1
|
Huang R, Zhao B, Hu S, Zhang Q, Su X, Zhang W. Adoptive neoantigen-reactive T cell therapy: improvement strategies and current clinical researches. Biomark Res 2023; 11:41. [PMID: 37062844 PMCID: PMC10108522 DOI: 10.1186/s40364-023-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Neoantigens generated by non-synonymous mutations of tumor genes can induce activation of neoantigen-reactive T (NRT) cells which have the ability to resist the growth of tumors expressing specific neoantigens. Immunotherapy based on NRT cells has made preeminent achievements in melanoma and other solid tumors. The process of manufacturing NRT cells includes identification of neoantigens, preparation of neoantigen expression vectors or peptides, induction and activation of NRT cells, and analysis of functions and phenotypes. Numerous improvement strategies have been proposed to enhance the potency of NRT cells by engineering TCR, promoting infiltration of T cells and overcoming immunosuppressive factors in the tumor microenvironment. In this review, we outline the improvement of the preparation and the function assessment of NRT cells, and discuss the current status of clinical trials related to NRT cell immunotherapy.
Collapse
Affiliation(s)
- Ruichen Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bi Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Boswell KL, Watkins TA, Cale EM, Samsel J, Andrews SF, Ambrozak DR, Driscoll JI, Messina MA, Narpala S, Hopp CS, Cagigi A, Casazza JP, Yamamoto T, Zhou T, Schief WR, Crompton PD, Ledgerwood JE, Connors M, Gama L, Kwong PD, McDermott A, Mascola JR, Koup RA. Application of B cell immortalization for the isolation of antibodies and B cell clones from vaccine and infection settings. Front Immunol 2022; 13:1087018. [PMID: 36582240 PMCID: PMC9794141 DOI: 10.3389/fimmu.2022.1087018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The isolation and characterization of neutralizing antibodies from infection and vaccine settings informs future vaccine design, and methodologies that streamline the isolation of antibodies and the generation of B cell clones are of great interest. Retroviral transduction to express Bcl-6 and Bcl-xL and transform primary B cells has been shown to promote long-term B cell survival and antibody secretion in vitro, and can be used to isolate antibodies from memory B cells. However, application of this methodology to B cell subsets from different tissues and B cells from chronically infected individuals has not been well characterized. Here, we characterize Bcl-6/Bcl-xL B cell immortalization across multiple tissue types and B cell subsets in healthy and HIV-1 infected individuals, as well as individuals recovering from malaria. In healthy individuals, naïve and memory B cell subsets from PBMCs and tonsil tissue transformed with similar efficiencies, and displayed similar characteristics with respect to their longevity and immunoglobulin secretion. In HIV-1-viremic individuals or in individuals with recent malaria infections, the exhausted CD27-CD21- memory B cells transformed with lower efficiency, but the transformed B cells expanded and secreted IgG with similar efficiency. Importantly, we show that this methodology can be used to isolate broadly neutralizing antibodies from HIV-infected individuals. Overall, we demonstrate that Bcl-6/Bcl-xL B cell immortalization can be used to isolate antibodies and generate B cell clones from different B cell populations, albeit with varying efficiencies.
Collapse
Affiliation(s)
- Kristin L. Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Timothy A. Watkins
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Evan M. Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jakob Samsel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute for Biomedical Sciences, George Washington University, Washington, DC, United States
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jefferson I. Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christine S. Hopp
- Malaria Infection Biology and Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Takuya Yamamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William R. Schief
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Ruggiero E, Carnevale E, Prodeus A, Magnani ZI, Camisa B, Merelli I, Politano C, Stasi L, Potenza A, Cianciotti BC, Manfredi F, Di Bono M, Vago L, Tassara M, Mastaglio S, Ponzoni M, Sanvito F, Liu D, Balwani I, Galli R, Genua M, Ostuni R, Doglio M, O'Connell D, Dutta I, Yazinski SA, McKee M, Arredouani MS, Schultes B, Ciceri F, Bonini C. CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci Transl Med 2022; 14:eabg8027. [PMID: 35138911 DOI: 10.1126/scitranslmed.abg8027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cell receptor (TCR)-based therapy has the potential to induce durable clinical responses in patients with cancer by targeting intracellular tumor antigens with high sensitivity and by promoting T cell survival. However, the need for TCRs specific for shared oncogenic antigens and the need for manufacturing protocols able to redirect T cell specificity while preserving T cell fitness remain limiting factors. By longitudinal monitoring of T cell functionality and dynamics in 15 healthy donors, we isolated 19 TCRs specific for Wilms' tumor antigen 1 (WT1), which is overexpressed by several tumor types. TCRs recognized several peptides restricted by common human leukocyte antigen (HLA) alleles and displayed a wide range of functional avidities. We selected five high-avidity HLA-A*02:01-restricted TCRs, three that were specific to the less explored immunodominant WT137-45 and two that were specific to the noncanonical WT1-78-64 epitopes, both naturally processed by primary acute myeloid leukemia (AML) blasts. With CRISPR-Cas9 genome editing tools, we combined TCR-targeted integration into the TCR α constant (TRAC) locus with TCR β constant (TRBC) knockout, thus avoiding TCRαβ mispairing and maximizing TCR expression and function. The engineered lymphocytes were enriched in memory stem T cells. A unique WT137-45-specific TCR showed antigen-specific responses and efficiently killed AML blasts, acute lymphoblastic leukemia blasts, and glioblastoma cells in vitro and in vivo in the absence of off-tumor toxicity. T cells engineered to express this receptor are being advanced into clinical development for AML immunotherapy and represent a candidate therapy for other WT1-expressing tumors.
