1
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
2
|
Wang W, Yang N, Wang L, Zhu Y, Chu X, Xu W, Li Y, Xu Y, Gao L, Zhang B, Zhang G, Sun Q, Wang W, Wang Q, Zhang W, Chen D. The TET-Sall4-BMP regulatory axis controls craniofacial cartilage development. Cell Rep 2024; 43:113873. [PMID: 38427557 DOI: 10.1016/j.celrep.2024.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Craniofacial microsomia (CFM) is a congenital defect that usually results from aberrant development of embryonic pharyngeal arches. However, the molecular basis of CFM pathogenesis is largely unknown. Here, we employ the zebrafish model to investigate mechanisms of CFM pathogenesis. In early embryos, tet2 and tet3 are essential for pharyngeal cartilage development. Single-cell RNA sequencing reveals that loss of Tet2/3 impairs chondrocyte differentiation due to insufficient BMP signaling. Moreover, biochemical and genetic evidence reveals that the sequence-specific 5mC/5hmC-binding protein, Sall4, binds the promoter of bmp4 to activate bmp4 expression and control pharyngeal cartilage development. Mechanistically, Sall4 directs co-phase separation of Tet2/3 with Sall4 to form condensates that mediate 5mC oxidation on the bmp4 promoter, thereby promoting bmp4 expression and enabling sufficient BMP signaling. These findings suggest the TET-BMP-Sall4 regulatory axis is critical for pharyngeal cartilage development. Collectively, our study provides insights into understanding craniofacial development and CFM pathogenesis.
Collapse
Affiliation(s)
- Weigang Wang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Na Yang
- Institute of Biomedical Research, Yunnan University, Kunming, China; Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liangliang Wang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Xiao Chu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Weijie Xu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yawei Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yihai Xu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Lina Gao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Guoqiang Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Qinmiao Sun
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Wenxin Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China; Southwest United Graduate School, Kunming, China.
| |
Collapse
|
3
|
Hotez PJ, Bottazzi ME, Islam NY, Lee J, Pollet J, Poveda C, Strych U, Thimmiraju SR, Uzcategui NL, Versteeg L, Gorelick D. The zebrafish as a potential model for vaccine and adjuvant development. Expert Rev Vaccines 2024; 23:535-545. [PMID: 38664959 DOI: 10.1080/14760584.2024.2345685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
INTRODUCTION Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nelufa Yesmin Islam
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Syamala Rani Thimmiraju
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nestor L Uzcategui
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Gorelick
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Pownall ME, Miao L, Vejnar CE, M’Saad O, Sherrard A, Frederick MA, Benitez MD, Boswell CW, Zaret KS, Bewersdorf J, Giraldez AJ. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 2023; 381:92-100. [PMID: 37410825 PMCID: PMC10372697 DOI: 10.1126/science.ade5308] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023]
Abstract
Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.
Collapse
Affiliation(s)
- Mark E. Pownall
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Charles E. Vejnar
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Ons M’Saad
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
| | - Alice Sherrard
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Megan A. Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria D.J. Benitez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Curtis W. Boswell
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
- Department of Physics, Yale University; New Haven, CT 06510, USA
- Nanobiology Institute, Yale University; West Haven, CT 06477, USA
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Cancer Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
5
|
Treichel AJ, Bazzini AA. Casting CRISPR-Cas13d to fish for microprotein functions in animal development. iScience 2022; 25:105547. [PMID: 36444300 PMCID: PMC9700322 DOI: 10.1016/j.isci.2022.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins). Yet, functions for most of these peptide products remain unknown. Because microproteins often act as key signals or fine-tune processes, animal development has already revealed functions for a handful of microproteins and provides an ideal context to uncover additional microprotein functions. However, many mRNAs during early development are maternally provided and hinder targeted mutagenesis approaches to characterize developmental microprotein functions. The recently established, RNA-targeting CRISPR-Cas13d system in zebrafish overcomes this barrier and produces potent knockdown of targeted mRNA, including maternally provided mRNA, and enables flexible, efficient interrogation of microprotein functions in animal development.
Collapse
Affiliation(s)
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Miao L, Tang Y, Bonneau AR, Chan SH, Kojima ML, Pownall ME, Vejnar CE, Gao F, Krishnaswamy S, Hendry CE, Giraldez AJ. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Mol Cell 2022; 82:986-1002.e9. [PMID: 35182480 PMCID: PMC9327391 DOI: 10.1016/j.molcel.2022.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.
Collapse
Affiliation(s)
- Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Yin Tang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ashley R Bonneau
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark E Pownall
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Caroline E Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
McGarvey AC, Kopp W, Vučićević D, Mattonet K, Kempfer R, Hirsekorn A, Bilić I, Gil M, Trinks A, Merks AM, Panáková D, Pombo A, Akalin A, Junker JP, Stainier DY, Garfield D, Ohler U, Lacadie SA. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. CELL GENOMICS 2022; 2:100083. [PMID: 36777038 PMCID: PMC9903790 DOI: 10.1016/j.xgen.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology.
