1
|
Kim SH, Lee SY, Kim U, Oh SW. Diverse methods of reducing and confirming false-positive results of loop-mediated isothermal amplification assays: A review. Anal Chim Acta 2023; 1280:341693. [PMID: 37858542 DOI: 10.1016/j.aca.2023.341693] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 10/21/2023]
Abstract
Loop-mediated isothermal amplification (LAMP), a rapid and sensitive isothermal nucleic acid amplification method, is a promising alternative to other molecular amplification techniques due to its superior specificity and sensitivity. However, due to primer dimerization, LAMP results in nonspecific and nontemplate amplification. And during the amplification confirmation process, there is carry-over contamination. These factors can result in false-positive results that overestimate the amount of DNA, preventing accurate detection. This review outlined several techniques for reducing false-positive LAMP results before amplification and confirming false-positive results after amplification. Before the amplification step, DNA polymerase activity can be decreased with organic additives such as dimethyl sulfoxide, betaine, and pullulan to prevent nonspecific amplification. The enzyme uracil-DNA-glycosylase (UDG) can eliminate false-positive results caused by carry-over contamination, and the hot-start effect with gold nanoparticles can reduce nonspecific amplification. When confirming false-positive results using clustered regularly interspaced short palindromic repeats, guide RNA accurately detects LAMP amplification, allowing differentiation from nonspecific amplification. By confirming amplification, the colorimetric change in the deoxyribozyme (DNAzyme) formed by the reaction of the G-quadruplex sequence of the LAMP amplicon and hemin can distinguish false-positive results. Lateral flow immunoassay can distinguish false-positive results by accurately recognizing hybridized probes to LAMP amplicons.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Meng J, Shen H, Luo L, Zeng X, Wang J, Liu Y, Xu ZL. Engineered DNAzyme Enables Homogeneous Detection of Cereulide via Polychromic Fluorescence Modality. Anal Chem 2023; 95:14135-14142. [PMID: 37669908 DOI: 10.1021/acs.analchem.3c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Cereulide, the exotoxin of emetic Bacillus cereus, has garnered considerable attention due to its capacity to produce foodborne poisonings and great chemical stability. Herein, a G-quadruplex-hemin DNAzyme-based biosensor was developed to detect cereulide in the homogeneous solution. Due to the special ring structure and high affinity to K+, cereulide can be attracted and intercalated into the G-quadruplex; thus, the properties of the G4 DNAzyme can be altered. The melting temperature (Tm) of the G4 DNAzyme in the presence or absence of cereulide was 58.75 and 50.10 °C, respectively, proving the intercalation of cereulide into the G4 DNAzyme. By using the polychromic fluorescence modality of CdTe quantum dots and o-phenylenediamine to assess the variation in the catalytic activity of the DNAzyme, the intercalation of cereulide had bidirectional effects in G4 DNAzyme-mediated reactions, showing that the fluorescence intensity of CdTe quantum dots displayed a linear relationship with the concentration of cereulide from 0.16 to 40 μg/mL with the limit of detection (LOD) of 0.10 μg/mL, while the fluorescence intensity of DAP exhibited a linear relationship with the concentration of cereulide from 0.02 to 40 μg/mL with the LOD of 0.01 μg/mL. It will be a perspective step of controlling cereulide as a hazardous material in food or the environment.