Collapse
Affiliation(s)
- Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Erica Carnevale
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Zulma Irene Magnani
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Claudia Politano
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mattia Di Bono
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Vago
- Immunogenetics, Leukemia Genomics and Immunobiology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Michela Tassara
- Immunohematology and Transfusion Medicine Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maurilio Ponzoni
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Pathology Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dai Liu
- Intellia Therapeutics, Cambridge, MA 02139, USA
| | | | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neurosciences, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Doglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Ivy Dutta
- Intellia Therapeutics, Cambridge, MA 02139, USA
| | | | - Mark McKee
- Intellia Therapeutics, Cambridge, MA 02139, USA
| | | | | | - Fabio Ciceri
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
4
|
Byazrova M, Yusubalieva G, Spiridonova A, Efimov G, Mazurov D, Baranov K, Baklaushev V, Filatov A. Pattern of circulating SARS-CoV-2-specific antibody-secreting and memory B-cell generation in patients with acute COVID-19. Clin Transl Immunology 2021; 10:e1245. [PMID: 33552508 PMCID: PMC7848539 DOI: 10.1002/cti2.1245] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives To predict the spread of coronavirus disease (COVID‐19), information regarding the immunological memory for disease‐specific antigens is necessary. The possibility of reinfection, as well as the efficacy of vaccines for COVID‐19 that are currently under development, will largely depend on the quality and longevity of immunological memory in patients. To elucidate the process of humoral immunity development, we analysed the generation of plasmablasts and virus receptor‐binding domain (RBD)‐specific memory B (Bmem) cells in patients during the acute phase of COVID‐19. Methods The frequencies of RBD‐binding plasmablasts and RBD‐specific antibody‐secreting cells (ASCs) in the peripheral blood samples collected from patients with COVID‐19 were measured using flow cytometry and the ELISpot assay. Results The acute phase of COVID‐19 was characterised by the transient appearance of total as well as RBD‐binding plasmablasts. ELISpot analysis indicated that most patients exhibited a spontaneous secretion of RBD‐specific ASCs in the circulation with good correlation between the IgG and IgM subsets. IL‐21/CD40L stimulation of purified B cells induced the activation and proliferation of Bmem cells, which led to the generation of plasmablast phenotypic cells as well as RBD‐specific ASCs. No correlation was observed between the frequency of Bmem cell‐derived and spontaneous ASCs, suggesting that the two types of ASCs were weakly associated with each other. Conclusion Our findings reveal that SARS‐CoV‐2‐specific Bmem cells are generated during the acute phase of COVID‐19. These findings can serve as a basis for further studies on the longevity of SARS‐CoV‐2‐specific B‐cell memory.