Collapse
Affiliation(s)
- Alison C. McGarvey
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Wolfgang Kopp
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Dubravka Vučićević
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Antje Hirsekorn
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Ilija Bilić
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Marine Gil
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Alexandra Trinks
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Anne Margarete Merks
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Jan Philipp Junker
- Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - David Garfield
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany,Corresponding author
| | - Scott Allen Lacadie
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Berlin Institute of Health, Berlin 10178, Germany,Corresponding author
| |
Collapse
|
8
|
Kumari P, Sturgeon M, Bonde G, Cornell RA. Generating Zebrafish RNA-Less Mutant Alleles by Deleting Gene Promoters with CRISPR/Cas9. Methods Mol Biol 2022; 2403:91-106. [PMID: 34913119 PMCID: PMC10136374 DOI: 10.1007/978-1-0716-1847-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Danio rerio (zebrafish), traditionally used in forward genetic screens, has in the last decade become a popular model for reverse genetic studies with the introduction of TALENS, zinc finger nucleases, and CRISPR/Cas9. Unexpectedly, homozygous frameshift mutations generated by these tools frequently result in phenotypes that are less penetrant than those seen in embryos injected with antisense morpholino oligonucleotides targeting the same gene. One explanation for the difference is that some frameshift mutations result in nonsense-mediated decay of the gene transcript, a process which can induce expression of homologous genes. This form of genetic compensation, called transcriptional adaptation, does not occur when the mutant allele results in no RNA transcripts being produced from the targeted gene. Such RNA-less mutants can be generated by deleting a gene's promoter using a pair of guide RNAs and Cas9 protein. Here, we present a protocol and use it to generate alleles of arhgap29b and slc41a1 that lack detectable zygotic transcription. In the case of the arhgap29b mutant, an emerging phenotype did not segregate with the promoter deletion mutation, highlighting the potential for off-target mutagenesis with these tools. In summary, this chapter describes a method to generate zebrafish mutants that avoid a form of genetic compensation that occurs in many frameshift mutants.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Morgan Sturgeon
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Integrated DNA Technologies, Coralville, IA, USA
| | - Gregory Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
10
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
11
|
Ranjan G, Sehgal P, Sharma D, Scaria V, Sivasubbu S. Functional long non-coding and circular RNAs in zebrafish. Brief Funct Genomics 2021:elab014. [PMID: 33755040 DOI: 10.1093/bfgp/elab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
The utility of model organisms to understand the function of a novel transcript/genes has allowed us to delineate their molecular mechanisms in maintaining cellular homeostasis. Organisms such as zebrafish have contributed a lot in the field of developmental and disease biology. Attributable to advancement and deep transcriptomics, many new transcript isoforms and non-coding RNAs such as long noncoding RNA (lncRNA) and circular RNAs (circRNAs) have been identified and cataloged in multiple databases and many more are yet to be identified. Various methods and tools have been utilized to identify lncRNAs/circRNAs in zebrafish using deep sequencing of transcriptomes as templates. Functional analysis of a few candidates such as tie1-AS, ECAL1 and CDR1as in zebrafish provides a prospective outline to approach other known or novel lncRNA/circRNA. New genetic alteration tools like TALENS and CRISPRs have helped in probing for the molecular function of lncRNA/circRNA in zebrafish. Further latest improvements in experimental and computational techniques offer the identification of lncRNA/circRNA counterparts in humans and zebrafish thereby allowing easy modeling and analysis of function at cellular level.