Collapse
Affiliation(s)
- Jingnan Meng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xi Zeng
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Xie X, Cheng X, Dong J, Li J, Jiang L, Yang T, Liao B, Ding S, Liu Q, Luo F, Cheng W, Chen J. Visual Assay for Methicillin-Resistant Staphylococcus aureus Based on Rolling Circular Amplification Triggering G-Quadruplex/Hemin DNAzyme Proximity Assembly. Anal Chem 2023; 95:3098-3107. [PMID: 36693787 DOI: 10.1021/acs.analchem.2c05712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nowadays, infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have constituted a new challenge for anti-infective treatment. Precise identification and rapid clinical diagnostics of MRSA from other methicillin-sensitive strains entail assays with robust diagnostic efficiency and simple operation steps. Sensitive detection of MecA gene is promising to indicate MRSA infection, but it is challenged by the lack of isothermal and simple strategies. A visual assay based on isothermal rolling circular amplification and G-quadruplex/hemin (G4/hemin) DNAzyme proximity assembly was proposed for the immediate, efficient, and cost-effective detection of MecA in simple operation steps and in a single tube. The presence of MecA specifically drove the formation of circular templates, which further triggered isothermal amplification. The amplified product offered abundant binding sites for DNA-grafted hemin probes to form a novel proximity-assembled G4/hemin DNAzyme structure for colorimetric changing diagnosis. This tandem-repeated novel DNAzyme possessed higher catalytic activity and a lower background signal than traditional G4/hemin DNAzyme, ensuring sensitive discrimination of MRSA (limit of detection: 9.6 pM). Assay stability and antimatrix interference capability enable clinical application, which shows compared diagnostic ability with classic methods (100% sensitivity and 100% specificity) but possesses more simplified procedures and shorter turnaround time (<6 h). This colorimetric strategy in a nonsite-specific and hypersensitive manner holds foreseeable prospects in clinical diagnostic and research applications.
Collapse
Affiliation(s)
- Xiaolin Xie
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Clinical Laboratory, Chongqing Ninth People's Hospital, Chongqing 400700, P.R. China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Juan Dong
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanxin Jiang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Liao
- Department of Clinical Laboratory, Chongqing Ninth People's Hospital, Chongqing 400700, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qingsong Liu
- Department of Clinical Laboratory, Women and Children's Hospital in Beibei District of Chongqing, Chongqing 400700, P.R. China
| | - Fukang Luo
- Department of Clinical Laboratory, Chongqing Ninth People's Hospital, Chongqing 400700, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
4
|
Chen Y, Qiu D, Zhang X, Liu Y, Cheng M, Lei J, Mergny JL, Ju H, Zhou J. Highly Sensitive Biosensing Applications of a Magnetically Immobilizable Covalent G-Quadruplex-Hemin DNAzyme Catalytic System. Anal Chem 2022; 94:2212-2219. [PMID: 35050586 DOI: 10.1021/acs.analchem.1c04842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-quadruplex/hemin (G4/hemin) DNAzymes are biosensing systems, but their application remains limited by an overall low activity and a rather high level of unwarranted background reactions. Here, these issues were addressed through the rational design of F3T-azaC-hemin, a G4-based construct in which the hemin is covalently linked to the G4 core and its binding site flanked with a nucleotide activator, here d(T-azaC). This design led to a G4-DNAzyme whose performances have been ca. 150-fold increased compared to the parent G4-based system. The utility of F3T-azaC-hemin was demonstrated here through the ultrasensitive chemiluminescent detection of miRNA-221. The limit of detection (LOD) has been decreased to the femtomolar range, making it a new and highly efficient molecular tool in the biosensing technology field.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex 91128, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Kosman J, Żukowski K, Csáki A, Fritzsche W, Juskowiak B. Sequence Effect on the Activity of DNAzyme with Covalently Attached Hemin and Their Potential Bioanalytical Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:500. [PMID: 35062461 PMCID: PMC8780643 DOI: 10.3390/s22020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
In this work we investigated the effect of a DNA oligonucleotide sequence on the activity of a DNAzyme with covalently attached hemin. For this purpose, we synthesized seven DNA-hemin conjugates. All DNA-hemin conjugates as well as DNA/hemin complexes were characterized using circular dichroism, determination of melting temperatures and pKa of hemin. We observed that hemin conjugation in most cases led to the formation of parallel G-quadruplexes in the presence of potassium and increased thermal stability of all studied systems. Although the activity of DNA-hemin conjugates depended on the sequence used, the highest activity was observed for the DNA-hemin conjugate based on a human telomeric sequence. We used this DNAzyme for development of "sandwich" assay for detection of DNA sequence. For this assay, we used electric chip which could conduct electricity after silver deposition catalyzed by DNAzyme. This method was proved to be selective towards DNA oligonucleotides with mismatches and could be used for the detection of the target. To prove the versatility of our DNAzyme probe we also performed experiments with streptavidin-coated microplates. Our research proved that DNAzyme with covalently attached hemin can be used successfully in the development of heterogeneous assays.
