706 DOI: 10.1186/1742-4682-10-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2012] [Accepted: 02/12/2013] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 virus can enter a dormant state and become inactive, which reduces accessibility by antiviral drugs. We approach this latency problem from an unconventional point of view, with the focus on understanding how intrinsic chemical noise (copy number fluctuations of the Tat protein) can be used to assist the activation process of the latent virus. Several phase diagrams have been constructed in order to visualize in which regions of the parameter space noise can drive the activation process. Essential to the study is the use of a hyperbolic coordinate system, which greatly facilitates quantification of how the various reaction rate combinations shape the noise behavior of the Tat protein feedback system. We have designed a mathematical manual of how to approach the problem of activation quantitatively, and introduce the notion of an “operating point” of the virus. For both noise-free and noise-based strategies we show how operating point off-sets induce changes in the number of Tat molecules. The major result of the analysis is that for every noise-free strategy there is a noise-based strategy that requires lower dosage, but achieves the same anti-latency effect. It appears that the noise-based activation is advantageous for every operating point.
Collapse
Affiliation(s)
- Zoran Konkoli
- Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, Gothenburg, Sweden.
| | | |
Collapse
|
23
|
Razooky B, Gutierrez E, Terry VH, Spina CA, Groisman A, Weinberger L. Microwell devices with finger-like channels for long-term imaging of HIV-1 expression kinetics in primary human lymphocytes. LAB ON A CHIP 2012; 12:4305-12. [PMID: 22976503 PMCID: PMC3589574 DOI: 10.1039/c2lc40170c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
A major obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1) is a sub-population of latently infected CD4(+) T lymphocytes. The cellular and viral mechanisms regulating HIV-1 latency are not completely understood, and a promising technique for probing the regulation of HIV-1 latency is single-cell time-lapse microscopy. Unfortunately, CD4(+) T lymphocytes rapidly migrate on substrates and spontaneously detach, making them exceedingly difficult to track, hampering single-cell level studies. To overcome these problems, we built microdevices with a three-level architecture. The devices contain arrays of finger-like microchannels to "corral" T-lymphocyte migration, round wells that are accessible to pipetting, and microwells connecting the microchannels with the round wells. T lymphocytes that are loaded into a well first settle into the microwells and then to microchannels by gravity. Within the microchannels, T lymphocytes are in favorable culture conditions because they are in physical contact with each other, under no mechanical stress, and fed from a large reservoir of fresh medium. Most importantly, T lymphocytes in the microchannels are not exposed to any flow and their random migration is restricted to a nearly one-dimensional region, greatly facilitating long-term tracking of multiple cells in time-lapse microscopy. The devices have up to nine separate round wells, making it possible to test up to nine different cell lines or medium conditions in a single experiment. Activated primary CD4(+) T lymphocytes, resting primary CD4(+) T lymphocytes, and THP-1 monocytic leukemia cells loaded into the devices maintained viability over multiple days. The devices were used to track the fluorescence level of individual primary CD4(+) T lymphocytes expressing green fluorescent protein (GFP) for up to 60 hours (h) and to quantify single-cell gene-expression kinetics of four different HIV-1 variants. The kinetics of GFP expression from the lentiviruses in the primary CD4(+) T lymphocytes agree with previous measurements of these lentiviral vectors in the immortalized Jurkat T lymphocyte cell line. The proposed devices offer a simple, robust approach to long-term single-cell studies of environmentally sensitive primary lymphocytes.
Collapse
Affiliation(s)
- Brandon Razooky
- Department of Chemistry and Biochemistry, San Diego, CA 92161
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158
- Biophysics Graduate Group, University of California, San Francisco, CA 94158
| | | | - Valeri H. Terry
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158
| | - Celsa A. Spina
- Department of Pathology, San Diego, CA 92161
- VA San Diego Healthcare System, San Diego, CA 92161
| | | | - Leor Weinberger
- Department of Chemistry and Biochemistry, San Diego, CA 92161
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
24
|
Abstract
Thirteen years ago, human cyclin T1 was identified as part of the positive transcription elongation factor b (P-TEFb) and the long-sought host cofactor for the HIV-1 transactivator Tat. Recent years have brought new insights into the intricate regulation of P-TEFb function and its relationship with Tat, revealing novel mechanisms for controlling HIV transcription and fueling new efforts to overcome the barrier of transcriptional latency in eradicating HIV. Moreover, the improved understanding of HIV and Tat forms a basis for studying transcription elongation control in general. Here, we review advances in HIV transcription research with a focus on the growing family of cellular P-TEFb complexes, structural insights into the interactions between Tat, P-TEFb, and TAR RNA, and the multifaceted regulation of these interactions by posttranscriptional modifications of Tat.
Collapse
|
25
|
Singh A, Razooky BS, Dar RD, Weinberger LS. Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. Mol Syst Biol 2012; 8:607. [PMID: 22929617 PMCID: PMC3435505 DOI: 10.1038/msb.2012.38] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022] Open
Abstract
Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady-state measurements of variance in protein levels are insufficient to discriminate between these two mechanisms, and mRNA single-molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/death fluctuations from promoter fluctuations by measuring transient changes in protein variance and that can operate in the regime of high molecular numbers. Conceptually, the method exploits the fact that transcriptional blockage results in more rapid increases in protein variability when mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate the utility of this perturbation approach in the HIV-1 model system. Our results support promoter fluctuations as the primary noise source in HIV-1 expression. This study illustrates a relatively simple method that complements mRNA smFISH hybridization and can be used with existing GFP-tagged libraries to include or exclude alternate sources of noise in gene expression.
Collapse
Affiliation(s)
- Abhyudai Singh
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Brandon S Razooky
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
- Biophysics Graduate Group, University of California, San Francisco, CA, USA
- The Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Roy D Dar
- The Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Center for Systems and Synthetic Biology, University of California, San Francisco, CA, USA
| | - Leor S Weinberger
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
- The Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Center for Systems and Synthetic Biology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Ott M. HIV never ceases to surprise: Innovative methods in the quest for a cure. Methods 2011; 53:1-2. [PMID: 21251605 DOI: 10.1016/j.ymeth.2010.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/28/2010] [Indexed: 11/16/2022] Open
|