Collapse
|
12
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
13
|
Gao C, Huang W, Gao Y, Lo LJ, Luo L, Huang H, Chen J, Peng J. Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1. J Mol Cell Biol 2020; 11:448-462. [PMID: 30428031 PMCID: PMC6604603 DOI: 10.1093/jmcb/mjy068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
The hepatopancreatic duct (HPD) system links the liver and pancreas to the intestinal tube and is composed of the extrahepatic biliary duct, gallbladder, and pancreatic duct. Haematopoietically expressed-homeobox (Hhex) protein plays an essential role in the establishment of HPD; however, the molecular mechanism remains elusive. Here, we show that zebrafish hhex-null mutants fail to develop the HPD system characterized by lacking the biliary marker Annexin A4 and the HPD marker sox9b. The hepatobiliary duct part of the mutant HPD system is replaced by an intrahepatic intestinal tube characterized by expressing the intestinal marker fatty acid-binding protein 2a (fabp2a). Cell lineage analysis showed that this intrahepatic intestinal tube is not originated from hepatocytes or cholangiocytes. Further analysis revealed that cdx1b and pdx1 are expressed ectopically in the intrahepatic intestinal tube and knockdown of cdx1b and pdx1 could restore the expression of sox9b in the mutant. Chromatin-immunoprecipitation analysis showed that Hhex binds to the promoters of pdx1 and cdx1b genes to repress their expression. We therefore propose that Hhex, Cdx1b, Pdx1, and Sox9b form a genetic network governing the patterning and morphogenesis of the HPD and digestive tract systems in zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Weidong Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Lingfei Luo
- College of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- College of Life Sciences, Southwest University, Chongqing, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| |
Collapse
|
14
|
Lindberg CD, Di Giulio RT. Polycyclic aromatic hydrocarbon and hypoxia exposures result in mitochondrial dysfunction in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105298. [PMID: 31586484 PMCID: PMC6917040 DOI: 10.1016/j.aquatox.2019.105298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 05/20/2023]
Abstract
Organisms are routinely subjected to a variety of environmental and chemical perturbations simultaneously. Often, multi-stressor exposures result in unpredictable toxicity that occurs through unidentified mechanisms. Here, we focus on polycyclic aromatic hydrocarbons (PAHs) and hypoxia, two environmental and physiological stressors that are known to co-occur in the environment. The aim of this study was to assess whether interactive mitochondrial dysfunction resulted from co-exposures of PAHs and hypoxia. Zebrafish embryos were co-exposed to non-teratogenic concentrations of an environmental PAH mixture and hypoxia beginning at 6 hpf for an acute period of 24 h and afterwards were given either no recovery period, 45 min, 5 -hs, or 18 -hs of recovery time in clean conditions. Mitochondrial function and integrity were assessed through the use of both in ovo and in vitro assays. Hypoxia exposures resulted in drastic reductions in parameters relating to mitochondrial respiration, ATP turnover, and mitochondrial DNA integrity. PAH exposures affected ATP production and content, as well as mitochondrial membrane dynamics and lactate content. While PAH and hypoxia exposures caused a broad range of effects, there appeared to be very little interaction between the two stressors in the co-exposure group. However, because hypoxia significantly altered mitochondrial function, the possibility remains that these effects may limit an individual's ability to respond to PAH toxicity and therefore could cause downstream interactive effects.
Collapse
Affiliation(s)
- Casey D Lindberg
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Richard T Di Giulio
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
16
|
Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, Chen S, Zhang Z, Peng J, Chen J. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 2019; 568:259-263. [PMID: 30944473 DOI: 10.1038/s41586-019-1057-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
The genetic compensation response (GCR) has recently been proposed as a possible explanation for the phenotypic discrepancies between gene-knockout and gene-knockdown1,2; however, the underlying molecular mechanism of the GCR remains uncharacterized. Here, using zebrafish knockdown and knockout models of the capn3a and nid1a genes, we show that mRNA bearing a premature termination codon (PTC) promptly triggers a GCR that involves Upf3a and components of the COMPASS complex. Unlike capn3a-knockdown embryos, which have small livers, and nid1a-knockdown embryos, which have short body lengths2, capn3a-null and nid1a-null mutants appear normal. These phenotypic differences have been attributed to the upregulation of other genes in the same families. By analysing six uniquely designed transgenes, we demonstrate that the GCR is dependent on both the presence of a PTC and the nucleotide sequence of the transgene mRNA, which is homologous to the compensatory endogenous genes. We show that upf3a (a member of the nonsense-mediated mRNA decay pathway) and components of the COMPASS complex including wdr5 function in GCR. Furthermore, we demonstrate that the GCR is accompanied by an enhancement of histone H3 Lys4 trimethylation (H3K4me3) at the transcription start site regions of the compensatory genes. These findings provide a potential mechanistic basis for the GCR, and may help lead to the development of therapeutic strategies that treat missense mutations associated with genetic disorders by either creating a PTC in the mutated gene or introducing a transgene containing a PTC to trigger a GCR.
Collapse
Affiliation(s)
- Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peipei Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qinghe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanan Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuming Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Lombó M, González-Rojo S, Fernández-Díez C, Herráez MP. Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:1008-1019. [PMID: 31126002 DOI: 10.1016/j.envpol.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 05/18/2023]
Abstract
Exposure to the emerging contaminant bisphenol A (BPA) is ubiquitous and associated with cardiovascular disorders. BPA effect as endocrine disruptor is widely known but other mechanisms underlying heart disease, such as epigenetic modifications, remain still unclear. A compound of green tea, epigallocatechin gallate (EGCG), may act both as anti-estrogen and as inhibitor of some epigenetic enzymes. The aims of this study were to analyze the molecular processes related to BPA impairment of heart development and to prove the potential ability of EGCG to neutralize the toxic effects caused by BPA on cardiac health. Zebrafish embryos were exposed to 2000 and 4000 μg/L BPA and treated with 50 and 100 μM EGCG. Heart malformations were assessed at histological level and by confocal imaging. Expression of genes involved in cardiac development, estrogen receptors and epigenetic enzymes was analyzed by qPCR whereas epigenetic modifications were evaluated by whole mount immunostaining. BPA embryonic exposure led to changes in cardiac phenotype, induced an overexpression of hand2, a crucial factor for cardiomyocyte differentiation, increased the expression of estrogen receptor (esr2b), promoted an overexpression of a histone acetyltransferase (kat6a) and also caused an increase in histone acetylation, both mechanisms being able to act in sinergy. EGCG treatment neutralized all the molecular alterations caused by BPA, allowing the embryos to go on with a proper heart development. Both molecular mechanisms of BPA action (estrogenic and epigenetic) likely lying behind cardiogenesis impairment were successfully counteracted by EGCG treatment.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain.
