1
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
2
|
Automated computation of nerve fibre inclinations from 3D polarised light imaging measurements of brain tissue. Sci Rep 2022; 12:4328. [PMID: 35288611 PMCID: PMC8921329 DOI: 10.1038/s41598-022-08140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The method 3D polarised light imaging (3D-PLI) measures the birefringence of histological brain sections to determine the spatial course of nerve fibres (myelinated axons). While the in-plane fibre directions can be determined with high accuracy, the computation of the out-of-plane fibre inclinations is more challenging because they are derived from the amplitude of the birefringence signals, which depends e.g. on the amount of nerve fibres. One possibility to improve the accuracy is to consider the average transmitted light intensity (transmittance weighting). The current procedure requires effortful manual adjustment of parameters and anatomical knowledge. Here, we introduce an automated, optimised computation of the fibre inclinations, allowing for a much faster, reproducible determination of fibre orientations in 3D-PLI. Depending on the degree of myelination, the algorithm uses different models (transmittance-weighted, unweighted, or a linear combination), allowing to account for regionally specific behaviour. As the algorithm is parallelised and GPU optimised, it can be applied to large data sets. Moreover, it only uses images from standard 3D-PLI measurements without tilting, and can therefore be applied to existing data sets from previous measurements. The functionality is demonstrated on unstained coronal and sagittal histological sections of vervet monkey and rat brains.
Collapse
|
3
|
Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci U S A 2020; 118:2020810118. [PMID: 33443211 PMCID: PMC7817131 DOI: 10.1073/pnas.2020810118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Synaptic plasticity in the hippocampus is important for learning and memory formation. In particular, homeostatic synaptic plasticity enables neurons to restore their activity levels in response to chronic neuronal activity changes. While astrocytes modulate synaptic functions via the secretion of factors, the underlying molecular mechanisms remain unclear. Here, we show that suppression of hippocampal neuronal activity increases cytokine IL-33 release from astrocytes in the CA1 region. Activation of IL-33 and its neuronal ST2 receptor complex promotes functional excitatory synapse formation. Moreover, IL-33/ST2 signaling is important for the neuronal activity blockade-induced increase of CA1 excitatory synapses in vivo and spatial memory formation. This study suggests that astrocyte-secreted IL-33 acts as a negative feedback control signal to regulate hippocampal homeostatic synaptic plasticity. Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.
Collapse
|
4
|
Amunts K, Knoll AC, Lippert T, Pennartz CMA, Ryvlin P, Destexhe A, Jirsa VK, D’Angelo E, Bjaalie JG. The Human Brain Project-Synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biol 2019; 17:e3000344. [PMID: 31260438 PMCID: PMC6625714 DOI: 10.1371/journal.pbio.3000344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2019] [Indexed: 02/03/2023] Open
Abstract
The Human Brain Project (HBP) is a European flagship project with a 10-year horizon aiming to understand the human brain and to translate neuroscience knowledge into medicine and technology. To achieve such aims, the HBP explores the multilevel complexity of the brain in space and time; transfers the acquired knowledge to brain-derived applications in health, computing, and technology; and provides shared and open computing tools and data through the HBP European brain research infrastructure. We discuss how the HBP creates a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating perspectives on societal benefits. This Community Page article presents the Human Brain Project; a European Flagship project with a ten-year horizon aiming to understand the human brain and translate neuroscience knowledge into medicine and technology.