Collapse
Affiliation(s)
- Maria Byazrova
- National Research Center Institute of Immunology of Federal Medical Biological Agency of Russia Moscow Russia.,Department of Immunology Faculty of Biology Lomonosov Moscow State University Moscow Russia
| | - Gaukhar Yusubalieva
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the FMBA of Russia Moscow Russia
| | - Anna Spiridonova
- National Research Center Institute of Immunology of Federal Medical Biological Agency of Russia Moscow Russia
| | | | - Dmitriy Mazurov
- Institute of Gene Biology Russian Academy of Sciences Center for Precision Genome Editing and Genetic Technologies for Biomedicine Moscow Russia
| | - Konstantin Baranov
- Institute of Molecular and Cellular Biology SB RAS Lomonosov Moscow State University Novosibirsk Russia
| | - Vladimir Baklaushev
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the FMBA of Russia Moscow Russia
| | - Alexander Filatov
- National Research Center Institute of Immunology of Federal Medical Biological Agency of Russia Moscow Russia.,Department of Immunology Faculty of Biology Lomonosov Moscow State University Moscow Russia
| |
Collapse
|
5
|
Levels MJ, Fehres CM, van Baarsen LG, van Uden NO, Germar K, O'Toole TG, Blijdorp IC, Semmelink JF, Doorenspleet ME, Bakker AQ, Krasavin M, Tomilin A, Brouard S, Spits H, Baeten DL, Yeremenko NG. BOB.1 controls memory B-cell fate in the germinal center reaction. J Autoimmun 2019; 101:131-144. [DOI: 10.1016/j.jaut.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
|
6
|
Greiner V, Bou Puerto R, Liu S, Herbel C, Carmona EM, Goldberg MS. CRISPR-Mediated Editing of the B Cell Receptor in Primary Human B Cells. iScience 2019; 12:369-378. [PMID: 30769282 PMCID: PMC6374785 DOI: 10.1016/j.isci.2019.01.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Vaccination approaches have generally focused on the antigen rather than the resultant antibodies generated, which differ greatly in quality and function between individuals. The ability to replace the variable regions of the native B cell receptor (BCR) heavy and light chain loci with defined recombined sequences of a preferred monoclonal antibody could enable curative adoptive cell transfer. We report CRISPR-mediated homologous recombination (HR) into the BCR of primary human B cells. Ribonucleoprotein delivery enabled editing at the model CXCR4 locus, as demonstrated by T7E1 assay, flow cytometry, and TIDE analysis. Insertion via HR was confirmed by sequencing, cross-boundary PCR, and restriction digest. Optimized conditions were used to achieve HR at the BCR variable heavy and light chains. Insertion was confirmed at the DNA level, and transgene expression from the native BCR promoters was observed. Reprogramming the specificity of antibodies in the genomes of B cells could have clinical importance.
Collapse
Affiliation(s)
- Vera Greiner
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Regina Bou Puerto
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suying Liu
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christoph Herbel
- Department of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ellese M Carmona
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Michael S Goldberg
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
7
|
De novo gene mutations in normal human memory B cells. Leukemia 2018; 33:1219-1230. [PMID: 30353030 DOI: 10.1038/s41375-018-0289-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
In the past years, the genomes of thousands of tumors have been elucidated. To date however, our knowledge on somatic gene alterations in normal cells is very limited. In this study, we demonstrate that tetanus-specific human memory B lymphocytes carry a substantial number of somatic mutations in the coding regions of the genome. Interestingly, we observed a statistically significant correlation between the number of exome mutations and those present in the immunoglobulin heavy variable regions. Our findings indicate that the majority of these genomic mutations arise in an antigen-dependent fashion, most likely during clonal expansion in germinal centers. The knowledge that normal B cells accumulate genomic alterations outside the immunoglobulin loci during development is relevant for our understanding of the process of lymphomagenesis.
Collapse
|
8
|
van Someren Gréve F, van der Sluijs KF, Tuip AM, Schultz MJ, de Jong MD, Juffermans NP. Treatment with broadly neutralizing influenza antibodies reduces severity of secondary pneumococcal pneumonia in mice. J Med Virol 2018; 90:1431-1437. [PMID: 29718555 PMCID: PMC6055667 DOI: 10.1002/jmv.25212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
Secondary bacterial pneumonia is a frequent complication of influenza, associated with high morbidity and mortality. We hypothesized that treatment with neutralizing influenza A antibody AT10_002 protects against severe secondary pneumococcal infection in a mouse model of influenza A infection. Influenza A (H3N2) virus–infected male C57Bl6 mice were treated intravenously with either AT10_002 or a control 2 days postinfection. Seven days later, both groups were infected with Streptococcus pneumoniae and killed 18 hours later. Mice receiving AT10_002 showed less loss of bodyweight compared with controls (+1% vs −12%, P < .001), lower viral loads in bronchoalveolar lavage fluids (BALFs) (7 vs 194 RNA copies per µL; P < .001), and reduced bacterial outgrowth in lung homogenates (3.3 × 101 vs 2.5 × 105 colony‐forming units per mg; P < .001). The treatment group showed lower pulmonary wet weights, lower cell counts, and lower protein levels in BALF compared with controls. Treatment with AT10_002 was associated with lower levels of tumor necrosis factor‐α, interleukin (IL)‐6, cytokine‐induced neutrophil chemoattractant (KC), and interferon‐γ in BALF and lower IL‐6 and KC in lung homogenates. Treatment with anti‐influenza antibody AT10_002 is associated with reduced weight loss, viral load, bacterial outgrowth, and lung injury in a murine model of secondary pneumococcal pneumonia following influenza infection.