| |
Collapse
|
18
|
Lindeman LC, Kamstra JH, Ballangby J, Hurem S, Martín LM, Brede DA, Teien HC, Oughton DH, Salbu B, Lyche JL, Aleström P. Gamma radiation induces locus specific changes to histone modification enrichment in zebrafish and Atlantic salmon. PLoS One 2019; 14:e0212123. [PMID: 30759148 PMCID: PMC6373941 DOI: 10.1371/journal.pone.0212123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation is a recognized genotoxic agent, however, little is known about the role of the functional form of DNA in these processes. Post translational modifications on histone proteins control the organization of chromatin and hence control transcriptional responses that ultimately affect the phenotype. The purpose of this study was to investigate effects on chromatin caused by ionizing radiation in fish. Direct exposure of zebrafish (Danio rerio) embryos to gamma radiation (10.9 mGy/h for 3h) induced hyper-enrichment of H3K4me3 at the genes hnf4a, gmnn and vegfab. A similar relative hyper-enrichment was seen at the hnf4a loci of irradiated Atlantic salmon (Salmo salar) embryos (30 mGy/h for 10 days). At the selected genes in ovaries of adult zebrafish irradiated during gametogenesis (8.7 and 53 mGy/h for 27 days), a reduced enrichment of H3K4me3 was observed, which was correlated with reduced levels of histone H3 was observed. F1 embryos of the exposed parents showed hyper-methylation of H3K4me3, H3K9me3 and H3K27me3 on the same three loci, while these differences were almost negligible in F2 embryos. Our results from three selected loci suggest that ionizing radiation can affect chromatin structure and organization, and that these changes can be detected in F1 offspring, but not in subsequent generations.
Collapse
Affiliation(s)
- Leif Christopher Lindeman
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jorke Harmen Kamstra
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jarle Ballangby
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Leonardo Martín Martín
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Faculty of Agropecuary Sciences, University of Camagüey (UC) Ignacio Agramonte Loynaz, Camagüey, Cuba
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Hans Christian Teien
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Deborah H. Oughton
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences, Ås, Norway
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
19
|
Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 2018; 564:64-70. [PMID: 30464347 PMCID: PMC6292497 DOI: 10.1038/s41586-018-0734-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that—in vertebrates—over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations. Genomic, epigenomic and transcriptomic data derived from the Mediterranean amphioxus (Branchiostoma lanceolatum) provide insights into the evolution of the genomic regulatory landscape of chordates.
Collapse
|
20
|
Garcia GR, Shankar P, Dunham CL, Garcia A, La Du JK, Truong L, Tilton SC, Tanguay RL. Signaling Events Downstream of AHR Activation That Contribute to Toxic Responses: The Functional Role of an AHR-Dependent Long Noncoding RNA ( slincR) Using the Zebrafish Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:117002. [PMID: 30398377 PMCID: PMC6371766 DOI: 10.1289/ehp3281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND A structurally diverse group of chemicals, including dioxins [e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and polycyclic aromatic hydrocarbons (PAHs), can xenobiotically activate the aryl hydrocarbon receptor (AHR) and contribute to adverse health effects in humans and wildlife. In the zebrafish model, repression of sox9b has a causal role in several AHR-mediated toxic responses, including craniofacial cartilage malformations; however, the mechanism of sox9b repression remains unknown. We previously identified a long noncoding RNA, sox9b long intergenic noncoding RNA (slincR), which is increased (in an AHR-dependent manner) by multiple AHR ligands and is required for the AHR-activated repression of sox9b. OBJECTIVE Using the zebrafish model, we aimed to enhance our understanding of the signaling events downstream of AHR activation that contribute to toxic responses by identifying: a) whether slincR is enriched on the sox9b locus, b) slincR's functional contributions to TCDD-induced toxicity, c) PAHs that increase slincR expression, and d) mammalian orthologs of slincR. METHODS We used capture hybridization analysis of RNA targets (CHART), qRT-PCR, RNA sequencing, morphometric analysis of cartilage structures, and hemorrhaging screens. RESULTS The slincR transcript was enriched at the 5' untranslated region (UTR) of the sox9b locus. Transcriptome profiling and human ortholog analyses identified processes related to skeletal and cartilage development unique to TCDD-exposed controls, and angiogenesis and vasculature development unique to TCDD-exposed zebrafish that were injected with a splice-blocking morpholino targeting slincR. In comparison to TCDD exposed control morphants, slincR morphants exposed to TCDD resulted in abnormal cartilage structures and a smaller percentage of animals displaying the hemorrhaging phenotype. In addition, slincR expression was significantly increased in six out of the sixteen PAHs we screened. CONCLUSION Our study establishes that in zebrafish, slincR is recruited to the sox9b 5' UTR to repress transcription, can regulate cartilage development, has a causal role in the TCDD-induced hemorrhaging phenotype, and is up-regulated by multiple environmentally relevant PAHs. These findings have important implications for understanding the ligand-specific mechanisms of AHR-mediated toxicity. https://doi.org/10.1289/EHP3281.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Cheryl L Dunham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Abraham Garcia