Collapse
Affiliation(s)
- Joanna Kosman
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (K.Ż.); (B.J.)
| | - Krzysztof Żukowski
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (K.Ż.); (B.J.)
| | - Andrea Csáki
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany; (A.C.); (W.F.)
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany; (A.C.); (W.F.)
| | - Bernard Juskowiak
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (K.Ż.); (B.J.)
| |
Collapse
|
6
|
Araki H, Hagiwara S, Shinomiya R, Momotake A, Kotani H, Kojima T, Ochiai T, Shimada N, Maruyama A, Yamamoto Y. A cationic copolymer as a cocatalyst for a peroxidase-mimicking heme-DNAzyme. Biomater Sci 2021; 9:6142-6152. [PMID: 34346413 DOI: 10.1039/d1bm00949d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme binds to a parallel-stranded G-quadruplex DNA to form a peroxidase-mimicking heme-DNAzyme. An interpolyelectrolyte complex between the heme-DNAzyme and a cationic copolymer possessing protonated amino groups was characterized and the peroxidase activity of the complex was evaluated to elucidate the effect of the polymer on the catalytic activity of the heme-DNAzyme. We found that the catalytic activity of the heme-DNAzyme is enhanced through the formation of the interpolyelectrolyte complex due to the general acid catalysis of protonated amino groups of the polymer, enhancing the formation of the iron(iv)oxo porphyrin π-cation radical intermediate known as Compound I. This finding indicates that the polymer with protonated amino groups can act as a cocatalyst for the heme-DNAzyme in the oxidation catalysis. We also found that the enhancement of the activity of the heme-DNAzyme by the polymer depends on the local heme environment such as the negative charge density in the proximity of the heme and substrate accessibility to the heme. These findings provide novel insights as to molecular design of the heme-DNAzyme for enhancing its catalytic activity.
Collapse
Affiliation(s)
- Haruka Araki
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shota Hagiwara
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ryosuke Shinomiya
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Takuro Ochiai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
7
|
Cao Y, Yang L, Ding P, Li W, Pei R. Ligand Selectivity by Inserting GCGC‐Tetrads into G‐Quadruplex Structures. Chemistry 2020; 26:14730-14737. [DOI: 10.1002/chem.202003004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| |
Collapse
|
8
|
Cao Y, Ding P, Yang L, Li W, Luo Y, Wang J, Pei R. Investigation and improvement of catalytic activity of G-quadruplex/hemin DNAzymes using designed terminal G-tetrads with deoxyadenosine caps. Chem Sci 2020; 11:6896-6906. [PMID: 34094131 PMCID: PMC8159390 DOI: 10.1039/d0sc01905d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is generally acknowledged that G-quadruplexes (G4s) acquire peroxidase activity upon interaction with hemin. Hemin has been demonstrated to bind selectively to the 3′-terminal G-tetrad of parallel G4s via end-stacking; however, the relationships between different terminal G-tetrads and the catalytic functions of G4/hemin DNAzymes are not fully understood. Herein, the oligonucleotide d(AGGGGA) and its three analogues, d(AGBrGBrGGA), d(AGBrGGGBrA) and d(AGBrGGBrGA) (GBr indicates 8-bromo-2′-deoxyguanosine), were designed. These oligonucleotides form three parallel G4s and one antiparallel G4 without loop regions. The scaffolds had terminal G-tetrads that were either anti-deoxyguanosines (anti-dGs) or syn-deoxyguanosines (syn-dGs) at different proportions. The results showed that the parallel G4 DNAzymes exhibited 2 to 5-fold higher peroxidase activities than the antiparallel G4 DNAzyme, which is due to the absence of the 3′-terminal G-tetrad in the antiparallel G4. Furthermore, the 3′-terminal G-tetrad consisting of four anti-dGs in parallel G4s was more energetically favorable and thus more preferable for hemin stacking compared with that consisting of four syn-dGs. We further investigated the influence of 3′ and 5′ deoxyadenosine (dA) caps on the enzymatic performance by adding 3′-3′ or 5′-5′ phosphodiester bonds to AG4A. Our data demonstrated that 3′ dA caps are versatile residues in promoting the interaction of G4s with hemin. Thus, by increasing the number of 3′ dA caps, the DNAzyme of 3′A5′-5′GG3′-3′GG5′-5′A3′ with two 5′-terminal G-tetrads can exhibit significantly high catalytic activity, which is comparable to that of 5′A3′-3′GG5′-5′GG3′-3′A5′ with two 3′-terminal G-tetrads. This study may provide insights into the catalytic mechanism of G4-based DNAzymes and strategies for promoting their catalytic activities. Investigation of the peroxidase activities of G4/hemin DNAzymes using designed terminal G-tetrads by eliminating the steric effect of loop regions.![]()