Collapse
Affiliation(s)
- Katrin Amunts
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Alois C. Knoll
- Institut für Informatik VI, Technische Universität München, Garching bei München, Germany
| | - Thomas Lippert
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| | - Cyriel M. A. Pennartz
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, the Netherlands
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Alain Destexhe
- Unité de Neurosciences, Information & Complexité (UNIC), Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Viktor K. Jirsa
- Institut de Neurosciences des Systèmes, Inserm UMR1106, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Egidio D’Angelo
- Department of Brain and Behavioral Science, Unit of Neurophysiology, University of Pavia, Pavia, Italy
| | - Jan G. Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Colomb W, Osmond M, Durfee C, Krebs MD, Sarkar SK. Imaging and Analysis of Cellular Locations in Three-Dimensional Tissue Models. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:753-761. [PMID: 30853032 DOI: 10.1017/s1431927619000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The absence of quantitative in vitro cell-extracellular matrix models represents an important bottleneck for basic research and human health. Randomness of cellular distributions provides an opportunity for the development of a quantitative in vitro model. However, quantification of the randomness of random cell distributions is still lacking. In this paper, we have imaged cellular distributions in an alginate matrix using a multiview light sheet microscope and developed quantification metrics of randomness by modeling it as a Poisson process, a process that has constant probability of occurring in space or time. We imaged fluorescently labeled human mesenchymal stem cells embedded in an alginate matrix of thickness greater than 5 mm with axial resolution, the mean full width at half maximum of the axial intensity profiles of fluorescent particles. Simulated randomness agrees well with the experiments. Quantification of distributions and validation by simulations will enable quantitative study of cell-matrix interactions in tissue models.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics,Colorado School of Mines,Golden, Colorado,USA
| | - Matthew Osmond
- Department of Chemical & Biological Engineering,Colorado School of Mines,Golden, Colorado,USA
| | - Charles Durfee
- Department of Physics,Colorado School of Mines,Golden, Colorado,USA
| | - Melissa D Krebs
- Department of Chemical & Biological Engineering,Colorado School of Mines,Golden, Colorado,USA
| | - Susanta K Sarkar
- Department of Physics,Colorado School of Mines,Golden, Colorado,USA
| |
Collapse
|
6
|
Di Giovanna AP, Tibo A, Silvestri L, Müllenbroich MC, Costantini I, Allegra Mascaro AL, Sacconi L, Frasconi P, Pavone FS. Whole-Brain Vasculature Reconstruction at the Single Capillary Level. Sci Rep 2018; 8:12573. [PMID: 30135559 PMCID: PMC6105658 DOI: 10.1038/s41598-018-30533-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/27/2018] [Indexed: 02/03/2023] Open
Abstract
The distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network.
Collapse
Affiliation(s)
- Antonino Paolo Di Giovanna
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Alessandro Tibo
- Department of Information Engineering (DINFO), University of Florence, Via di S. Marta 3, Florence, 50139, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy
| | - Marie Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy
| | - Irene Costantini
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,Neuroscience Institute, National Research Council, Via Giuseppe Moruzzi 1, Pisa, 56125, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy
| | - Paolo Frasconi
- Department of Information Engineering (DINFO), University of Florence, Via di S. Marta 3, Florence, 50139, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy. .,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy. .,Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
7
|
Epah J, Pálfi K, Dienst FL, Malacarne PF, Bremer R, Salamon M, Kumar S, Jo H, Schürmann C, Brandes RP. 3D Imaging and Quantitative Analysis of Vascular Networks: A Comparison of Ultramicroscopy and Micro-Computed Tomography. Theranostics 2018; 8:2117-2133. [PMID: 29721067 PMCID: PMC5928875 DOI: 10.7150/thno.22610] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022] Open
Abstract
Rationale: Classic histology is the gold standard for vascular network imaging and analysis. The method however is laborious and prone to artefacts. Here, the suitability of ultramicroscopy (UM) and micro-computed tomography (CT) was studied to establish potential alternatives to histology. Methods: The vasculature of murine organs (kidney, heart and atherosclerotic carotid arteries) was visualized using conventional 2D microscopy, 3D light sheet ultramicroscopy (UM) and micro-CT. Moreover, spheroid-based human endothelial cell vessel formation in mice was quantified. Fluorescently labeled Isolectin GS-IB4 A647 was used for in vivo labeling of vasculature for UM analysis, and analyses were performed ex vivo after sample preparation. For CT imaging, animals were perfused postmortem with radiopaque contrast agent. Results: Using UM imaging, 3D vascular network information could be obtained in samples of animals receiving in vivo injection of the fluorescently labeled Isolectin GS-IB4. Resolution was sufficient to measure single endothelial cell integration into capillaries in the spheroid-based matrigel plug assay. Because of the selective staining of the endothelium, imaging of larger vessels yielded less favorable results. Using micro-CT or even nano-CT, imaging of capillaries was impossible due to insufficient X-ray absorption and thus insufficient signal-to-noise ratio. Identification of lumen in murine arteries using micro-CT was in contrast superior to UM. Conclusion: UM and micro-CT are two complementary techniques. Whereas UM is ideal for imaging and especially quantifying capillary networks and arterioles, larger vascular structures are easier and faster to quantify and visualize using micro-CT. 3D information of both techniques is superior to 2D histology. UM and micro-CT together may open a new field of clinical pathology diagnosis.