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
21
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
22
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
23
|
Myschyshyn M, Farren-Dai M, Chuang TJ, Vocadlo D. Software for rapid time dependent ChIP-sequencing analysis (TDCA). BMC Bioinformatics 2017; 18:521. [PMID: 29178831 PMCID: PMC5702113 DOI: 10.1186/s12859-017-1936-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and associated methods are widely used to define the genome wide distribution of chromatin associated proteins, post-translational epigenetic marks, and modifications found on DNA bases. An area of emerging interest is to study time dependent changes in the distribution of such proteins and marks by using serial ChIP-seq experiments performed in a time resolved manner. Despite such time resolved studies becoming increasingly common, software to facilitate analysis of such data in a robust automated manner is limited. RESULTS We have designed software called Time-Dependent ChIP-Sequencing Analyser (TDCA), which is the first program to automate analysis of time-dependent ChIP-seq data by fitting to sigmoidal curves. We provide users with guidance for experimental design of TDCA for modeling of time course (TC) ChIP-seq data using two simulated data sets. Furthermore, we demonstrate that this fitting strategy is widely applicable by showing that automated analysis of three previously published TC data sets accurately recapitulates key findings reported in these studies. Using each of these data sets, we highlight how biologically relevant findings can be readily obtained by exploiting TDCA to yield intuitive parameters that describe behavior at either a single locus or sets of loci. TDCA enables customizable analysis of user input aligned DNA sequencing data, coupled with graphical outputs in the form of publication-ready figures that describe behavior at either individual loci or sets of loci sharing common traits defined by the user. TDCA accepts sequencing data as standard binary alignment map (BAM) files and loci of interest in browser extensible data (BED) file format. CONCLUSIONS TDCA accurately models the number of sequencing reads, or coverage, at loci from TC ChIP-seq studies or conceptually related TC sequencing experiments. TC experiments are reduced to intuitive parametric values that facilitate biologically relevant data analysis, and the uncovering of variations in the time-dependent behavior of chromatin. TDCA automates the analysis of TC ChIP-seq experiments, permitting researchers to easily obtain raw and modeled data for specific loci or groups of loci with similar behavior while also enhancing consistency of data analysis of TC data within the genomics field.
Collapse
Affiliation(s)
- Mike Myschyshyn
- Department of Molecular Biology and Biochemistry, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Marco Farren-Dai
- Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Tien-Jui Chuang
- Department of Molecular Biology and Biochemistry, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - David Vocadlo
- Department of Molecular Biology and Biochemistry, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
- Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
24
|
Jimenez-Gonzalez A, García-Concejo A, León-Lobera F, Rodriguez RE. Morphine delays neural stem cells differentiation by facilitating Nestin overexpression. Biochim Biophys Acta Gen Subj 2017; 1862:474-484. [PMID: 29111275 DOI: 10.1016/j.bbagen.2017.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Morphine is used as an analgesic although it causes important secondary effects. These effects are triggered by several mechanisms leading to the dysregulation of gene expression. Here we aimed to study these alterations on neural stem cells (NSC) during CNS development. METHODS AB strain and tg nestin:GFP zebrafish embryos, zebrafish primary neuron culture and mouse embryonic stem cells were used to assess the effect of morphine by qPCR, time lapse microscopy and western blot. ChIP-qPCR and bisulfite conversion assay were performed to determine the changes exerted by morphine in a Nestin candidate enhancer. RESULTS Morphine increases GFP in nestin:GFP embryos and overexpresses the NSC marker Nestin. Morphine also exerts a hyperacetylation effect on H3K27 and decreases DNA methylation within a region located 18 Kb upstream nestin transcription starting site. Here, a binding site for the transcription factor complex Sox2/Oct4/Nanog was predicted. These factors are also upregulated by morphine. Besides, morphine increases the histone acetyl transferase p300. The inhibition of p300 activity decreases Nestin. CONCLUSIONS Morphine facilitates Nestin increase by several mechanisms which include hyperacetylation of H3K27, decreased DNA methylation and the overexpression of the transcription factors sox2, oct4 and nanog. It has also been demonstrated that nestin levels depend on p300 activity. The facilitated Nestin expression delays the normal differentiation of neural stem cells. GENERAL SIGNIFICANCE The present work provides novel evidence of the effects induced by morphine in the normal differentiation of NSCs, altering Nestin through changes on p300, H3K27ac, DNA methylation and Oct4, Sox2, and Nanog.