Collapse
Affiliation(s)
- Frank van Someren Gréve
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Koenraad F van der Sluijs
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, Amsterdam, The Netherlands
| | - Anita M Tuip
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, Amsterdam, The Netherlands.,Faculty of Tropical Medicine, Mahidol Oxford Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Choudhary A, Patel D, Honnen W, Lai Z, Prattipati RS, Zheng RB, Hsueh YC, Gennaro ML, Lardizabal A, Restrepo BI, Garcia-Viveros M, Joe M, Bai Y, Shen K, Sahloul K, Spencer JS, Chatterjee D, Broger T, Lowary TL, Pinter A. Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of Mycobacterium tuberculosis, and Complexity of Antibody Specificities toward This Antigen. THE JOURNAL OF IMMUNOLOGY 2018; 200:3053-3066. [PMID: 29610143 PMCID: PMC5911930 DOI: 10.4049/jimmunol.1701673] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1–coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM.
Collapse
Affiliation(s)
- Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Deendayal Patel
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Zhong Lai
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Raja Sekhar Prattipati
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Ruixiang Blake Zheng
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ying-Chao Hsueh
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Alfred Lardizabal
- Global Tuberculosis Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Blanca I Restrepo
- University of Texas Health Science Center at Houston, School of Public Health at Brownsville, Brownsville, TX 78520
| | | | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yu Bai
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ke Shen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kamar Sahloul
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Tobias Broger
- Foundation for Innovative New Diagnostics, Geneva 1202, Switzerland
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103;
| |
Collapse
|
10
|
Lushova AA, Biazrova MG, Prilipov AG, Sadykova GK, Kopylov TA, Filatov AV. Next-Generation Techniques for Discovering Human Monoclonal Antibodies. Mol Biol 2017; 51:782-787. [PMID: 32214477 PMCID: PMC7088925 DOI: 10.1134/s0026893317060103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
Abstract
Monoclonal antibodies have found wide applications in the treatment of cancer, as well as of autoimmune, infectious, and other diseases. Several dozen new antibodies are currently undergoing different stages of clinical trials, and some of them will soon be added to the list of immunotherapeutic drugs. Most of these antibodies have been generated using hybridoma technology or a phage display. In recent years, new methods of obtaining human monoclonal antibodies have been actively developing. These methods rely on sequencing immunoglobulin genes from B lymphocytes, as well as on the creation of antibody-secreting stable B-cell lines. The term next-generation antibody-discovery platforms has already been established in the literature to refer to these approaches. Our review focuses on describing the results obtained by these methods.
Collapse
Affiliation(s)
- A A Lushova
- 1Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478 Russia
| | - M G Biazrova
- 1Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478 Russia
| | - A G Prilipov
- 2Ivanovsky Institute of Virology, Gamaleya Scientific Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - G K Sadykova
- 2Ivanovsky Institute of Virology, Gamaleya Scientific Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - T A Kopylov
- 3Orekhovich Institute of Biomedical Chemistry, Moscow, 119121 Russia
| | - A V Filatov
- 1Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478 Russia
| |
Collapse
|
11
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
12
|
Jones TD, Carter PJ, Plückthun A, Vásquez M, Holgate RGE, Hötzel I, Popplewell AG, Parren PWHI, Enzelberger M, Rademaker HJ, Clark MR, Lowe DC, Dahiyat BI, Smith V, Lambert JM, Wu H, Reilly M, Haurum JS, Dübel S, Huston JS, Schirrmann T, Janssen RAJ, Steegmaier M, Gross JA, Bradbury ARM, Burton DR, Dimitrov DS, Chester KA, Glennie MJ, Davies J, Walker A, Martin S, McCafferty J, Baker MP. The INNs and outs of antibody nonproprietary names. MAbs 2016; 8:1-9. [PMID: 26716992 PMCID: PMC4966553 DOI: 10.1080/19420862.2015.1114320] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies.
