1
|
Lee G, Muir TW. Distinct phases of cellular signaling revealed by time-resolved protein synthesis. Nat Chem Biol 2024; 20:1353-1360. [PMID: 38977789 DOI: 10.1038/s41589-024-01677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here we deploy proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from premade parts. The modularity of the strategy allows for the addition or removal of various control elements as a function of the splicing reaction, in the process permitting the cellular location and/or activity state of starting materials and products to be differentiated. The approach is applied to a diverse set of proteins, including the kinase oncofusions breakpoint cluster region-Abelson (BCR-ABL) and DNAJ-PKAc where dynamic cellular phosphorylation events are dissected, revealing distinct phases of signaling and identifying molecular players connecting the oncofusion to cancer transformation as new therapeutic targets of cancer cells. We envision that the tools and control strategies developed herein will allow the activity of both naturally occurring and designer proteins to be harnessed for basic and applied research.
Collapse
Affiliation(s)
- Gihoon Lee
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Wu Y, Xu S, Ding F, Zhang W, Liu H. A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. J Funct Biomater 2024; 15:185. [PMID: 39057306 PMCID: PMC11277842 DOI: 10.3390/jfb15070185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, a new type of FE-1 COF material is prepared by a reversible imine condensation reaction with diaminoferrocene and diaminodiformaldehyde as materials. The material is connected by imine bonds to form a COF skeleton, and the presence of plenty of nitrogen-containing groups gives the material good hydrophilicity; the presence of metal Fe ions provides the material application potential in the enrichment of phosphopeptides. According to the different binding abilities of N-glycopeptide and phosphopeptide on FE-1 COF, it can simultaneously enrich N-glycopeptide and phosphopeptide through different elution conditions to realize its controllable and selective enrichment. Using the above characteristics, 18 phosphopeptides were detected from α-casein hydrolysate, 8 phosphopeptides were detected from β-casein hydrolysate and 21 glycopeptides were detected from IgG hydrolysate. Finally, the gradual elution strategy was used; 16 phosphopeptides and 19 glycopeptides were detected from the α-casein hydrolysate and IgG hydrolysate. The corresponding glycopeptides and phosphopeptides were identified from the human serum. It proves that the FE-1 COF material has a good enrichment effect on phosphopeptides and glycopeptides.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Sen Xu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Lee G, Muir TW. Distinct phases of cellular signaling revealed by time-resolved protein synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548208. [PMID: 37503273 PMCID: PMC10369872 DOI: 10.1101/2023.07.10.548208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here, we deploy a proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from pre-made parts. The modularity of the strategy allows for the addition or removal of various control elements as a function of the splicing reaction, in the process permitting the cellular location and/or activity state of starting materials and products to be differentiated. The approach is applied to a diverse set of proteins, including the kinase oncofusions BCR/ABL and DNAJB1/PRKACA where dynamic cellular phosphorylation events are dissected, revealing distinct phases of signaling and identifying molecular players connecting the oncofusion to cancer transformation as novel therapeutic targets of cancer cells. We envision that the tools and control strategies developed herein will allow the activity of both naturally occurring and designer proteins to be harnessed for basic and applied research.
Collapse
Affiliation(s)
- Gihoon Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Urban J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 2022; 1199:338857. [DOI: 10.1016/j.aca.2021.338857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
|
5
|
Pan Y, Zhang C, Xiao R, Zhang L, Zhang W. Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides. Anal Chim Acta 2021; 1158:338412. [DOI: 10.1016/j.aca.2021.338412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023]
|
6
|
Iqbal SM, Aufy M, Shabbir W, Lemmens-Gruber R. Identification of phosphorylation sites and binding pockets for modulation of Na V 1.5 channel by Fyn tyrosine kinase. FEBS J 2018; 285:2520-2530. [PMID: 29734505 DOI: 10.1111/febs.14496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022]
Abstract
Cardiac sodium channel NaV 1.5 is the predominant form of sodium channels in cardiomyocytes, which exists as a macromolecular complex and interacts with multiple protein partners. Fyn kinase is one of the interacting proteins which colocalize, phosphorylate and modulate the NaV 1.5 channel. To elaborate this interaction we created expression vectors for the N-terminal, intracellular loop, and C-terminal regions of the NaV 1.5 channel, to express in HEK-293 cells. By co-immunoprecipitation and anti-phosphotyrosine blotting, we identified proline-rich binding sites for Fyn kinase in the N-terminal, IC-loopi-ii and C-terminal. After binding, Fyn kinase phosphorylates tyrosine residues present in the N- and C-terminal, which produce a depolarizing shift of 7 mV in fast inactivation. The functional relevance of these binding and phosphorylation sites was further underpinned by creating full length mutants masking these sites sequentially. An activation and inactivation curves were recorded with or without co-expressed Fyn kinase which indicates that phosphorylation of tyrosine residues at positions 68, 87, 112 in the N-terminal and at positions 1811 and 1889 in the C-terminal creates a depolarizing shift in fast inactivation of NaV 1.5 channel.