Collapse
Affiliation(s)
- Ada Jimenez-Gonzalez
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Adrián García-Concejo
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Fernando León-Lobera
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Raquel E Rodriguez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| |
Collapse
|
25
|
Elurbe DM, Paranjpe SS, Georgiou G, van Kruijsbergen I, Bogdanovic O, Gibeaux R, Heald R, Lister R, Huynen MA, van Heeringen SJ, Veenstra GJC. Regulatory remodeling in the allo-tetraploid frog Xenopus laevis. Genome Biol 2017; 18:198. [PMID: 29065907 PMCID: PMC5655803 DOI: 10.1186/s13059-017-1335-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genome duplication has played a pivotal role in the evolution of many eukaryotic lineages, including the vertebrates. A relatively recent vertebrate genome duplication is that in Xenopus laevis, which resulted from the hybridization of two closely related species about 17 million years ago. However, little is known about the consequences of this duplication at the level of the genome, the epigenome, and gene expression. RESULTS The X. laevis genome consists of two subgenomes, referred to as L (long chromosomes) and S (short chromosomes), that originated from distinct diploid progenitors. Of the parental subgenomes, S chromosomes have degraded faster than L chromosomes from the point of genome duplication until the present day. Deletions appear to have the largest effect on pseudogene formation and loss of regulatory regions. Deleted regions are enriched for long DNA repeats and the flanking regions have high alignment scores, suggesting that non-allelic homologous recombination has played a significant role in the loss of DNA. To assess innovations in the X. laevis subgenomes we examined p300-bound enhancer peaks that are unique to one subgenome and absent from X. tropicalis. A large majority of new enhancers comprise transposable elements. Finally, to dissect early and late events following interspecific hybridization, we examined the epigenome and the enhancer landscape in X. tropicalis × X. laevis hybrid embryos. Strikingly, young X. tropicalis DNA transposons are derepressed and recruit p300 in hybrid embryos. CONCLUSIONS The results show that erosion of X. laevis genes and functional regulatory elements is associated with repeats and non-allelic homologous recombination and furthermore that young repeats have also contributed to the p300-bound regulatory landscape following hybridization and whole-genome duplication.
Collapse
Affiliation(s)
- Dei M Elurbe
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Sarita S Paranjpe
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Georgios Georgiou
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Ryan Lister
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Martijn A Huynen
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| | - Simon J van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| | - Gert Jan C Veenstra
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Abstract
Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
27
|
Garcia GR, Goodale BC, Wiley MW, La Du JK, Hendrix DA, Tanguay RL. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression. Mol Pharmacol 2017; 91:609-619. [PMID: 28385905 PMCID: PMC5438132 DOI: 10.1124/mol.117.108233] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Britton C Goodale
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Michelle W Wiley
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - David A Hendrix
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| |
Collapse
|
28
|
Shiomi T, Muto A, Hozumi S, Kimura H, Kikuchi Y. Histone H3 Lysine 27 Trimethylation Leads to Loss of Mesendodermal Competence During Gastrulation in Zebrafish Ectodermal Cells. Zoolog Sci 2017; 34:64-71. [DOI: 10.2108/zs160032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Taishi Shiomi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shunya Hozumi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama 226-8501, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
29
|
Samarut É. Zebrafish embryos as in vivo test tubes to unravel cell-specific mechanisms of neurogenesis during neurodevelopment and in diseases. NEUROGENESIS 2016; 3:e1232678. [PMID: 27785454 DOI: 10.1080/23262133.2016.1232678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 10/20/2022]
Abstract
Zebrafish has become a model of choice for developmental studies in particular for studying neural development and related mechanisms involved in diseases. Indeed, zebrafish provides a fast, handy and accurate model to perform functional genomics on a gene or network of genes of interest. Recently, we successfully purified neural stem cells (NSCs) by fluorescence-activated cell sorting (FACS) from whole embryos in order to analyze cell-specific transcriptomic effects by RNA sequencing. As a result, our work sheds light on signaling pathways that are more likely to be involved in our morpholino-induced neurogenesis phenotype. This cell purification strategy brings zebrafish to a higher level since it now allows one to investigate cell-specific effects of a genetic condition of interest (knockout, knock-down, gain-of-function etc.) at the genomic, transcriptomic and proteomic levels in a genuine in vivo context. With this new potential, there is no doubt that zebrafish will be of a major model with which to unravel complex underlying molecular mechanisms of neurological disorders such as epilepsy, autism spectrum disorders and schizophrenia.