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| |
Collapse
|
9
|
Karami Z, Sohrabi N, Badoei-dalfard A. A specific, rapid and high-throughput cascade catalytic method for determination of plasma uric acid by using uricase and trivalent peroxidase-mimicking DNAzyme. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Virgilio A, Esposito V, Lejault P, Monchaud D, Galeone A. Improved performances of catalytic G-quadruplexes (G4-DNAzymes) via the chemical modifications of the DNA backbone to provide G-quadruplexes with double 3'-external G-quartets. Int J Biol Macromol 2019; 151:976-983. [PMID: 31747569 DOI: 10.1016/j.ijbiomac.2019.10.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
Here we report on the design of a new catalytic G-quadruplex-DNA system (G4-DNAzyme) based on the modification of the DNA scaffold to provide the DNA pre-catalyst with two identical 3'-ends, known to be more catalytically proficient than the 5'-ends. To this end, we introduced a 5'-5' inversion of polarity site in the middle of the G4-forming sequences AG4A and AG6A to obtain d(3'AGG5'-5'GGA3') (or AG2-G2A) and d(3'AGGG5'-5'GGGA3') (or AG3-G3A) that fold into stable G4 whose tetramolecular nature was confirmed via nuclear magnetic resonance (NMR) and circular dichroism (CD) investigations. Both AG2-G2A and AG3-G3A display two identical external G-quartets (3'-ends) known to interact with the cofactor hemin with a high efficiency, making the resulting complex competent to perform hemoprotein-like catalysis (G4-DNAzyme). A systematic comparison of the performances of modified and unmodified G4s lends credence to the relevance of the modification exploited here (5'-5' inversion of polarity site), which represents a new chemical opportunity to improve the overall activity of catalytic G4s.
Collapse
Affiliation(s)
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Pauline Lejault
- ICMUB CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, Dijon 21078, France
| | - David Monchaud
- ICMUB CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, Dijon 21078, France.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
11
|
Zhang W, Li J, Salena B, Li Y. A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry 2019; 26:592-596. [PMID: 31475757 DOI: 10.1002/chem.201903536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 01/24/2023]
Abstract
DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson-Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15-25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35-90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.
Collapse
Affiliation(s)
- Wenqing Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Bruno Salena
- Department of Medicine, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
12
|
Abstract
G-quadruplex DNAzymes are short DNA aptamers with repeating G4 quartets bound in a non-covalent complex with hemin. These G4/Hemin structures exhibit versatile peroxidase-like catalytic activity with a wide range of potential applications in biosensing and biotechnology. Current efforts are aimed at gaining a better understanding of the molecular mechanism of DNAzyme catalysis as well as devising strategies for improving their catalytic efficiency. Multimerisation of discrete units of G-quadruplexes to form multivalent DNAzyes is an emerging design strategy aimed at enhancing the peroxidase activities of DNAzymes. While this approach holds promise of generating more active multivalent G-quadruplex DNAzymes, few examples have been studied and it is not clear what factors determine the enhancement of catalytic activities of multimeric DNAzymes. In this study, we report the design and characterisation of multimers of five G-quadruplex sequences (AS1411, Bcl-2, c-MYC, PS5.M and PS2.M). Our results show that multimerisation of G-quadruplexes that form parallel structure (AS1411, Bcl-2, c-MYC) leads to significant rate enhancements characteristic of cooperative and/or synergistic interactions between the monomeric units. In contrast, multimerisation of DNA sequences that form non-parallel structures (PS5.M and PS2.M) did not exhibit similar levels of synergistic increase in activities. These results show that design of multivalent G4/Hemin structures could lead to a new set of versatile and efficient DNAzymes with enhanced capacity to catalyse peroxidase-mimic reactions.