Collapse
Affiliation(s)
- Shahid Muhammad Iqbal
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,Drugs Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Bllaci L, Torsetnes SB, Wierzbicka C, Shinde S, Sellergren B, Rogowska-Wrzesinska A, Jensen ON. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO2 Affinity Resins. Anal Chem 2017; 89:11332-11340. [DOI: 10.1021/acs.analchem.7b02091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Loreta Bllaci
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Silje B. Torsetnes
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Celina Wierzbicka
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Sudhirkumar Shinde
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| |
Collapse
|
8
|
Abstract
TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Arthur R Salomon
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
9
|
Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics 2016; 17. [PMID: 27775219 DOI: 10.1002/pmic.201600079] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Given superior analytical features, MS proteomics is well suited for the basic investigation and clinical diagnosis of human disease. Modern MS enables detailed functional characterization of the pathogenic biochemical processes, as achieved by accurate and comprehensive quantification of proteins and their regulatory chemical modifications. Here, we describe how high-accuracy MS in combination with high-resolution chromatographic separations can be leveraged to meet these analytical requirements in a mechanism-focused manner. We review the quantification methods capable of producing accurate measurements of protein abundance and posttranslational modification stoichiometries. We then discuss how experimental design and chromatographic resolution can be leveraged to achieve comprehensive functional characterization of biochemical processes in complex biological proteomes. Finally, we describe current approaches for quantitative analysis of a common functional protein modification: reversible phosphorylation. In all, current instrumentation and methods of high-resolution chromatography and MS proteomics are poised for immediate translation into improved diagnostic strategies for pediatric and adult diseases.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatrics, Weill Cornell College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Giorgianni F, Beranova-Giorgianni S. Phosphoproteome Discovery in Human Biological Fluids. Proteomes 2016; 4:proteomes4040037. [PMID: 28248247 PMCID: PMC5260970 DOI: 10.3390/proteomes4040037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation plays a critical role in regulating protein function and thus influences a vast spectrum of cellular processes. With the advent of modern bioanalytical technologies, examination of protein phosphorylation on a global scale has become one of the major research areas. Phosphoproteins are found in biological fluids and interrogation of the phosphoproteome in biological fluids presents an exciting opportunity for discoveries that hold great potential for novel mechanistic insights into protein function in health and disease, and for translation to improved diagnostic and therapeutic approaches for the clinical setting. This review focuses on phosphoproteome discovery in selected human biological fluids: serum/plasma, urine, cerebrospinal fluid, saliva, and bronchoalveolar lavage fluid. Bioanalytical workflows pertinent to phosphoproteomics of biological fluids are discussed with emphasis on mass spectrometry-based approaches, and summaries of studies on phosphoproteome discovery in major fluids are presented.
Collapse
Affiliation(s)
- Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
11
|
Abstract
Protein phosphorylation is a ubiquitous posttranslational modification, which is heavily involved in signal transduction. Misregulation of protein phosphorylation is often associated with a decrease in cell viability and complex diseases such as cancer. The dynamic and low abundant nature of phosphorylated proteins makes studying phosphoproteome a challenging task. In this review, we summarize state of the art proteomic techniques to study and quantify peptide phosphorylation in biological systems and discuss their limitations. Due to its short-lived nature, the phosphorylation event cannot be precisely traced in a heterogonous cell population, which highlights the importance of analyzing phosphorylation events at the single cell level. Mainly, we focus on the methodical and instrumental developments in proteomics and nanotechnology, which will help to build more accurate and robust systems for the feasibility of phosphorylation analysis at the single cell level. We propose that an automated and miniaturized construction of analytical systems holds the key to the future of phosphoproteomics; therefore, we highlight the benchmark studies in this direction. Having advanced and automated microfluidic chip LC systems will allow us to analyze single-cell phosphoproteomics and quantitatively compare it with others. The progress in the microfluidic chip LC systems and feasibility of the single-cell phosphoproteomics will be beneficial for early diagnosis and detection of the treatment response of many crucial diseases.