Collapse
Affiliation(s)
- Éric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
30
|
Abstract
Reversible covalent histone modifications are known to influence spatiotemporal patterns of gene transcription during development. Here I review recent advances in the development and use of methods to analyze the distribution and functions of histone modifications in zebrafish chromatin. I discuss the roles of dynamic histone modification patterns at the promoters and enhancers of genes during the process of zygotic gene activation at blastula stages and the interplay between the molecular machinery responsible for histone modifications, chromatin remodeling and DNA methylation. Interactions are also described between developmentally regulated enhancer sequences and modified histones. A detailed method for chromatin immunoprecipitation using antibodies is provided, and I describe the use of high-throughput whole genome sequencing technology to generate DNA sequence data from chromatin immunoprecipitates. I also discuss computational approaches to integrating DNA sequence data obtained from chromatin immunoprecipitates with annotated reference genome sequences, transcriptome and methylome sequence data, transcription factor binding motif databases, and gene ontologies and describe the types of software tools currently available for visualizing the results.
Collapse
Affiliation(s)
- V T Cunliffe
- University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
31
|
Assay for transposase-accessible chromatin and circularized chromosome conformation capture, two methods to explore the regulatory landscapes of genes in zebrafish. Methods Cell Biol 2016; 135:413-30. [PMID: 27443938 DOI: 10.1016/bs.mcb.2016.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accurate transcriptional control of genes is fundamental for the correct functioning of organs and developmental processes. This control depends on the interplay between the promoter of genes and other noncoding sequences, whose interaction is mediated by 3D chromatin arrangements. Thus, the detailed description of transcriptional regulatory landscapes is essential to understand the mechanisms of transcriptional regulation. However, to achieve that, two important challenges have to be faced: (1) the identification of the noncoding sequences that contribute to gene transcription and (2) the association of these sequences to the respective genes they control. In this chapter, we describe two protocols that allow overcoming these important challenges: the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and circularized chromosome conformation capture (4C-seq). ATAC-seq is a very efficient technique that, using a very low number of cells as starting material, allows the identification of active chromatin regions genome wide, whereas 4C-seq detects the subset of sequences that interact specifically with the promoter of a given gene. When combined, both techniques provide a comprehensive snapshot of the regulatory landscapes of developmental genes. The protocols we present here have been optimized for teleost fish samples, zebrafish and medaka, allowing the in-depth study of transcriptional regulation in these two emerging animal models. Given the amenability and easy genetic manipulation of these two experimental systems, we anticipate that they will be important in revealing general principles of the vertebrate regulatory genome.
Collapse
|
32
|
Chernyavskaya Y, Kent B, Sadler KC. Zebrafish Discoveries in Cancer Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:169-97. [PMID: 27165354 DOI: 10.1007/978-3-319-30654-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently uni-dimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Biology Program, New York University Abu Dhabi, Saadiyat Campus, 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
33
|
Wylie A, Jones AE, D'Brot A, Lu WJ, Kurtz P, Moran JV, Rakheja D, Chen KS, Hammer RE, Comerford SA, Amatruda JF, Abrams JM. p53 genes function to restrain mobile elements. Genes Dev 2015; 30:64-77. [PMID: 26701264 PMCID: PMC4701979 DOI: 10.1101/gad.266098.115] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022]
Abstract
Wylie et al. show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA pathway. In gene complementation studies, normal human p53 alleles restrained these mobile elements, but mutant p53 alleles from cancer patients could not. Consistent with these observations, they also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.
Collapse
Affiliation(s)
- Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Alejandro D'Brot
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wan-Jin Lu
- Stanford University Medical Center, Stanford, California 94305, USA
| | - Paula Kurtz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48019, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48019, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48019, USA
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sarah A Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
34
|
Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun 2015; 6:10148. [PMID: 26679111 PMCID: PMC4703837 DOI: 10.1038/ncomms10148] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/10/2015] [Indexed: 12/02/2022] Open
Abstract
Histone-modifying enzymes are required for cell identity and lineage commitment, however little is known about the regulatory origins of the epigenome during embryonic development. Here we generate a comprehensive set of epigenome reference maps, which we use to determine the extent to which maternal factors shape chromatin state in Xenopus embryos. Using α-amanitin to inhibit zygotic transcription, we find that the majority of H3K4me3- and H3K27me3-enriched regions form a maternally defined epigenetic regulatory space with an underlying logic of hypomethylated islands. This maternal regulatory space extends to a substantial proportion of neurula stage-activated promoters. In contrast, p300 recruitment to distal regulatory regions requires embryonic transcription at most loci. The results show that H3K4me3 and H3K27me3 are part of a regulatory space that exerts an extended maternal control well into post-gastrulation development, and highlight the combinatorial action of maternal and zygotic factors through proximal and distal regulatory sequences. Histone modifying enzymes are required for cell differentiation and lineage commitment during embryonic development. By a comprehensive set of epigenome reference maps of Xenopus embryos, the authors show that H3K4me3 and H3K27me3 exert an extended maternal control well into post-gastrulation development.