Collapse
Affiliation(s)
- Tim D Jones
- a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Paul J Carter
- b Genentech Inc., 1 DNA Way , South San Francisco , CA 94080 , USA
| | - Andreas Plückthun
- c Department of Biochemistry , University of Zurich , Zurich CH-8057 , Switzerland
| | - Max Vásquez
- d Adimab LLC., 7 Lucent Drive , Lebanon , NH 03766 , USA
| | - Robert G E Holgate
- a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Isidro Hötzel
- b Genentech Inc., 1 DNA Way , South San Francisco , CA 94080 , USA
| | | | - Paul W H I Parren
- f Genmab, PO Box 85199, 3508 AD , Utrecht , The Netherlands.,g Leiden University Medical Center, Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden , The Netherlands
| | - Markus Enzelberger
- h MorphoSys AG., Lena-Christ-Str. 48, 82152 Martinsried/Planegg , Germany
| | | | - Michael R Clark
- i Clark Antibodies Ltd., 11 Wellington Street , Cambridge CB1 1HW , UK
| | - David C Lowe
- j MedImmune Ltd., Milstein Building, Granta Park , Cambridge CB21 6GH , UK
| | | | | | - John M Lambert
- m ImmunoGen Inc., 830 Winter Street , Waltham , MA 02451-1477 , USA
| | - Herren Wu
- n MedImmune., One MedImmune Way , Gaithersburg , MD 20878 , USA
| | - Mary Reilly
- o Opsona Therapeutics Ltd., 2nd Floor, Ashford House , Tara Street , Dublin 2 , Ireland
| | - John S Haurum
- p F-Star Biotechnology Ltd., Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Stefan Dübel
- q Technische Universität Braunschweig., Institute of Biochemistry, Biotechnology and Bioinformatics Spielmannstr. 7 , 38106 Braunschweig , Germany
| | - James S Huston
- r The Antibody Society & Huston BioConsulting LLC. , 270 Pleasant Street #A206, Watertown , MA 02472 , USA
| | | | | | - Martin Steegmaier
- u Roche Pharmaceutical Research and Early Development,. Large Molecule Research, Roche Innovation Center Penzberg , 82377 Penzberg , Germany
| | - Jane A Gross
- v Emergent BioSolutions. , 2401 4th Avenue, Suite 1050, Seattle , WA 98121 , USA
| | - Andrew R M Bradbury
- w Biosciences Division., MS-M888, TA-43, HRL-1, Building 1, Los Alamos National Laboratory , Los Alamos , NM 87545 , USA
| | - Dennis R Burton
- x The Scripps Research Institute., 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Dimiter S Dimitrov
- y Protein Interactions Section., Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute , Frederick , MD 21702 , USA
| | - Kerry A Chester
- z UCL Cancer Institute., 72 Huntley Street , London WC1E 6BT , UK
| | - Martin J Glennie
- aa Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital , Southampton , Hampshire SO16 6YD , UK
| | - Julian Davies
- ab Lilly Biotechnology Center San Diego , CA 92121 , USA
| | - Adam Walker
- ac GSK., Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Hills Road , Cambridge , CB2 2GG , UK
| | - Steve Martin
- ad GSK, Medicines Research Centre, Gunnels Wood Road , Stevenage , Herts , SG1 2NY , UK
| | - John McCafferty
- ae Iontas Ltd., Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Matthew P Baker
- a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK
| |
Collapse
|
13
|
Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol 2016; 38:163-73. [PMID: 27525816 DOI: 10.1016/j.sbi.2016.07.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment.
Collapse
Affiliation(s)
- Mark L Chiu
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Gary L Gilliland
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
14
|
Kwakkenbos MJ, van Helden PM, Beaumont T, Spits H. Stable long-term cultures of self-renewing B cells and their applications. Immunol Rev 2016; 270:65-77. [PMID: 26864105 PMCID: PMC4755196 DOI: 10.1111/imr.12395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies are essential therapeutics and diagnostics in a large number of diseases. Moreover, they are essential tools in all sectors of life sciences. Although the great majority of monoclonal antibodies currently in use are of mouse origin, the use of human B cells to generate monoclonal antibodies is increasing as new techniques to tap the human B cell repertoire are rapidly emerging. Cloned lines of immortalized human B cells are ideal sources of monoclonal antibodies. In this review, we summarize our studies to the regulation of the replicative life span, differentiation, and maturation of B cells that led to the development of a platform that uses immortalization of human B cells by in vitro genetic modification for antibody development. We describe a number of human antibodies that were isolated using this platform and the application of the technique in other species. We also discuss the use of immortalized B cells as antigen-presenting cells for the discovery of tumor neoantigens.