Collapse
Affiliation(s)
- Ayse Nur Polat
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey.
| | | |
Collapse
|
12
|
López Villar E, Madero L, A López-Pascual J, C Cho W. Study of phosphorylation events for cancer diagnoses and treatment. Clin Transl Med 2015; 4:59. [PMID: 26055493 PMCID: PMC4460185 DOI: 10.1186/s40169-015-0059-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023] Open
Abstract
The activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation and survival, is orchestrated by protein kinases via phosphorylation. A critical issue is the study of the mechanisms of cancer cells for the development of more effective drugs. With the application of the new proteomic technologies, together with the advancement in the sequencing of the human proteome, patients will therefore be benefited by the discovery of novel therapeutic and/or diagnostic protein targets. Furthermore, the advances in proteomic approaches and the Human Proteome Organization (HUPO) have opened a new door which is helpful in the identification of patients at risk and towards improving current therapies. Modification of the signaling-networks via mutations or abnormal protein expression underlies the cause or consequence of many diseases including cancer. Resulting data is used to reveal connections between genes proteins and compounds and the related molecular pathways for underlining disease states. As a delegate of HUPO, for human proteome on children assays and studies, we, at Hospital Universitario Niño Jesús, are seeking to support the human proteome in this context. Clinical goals have to be clearly established and proteomics experts have to set up the appropriate proteomic strategy, which coupled to bioinformatics will make it possible to achieve new therapies for patients with poor prognosis. We envision to combine our up-coming data to the HUPO organization in order to support international efforts to advance the cure of cancer disease.
Collapse
Affiliation(s)
- Elena López Villar
- Oncohematology of Children Department, Hospital Universitario Infantil Niño Jesús, Av. Menéndez Pelayo 65, Madrid, Spain,
| | | | | | | |
Collapse
|
13
|
Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134050. [PMID: 26090378 PMCID: PMC4450212 DOI: 10.1155/2015/134050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.
Collapse
|
14
|
Wang MC, Lee YH, Liao PC. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2014; 407:1343-56. [PMID: 25486920 DOI: 10.1007/s00216-014-8352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/25/2023]
Abstract
Tyrosine phosphorylation is an important regulator of signaling in cellular pathways, and dysregulated tyrosine phosphorylation causes several diseases. Mass spectrometry has revealed the importance of global phosphoproteomic characterization. Analysis of tyrosine phosphorylation by studying the mass-spectrometry (MS)-determined phosphoproteome remains difficult because of the relatively low abundance of tyrosine phosphoproteins. To effectively evaluate tyrosine-phosphopeptide enrichment and reduce ion suppression from non-phosphorylated peptides in MS analysis, three trypsin-digested BSA peptides and 14 standard phosphopeptides, including six tyrosine phosphopeptides, four serine phosphopeptides, and four threonine phosphopeptides, were subjected to titanium dioxide immunoaffinity-based enrichment and also to combined enrichment using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS) analyses. The enrichment factors were evaluated to determine the efficiency of each enrichment procedure. Comparison of five optimized enrichment methods, including TiO2-based immunoaffinity purification in Tris and MOPS buffer systems, TiO2-immunoaffinity enrichment, and immunoaffinity-TiO2 enrichment for total tyrosine, serine and threonine phosphopeptides, revealed that the order of the enrichment factors for total tyrosine phosphopeptides is: (i) immunoaffinity-TiO2 (enrichment factor = 38,244), (ii) TiO2-immunoaffinity (enrichment factor = 24,987), (iii) TiO2 micro-column (enrichment factor = 10,305), (iv) immunoaffinity in Tris buffer system (enrichment factor = 1450), and (v) immunoaffinity in the MOPS buffer system (enrichment factor = 32). These results reveal that an alternative enrichment scheme before use of a TiO2 micro-column, using immunoaffinity 4G10 and PY99 antibody enrichment under optimized conditions, can provide greater selectivity for tyrosine-phosphopeptide enrichment.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan, Republic of China
| | | | | |
Collapse
|
15
|
de Graaf EL, Kaplon J, Zhou H, Heck AJR, Peeper DS, Altelaar AFM. Phosphoproteome dynamics in onset and maintenance of oncogene-induced senescence. Mol Cell Proteomics 2014; 13:2089-100. [PMID: 24961811 DOI: 10.1074/mcp.m113.035436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the BRAF(V600E) oncoprotein is known to cause benign lesions, such as melanocytic nevi (moles). Despite the oncogenic function of mutant BRAF, these lesions are arrested by a cell-autonomous mechanism called oncogene-induced senescence. Infrequently, nevi can progress to malignant melanoma, through mechanisms that are incompletely understood. To gain more insight into this vital tumor-suppression mechanism, we performed a mass-spectrometry-based screening of the proteome and phosphoproteome in cycling and senescent cells and in cells with abrogated senescence. Proteome analysis of senescent cells revealed the up-regulation of established senescence biomarkers, including specific cytokines, but also several proteins not previously associated with senescence, including extracellular matrix-interacting. Using both general and targeted phosphopeptide enrichment by Ti(4+)-IMAC and phosphotyrosine antibody enrichment, we identified over 15,000 phosphorylation sites. Among the regulated phosphorylation sites we encountered components of the interleukin, BRAF/MAPK, and CDK-retinoblastoma pathways and several other factors. The extensive proteome and phosphoproteome dataset of BRAF(V600E)-expressing senescent cells provides molecular clues as to how oncogene-induced senescence is initiated, maintained, or evaded, serving as a comprehensive proteomic basis for functional validation.