Collapse
|
8
|
Nguyen D, Marchand PJ, Planchette AL, Nilsson J, Sison M, Extermann J, Lopez A, Sylwestrzak M, Sordet-Dessimoz J, Schmidt-Christensen A, Holmberg D, Van De Ville D, Lasser T. Optical projection tomography for rapid whole mouse brain imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:5637-5650. [PMID: 29296493 PMCID: PMC5745108 DOI: 10.1364/boe.8.005637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 05/21/2023]
Abstract
In recent years, three-dimensional mesoscopic imaging has gained significant importance in life sciences for fundamental studies at the whole-organ level. In this manuscript, we present an optical projection tomography (OPT) method designed for imaging of the intact mouse brain. The system features an isotropic resolution of ~50 µm and an acquisition time of four to eight minutes, using a 3-day optimized clearing protocol. Imaging of the brain autofluorescence in 3D reveals details of the neuroanatomy, while the use of fluorescent labels displays the vascular network and amyloid deposition in 5xFAD mice, an important model of Alzheimer's disease (AD). Finally, the OPT images are compared with histological slices.
Collapse
Affiliation(s)
- David Nguyen
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Paul J. Marchand
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Arielle L. Planchette
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Julia Nilsson
- Autoimmunity, Department of Experimental Medical Sciences, Lund University Diabetes Centre, 20502 Malmö,
Sweden
| | - Miguel Sison
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Jérôme Extermann
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Antonio Lopez
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Marcin Sylwestrzak
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Jessica Sordet-Dessimoz
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| | - Anja Schmidt-Christensen
- Autoimmunity, Department of Experimental Medical Sciences, Lund University Diabetes Centre, 20502 Malmö,
Sweden
| | - Dan Holmberg
- Autoimmunity, Department of Experimental Medical Sciences, Lund University Diabetes Centre, 20502 Malmö,
Sweden
| | - Dimitri Van De Ville
- Medical Image Processing Lab, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1202 Genève,
Switzerland
| | - Theo Lasser
- Laboratoire d’Optique Biomédicale, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland
| |
Collapse
|
9
|
Crocini C, Ferrantini C, Coppini R, Sacconi L. Electrical defects of the transverse-axial tubular system in cardiac diseases. J Physiol 2017; 595:3815-3822. [PMID: 27981580 PMCID: PMC5471422 DOI: 10.1113/jp273042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023] Open
Abstract
Electrical excitability is an essential feature of cardiomyocytes and the homogenous propagation of the action potential is guaranteed by a complex network of membrane invaginations called the transverse-axial tubular system (TATS). TATS structural remodelling is a hallmark of cardiac diseases and we demonstrated that this can be accompanied by electrical defects at single T-tubular level. Using a random-access multi-photon (RAMP) microscope, we found that pathological T-tubules can fail to conduct action potentials, which delays local Ca2+ release. Although the underlying causes for T-tubular electrical failure are still unknown, our findings suggest that they are likely to be related to local ultrastructural alterations. Here, we first review the experimental approach that allowed us to observe and dissect the consequences of TATS electrical dysfunction and then propose two different strategies to unveil the reasons for T-tubular electrical failures. The first strategy consists in a correlative approach, in which the failing T-tubule identified with the RAMP microscope is then imaged with electron microscopy. The second approach exploits the diffusion of molecules within TATS to gain insights into the local TATS structure, even without a thorough reconstruction of the tubular network. Although challenging, the local electrical failure occurring at single T-tubules is a fundamental question that needs to be addressed and could provide novel insights in cardiac pathophysiology.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, 50139, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| |
Collapse
|
10
|
Mascaro ALA, Costantini I, Margoni E, Iannello G, Bria A, Sacconi L, Pavone FS. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:4483-92. [PMID: 26601011 PMCID: PMC4646555 DOI: 10.1364/boe.6.004483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 05/22/2023]
Abstract
In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Research Council, National Institute of Optics, Largo Fermi 6, Florence 50125, Italy
| | - Irene Costantini
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Emilia Margoni
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Giulio Iannello
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Alessandro Bria
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Department of Electrical and Information Engineering, University of Cassino and L. M. Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Research Council, National Institute of Optics, Largo Fermi 6, Florence 50125, Italy
| | - Francesco S. Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Research Council, National Institute of Optics, Largo Fermi 6, Florence 50125, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
11
|
Silvestri L, Paciscopi M, Soda P, Biamonte F, Iannello G, Frasconi P, Pavone FS. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis. Front Neuroanat 2015; 9:68. [PMID: 26074783 PMCID: PMC4445386 DOI: 10.3389/fnana.2015.00068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 02/02/2023] Open
Abstract
Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.