Collapse
|
35
|
Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161648. [PMID: 26665001 PMCID: PMC4668301 DOI: 10.1155/2015/161648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.
Collapse
|
36
|
McClure CD, Southall TD. Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner. ADVANCES IN GENETICS 2015; 91:103-151. [PMID: 26410031 PMCID: PMC4604662 DOI: 10.1016/bs.adgen.2015.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique and how their individual characteristics are attributed are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e., only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features.
Collapse
Affiliation(s)
- Colin D. McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
37
|
Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos. GENOMICS DATA 2015; 6:7-9. [PMID: 26697317 PMCID: PMC4664660 DOI: 10.1016/j.gdata.2015.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
DNA methylation and histone modifications are epigenetic marks implicated in the complex regulation of vertebrate embryogenesis. The cross-talk between DNA methylation and Polycomb-dependent H3K27me3 histone mark has been reported in a number of organisms [1], [2], [3], [4], [5], [6], [7] and both marks are known to be required for proper developmental progression. Here we provide genome-wide DNA methylation (MethylCap-seq) and H3K27me3 (ChIP-seq) maps for three stages (dome, 24 hpf and 48 hpf) of zebrafish (Danio rerio) embryogenesis, as well as all analytical and methodological details associated with the generation of this dataset. We observe a strong antagonism between the two epigenetic marks present in CpG islands and their compatibility throughout the bulk of the genome, as previously reported in mammalian ESC lines (Brinkman et al., 2012). Next generation sequencing data linked to this project have been deposited in the Gene Expression Omnibus (GEO) database under accession numbers GSE35050 and GSE70847.
Collapse
|
38
|
Kratochwil CF, Meyer A. Closing the genotype-phenotype gap: emerging technologies for evolutionary genetics in ecological model vertebrate systems. Bioessays 2014; 37:213-26. [PMID: 25380076 DOI: 10.1002/bies.201400142] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The analysis of genetic and epigenetic mechanisms of the genotype-phenotypic connection has, so far, only been possible in a handful of genetic model systems. Recent technological advances, including next-generation sequencing methods such as RNA-seq, ChIP-seq and RAD-seq, and genome-editing approaches including CRISPR-Cas, now permit to address these fundamental questions of biology also in organisms that have been studied in their natural habitats. We provide an overview of the benefits and drawbacks of these novel techniques and experimental approaches that can now be applied to ecological and evolutionary vertebrate models such as sticklebacks and cichlid fish. We can anticipate that these new methods will increase the understanding of the genetic and epigenetic factors influencing adaptations and phenotypic variation in ecological settings. These new arrows in the methodological quiver of ecologist will drastically increase the understanding of the genetic basis of adaptive traits - leading to a further closing of the genotype-phenotype gap.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
39
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
40
|
Tena JJ, González-Aguilera C, Fernández-Miñán A, Vázquez-Marín J, Parra-Acero H, Cross JW, Rigby PWJ, Carvajal JJ, Wittbrodt J, Gómez-Skarmeta JL, Martínez-Morales JR. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res 2014; 24:1075-85. [PMID: 24709821 PMCID: PMC4079964 DOI: 10.1101/gr.163915.113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer’s formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115–200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (≈700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan.
Collapse
Affiliation(s)
- Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain
| | | | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain
| | | | - Helena Parra-Acero
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain
| | - Joe W Cross
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Peter W J Rigby
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain; Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Joachim Wittbrodt
- Centre for Organismal Studies, COS, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Williams TD, Mirbahai L, Chipman JK. The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 2014; 13:157-71. [DOI: 10.1093/bfgp/elt053] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
42
|
Abstract
In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies.
Collapse
|
43
|
Stapel LC, Vastenhouw NL. Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics. Brief Funct Genomics 2013; 13:106-20. [PMID: 24170706 DOI: 10.1093/bfgp/elt045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Now that the sequencing of genomes has become routine, understanding how a given genome is used in different ways to obtain cell type diversity in an organism is the next frontier. How specific transcription programs are established during vertebrate embryogenesis, however, remains poorly understood. Transcription is influenced by chromatin structure, which determines the accessibility of DNA-binding proteins to the genome. Although large-scale genomics approaches have uncovered specific features of chromatin structure that are diagnostic for different cell types and developmental stages, our functional understanding of chromatin in transcriptional regulation during development is very limited. In recent years, zebrafish embryogenesis has emerged as an excellent vertebrate model system to investigate the functional relationship between chromatin organization, gene regulation and development in a dynamic environment. Here, we review how studies in zebrafish have started to improve our understanding of the role of chromatin structure in genome activation and pluripotency and in the potential inheritance of transcriptional states from parent to progeny.
Collapse
Affiliation(s)
- L Carine Stapel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | |
Collapse
|
44
|
|