Collapse
Affiliation(s)
- Erik L de Graaf
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands; ¶Center for Biomedical Genetics, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joanna Kaplon
- ‖Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Houjiang Zhou
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands; ¶Center for Biomedical Genetics, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniel S Peeper
- ‖Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - A F Maarten Altelaar
- From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| |
Collapse
|
16
|
AB S, Srivastava P, Shivaji S. Understanding the pathogenesis of endometriosis through proteomics: Recent advances and future prospects. Proteomics Clin Appl 2013; 8:86-98. [DOI: 10.1002/prca.201200082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Siva AB
- Centre for Cellular and Molecular Biology (Council for Scientific and Industrial Research); Hyderabad India
| | - Priyanka Srivastava
- Centre for Cellular and Molecular Biology (Council for Scientific and Industrial Research); Hyderabad India
| | - Sisinthy Shivaji
- Centre for Cellular and Molecular Biology (Council for Scientific and Industrial Research); Hyderabad India
| |
Collapse
|
17
|
Di Palma S, Zoumaro-Djayoon A, Peng M, Post H, Preisinger C, Munoz J, Heck AJ. Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography. J Proteomics 2013; 91:331-7. [DOI: 10.1016/j.jprot.2013.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/07/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
18
|
Epithelial wounds induce differential phosphorylation changes in response to purinergic and EGF receptor activation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1841-1852. [PMID: 24095926 DOI: 10.1016/j.ajpath.2013.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022]
Abstract
Protein phosphorylation is a dynamic post-translational modification. Mass spectrometry-based quantitation was performed to determine the phosphoproteome profile of epithelial cells in response to injury, nucleotide, or epidermal growth factor. Phosphotyrosine enrichment used immunoprecipitation and immobilized metal affinity chromatography. Nucleotides released after scratch wounding activate purinergic receptors, leading to a distinct phosphorylation profile on epidermal growth factor receptor (EGFR) compared with its natural ligand. ATP induced a 2- to 15-fold phosphorylation increase over control on EGFR Y974, Y1086, and Y1148, with minimal phosphorylation intensity on EGFR Y1173 compared with the level measured in response to epidermal growth factor. Differential phosphorylation induced by epidermal growth factor or ATP was site specific on Src, Shc, phospholipase Cγ, protein kinase C, focal adhesion kinase, paxillin, and mitogen-activated protein kinases 1, 12, and 13. After wounding, the P2Y2 receptor mRNA expression increased, and after knockdown, migration and Ca(2+) mobilization were impaired. To examine phosphorylation mediated by P2Y2, cells were cultured in media containing stable isotope-labeled amino acids, the receptor was knocked down, and the cells were stimulated. Mass spectrometry-based comparison of the phosphorylation profiles of control versus transfected cells revealed a 50-fold decrease in phosphorylation of EGFR Y974 and 1086, with no decrease in Y1173 phosphorylation. A similarfold decrease in Src Y421 and Y446 and paxillin Y118 was detected, indicating the far-reaching importance of the P2Y2 receptor in mediating migration.
Collapse
|
19
|
Tyrosine Kinases in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Zhang X, Højlund K, Luo M, Meyer C, Thangiah G, Yi Z. Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. J Proteomics 2012; 75:4017-26. [PMID: 22609512 PMCID: PMC3398612 DOI: 10.1016/j.jprot.2012.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/16/2012] [Accepted: 05/07/2012] [Indexed: 01/15/2023]
Abstract
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, US
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Kurt Højlund
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Moulun Luo
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Christian Meyer
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Geetha Thangiah
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, US
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| |
Collapse
|