Collapse
Affiliation(s)
- Ludovico Silvestri
- National Institute of Optics, National Research Council Sesto Fiorentino, Italy ; European Laboratory for Non-Linear Spectroscopy Sesto Fiorentino, Italy
| | - Marco Paciscopi
- Department of Information Engineering, University of Florence Florence, Italy
| | - Paolo Soda
- Department of Engineering, University Campus Bio-Medico of Rome Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Catholic University of the Sacred Heart "A. Gemelli", Rome Italy
| | - Giulio Iannello
- Department of Engineering, University Campus Bio-Medico of Rome Rome, Italy
| | - Paolo Frasconi
- European Laboratory for Non-Linear Spectroscopy Sesto Fiorentino, Italy
| | - Francesco S Pavone
- National Institute of Optics, National Research Council Sesto Fiorentino, Italy ; European Laboratory for Non-Linear Spectroscopy Sesto Fiorentino, Italy ; Department of Physics and Astronomy, University of Florence Sesto Fiorentino, Italy ; International Center for Computational Neurophotonics Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Costantini I, Ghobril JP, Di Giovanna AP, Allegra Mascaro AL, Silvestri L, Müllenbroich MC, Onofri L, Conti V, Vanzi F, Sacconi L, Guerrini R, Markram H, Iannello G, Pavone FS. A versatile clearing agent for multi-modal brain imaging. Sci Rep 2015; 5:9808. [PMID: 25950610 PMCID: PMC4423470 DOI: 10.1038/srep09808] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022] Open
Abstract
Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue.
Collapse
Affiliation(s)
- Irene Costantini
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Jean-Pierre Ghobril
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, Station 15, CH-1015 Lausanne, Switzerland
| | - Antonino Paolo Di Giovanna
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marie Caroline Müllenbroich
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Leonardo Onofri
- European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Valerio Conti
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Department of Neuroscience, Pharmacology and Child Health, A. Meyer Children's Hospital - University of Florence, Viale Pieraccini 24, 50139 Florence, Italy
| | - Francesco Vanzi
- 1] European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy [2] Department of Biology, University of Florence, Via Romana 17, 50125 Florence, Italy
| | - Leonardo Sacconi
- 1] National Institute of Optics, National Research Council, Largo Fermi 6, 50125 Florence, Italy [2] European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Department of Neuroscience, Pharmacology and Child Health, A. Meyer Children's Hospital - University of Florence, Viale Pieraccini 24, 50139 Florence, Italy
| | - Henry Markram
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, Station 15, CH-1015 Lausanne, Switzerland
| | - Giulio Iannello
- Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Francesco Saverio Pavone
- 1] European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy [2] National Institute of Optics, National Research Council, Largo Fermi 6, 50125 Florence, Italy [3] Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
High-resolution episcopic microscopy (HREM): A useful technique for research in wound care. Ann Anat 2015; 197:3-10. [DOI: 10.1016/j.aanat.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/24/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
|
14
|
Fumagalli S, Ortolano F, De Simoni MG. A close look at brain dynamics: Cells and vessels seen by in vivo two-photon microscopy. Prog Neurobiol 2014; 121:36-54. [DOI: 10.1016/j.pneurobio.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 01/11/2023]
|
15
|
Affiliation(s)
- Ammasi Periasamy
- University of Virginia, W.M. Keck Center for Cellular Imaging, Charlottesville, VA, USA.
| |
Collapse
|