Collapse
Affiliation(s)
| | | | - Tim Beaumont
- AIMM TherapeuticsAcademic Medical CenterAmsterdamThe Netherlands
| | - Hergen Spits
- AIMM TherapeuticsAcademic Medical CenterAmsterdamThe Netherlands
- Department of Cell Biology and HistologyAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Human Memory B Cells Producing Potent Cross-Neutralizing Antibodies against Human Parechovirus: Implications for Prevalence, Treatment, and Diagnosis. J Virol 2015; 89:7457-64. [PMID: 25948742 DOI: 10.1128/jvi.01079-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The family Picornaviridae is a large and diverse group of positive-sense RNA viruses, including human enteroviruses (EVs) and human parechoviruses (HPeVs). The human immune response against EVs and HPeVs is thought to be mainly humoral, and an insufficient neutralizing antibody (Ab) response during infection is a risk factor and can ultimately be life threatening. The accessibility of different antigenic sites and observed cross-reactivity make HPeVs a good target for development of therapeutic human monoclonal antibodies (MAbs). In this study, we generated two different human MAbs specific for HPeV by screening culture supernatants of Ab-producing human B cell cultures for direct neutralization of HPeV1. Both MAbs showed HPeV1-specific neutralization as well as neutralization of HPeV2. One antibody, AM18, cross-neutralized HPeV4, -5, and -6 and coxsackievirus A9 (CV-A9). VP1 capsid protein-specific assays confirmed that AM18 bound VP1 of HPeV1, -2, and -4 with high affinity (11.5 pM). In contrast, the HPeV1-specific MAb AM28, which neutralized HPeV1 even more efficiently than did AM18, showed no cross-reactivity with HPeV3 to -6 or other EVs and did not bind any of the capsid proteins, suggesting that AM28 is specific for a conformation-dependent, nonlinear epitope on the virus. The discovery of MAbs that are cross-reactive between HPeVs may help development of HPeV treatment options with antibodies and vaccine design based on epitopes recognized by these antibodies. IMPORTANCE HPeV infections are widespread among young children and adults, causing a broad range of disease. Infections can be severe and life threatening, while no antiviral treatment is available. Given that the absence of neutralizing Abs is a risk factor for severe disease in infants, treatment of picornavirus infections with MAbs would be a therapeutic option. To study antibody neutralization of HPeV in more detail, we generated two different HPeV1-specific human MAbs. Both MAbs show HPeV1-specific neutralization and cross-neutralized HPeV2. One MAb also cross-neutralized other HPeVs. Surprisingly, this MAb also neutralized CV-A9. These MAbs provide a unique tool for further research and for the diagnosis (antigen detection) and possible treatment of HPeV infections.
Collapse
|
16
|
Linnemann C, van Buuren MM, Bies L, Verdegaal EME, Schotte R, Calis JJA, Behjati S, Velds A, Hilkmann H, Atmioui DE, Visser M, Stratton MR, Haanen JBAG, Spits H, van der Burg SH, Schumacher TNM. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 2014; 21:81-5. [PMID: 25531942 DOI: 10.1038/nm.3773] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/18/2014] [Indexed: 01/15/2023]
Abstract
Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.
Collapse
Affiliation(s)
- Carsten Linnemann
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marit M van Buuren
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Bies
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Els M E Verdegaal
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jorg J A Calis
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Arno Velds
- Central Genomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk Hilkmann
- Peptide Synthesis Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dris El Atmioui
- Peptide Synthesis Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marten Visser
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - John B A G Haanen
- 1] Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. [2] Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hergen Spits
- AIMM Therapeutics B.V., Amsterdam, the Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc Natl Acad Sci U S A 2014; 111:16820-5. [PMID: 25385586 DOI: 10.1073/pnas.1408605111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains into a single molecule. Here, we present a bispecific format where we have fused two full-sized IgG antibodies via their C termini using sortase transpeptidation and click chemistry to create a covalently linked IgG antibody heterodimer. By linking two potent anti-influenza A antibodies together, we have generated a full antibody dimer with bispecific activity that retains the activity and stability of the two fusion partners.
Collapse
|
18
|
|