Collapse
|
13
|
Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling. Int J Biol Macromol 2018; 115:1241-1248. [DOI: 10.1016/j.ijbiomac.2018.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
|
14
|
Baillargeon KR, Meserve K, Faulkner S, Watson S, Butts H, Deighan P, Gerdon AE. Precipitation SELEX: identification of DNA aptamers for calcium phosphate materials synthesis. Chem Commun (Camb) 2018; 53:1092-1095. [PMID: 28045140 DOI: 10.1039/c6cc08687j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA aptamers that enhance calcium phosphate mineral formation were identified using a novel precipitation SELEX method. The evolved DNA library was substantially enriched in G nucleotides and in predicted G-quadruplex structures, suggesting their importance in the mechanism of mineralization. This work could readily be extended to provide additional novel DNA aptamers for materials synthesis.
Collapse
Affiliation(s)
- K R Baillargeon
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, MA, USA.
| | - K Meserve
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, MA, USA.
| | - S Faulkner
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, MA, USA.
| | - S Watson
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, MA, USA.
| | - H Butts
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, MA, USA.
| | - P Deighan
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA, USA
| | - A E Gerdon
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, MA, USA.
| |
Collapse
|
15
|
Peng H, Newbigging AM, Wang Z, Tao J, Deng W, Le XC, Zhang H. DNAzyme-Mediated Assays for Amplified Detection of Nucleic Acids and Proteins. Anal Chem 2017; 90:190-207. [DOI: 10.1021/acs.analchem.7b04926] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanyong Peng
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Ashley M. Newbigging
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Wenchan Deng
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental
Toxicology, Department of Laboratory Medicine and Pathology, Faculty
of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
16
|
Shahbazi N, Hosseinkhani S, Khajeh K, Ranjbar B. Structural and functional study of a simple, rapid, and label-free DNAzyme-based DNA biosensor for optimization activity. Biopolymers 2017; 107. [DOI: 10.1002/bip.23028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/23/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Narges Shahbazi
- Department of Nanobiotechnology, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
- Department of Biochemistry, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
- Department of Biochemistry, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
- Department of Biophysics, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
17
|
Liu Z, He K, Li W, Liu X, Xu X, Nie Z, Yao S. DNA G-Quadruplex-Based Assay of Enzyme Activity. Methods Mol Biol 2017; 1500:133-151. [PMID: 27813006 DOI: 10.1007/978-1-4939-6454-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA G-quadruplexes are special three-dimensional (3D) DNA nanostructures formed by specific G-rich DNA sequences. These 3D DNA nanostructures can bind with hemin and significantly improve the intrinsic peroxidase activity of hemin. Besides this function, they also enhance the fluorescence intensity of some G-quadruplex-specific dyes. Owing to these features, G-quadruplexes possess several superiorities in the detection of enzymes involved in nucleic acid metabolism, including facile probe fabrication without labeling, simple detection process without washing or separation steps, rapid observation by naked eyes, and easy integration with nucleic acid amplification strategies to amplify signals. Herein, we describe two strategies for label-free detection of enzyme activity based on DNA G-quadruplexes. To increase sensitivity, template-dependent and template-independent DNA amplifications were introduced for the amplification of G-rich DNA sequences. DNA methyltransferase and terminal deoxynucleotidyl transferase were detected as two model analytes, respectively.
Collapse
Affiliation(s)
- Zhuoliang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Kaiyu He
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiahong Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| |
Collapse
|
18
|
Li H, Fu HW, Zhao T, Kong DM. Simple, PCR-free telomerase activity detection using G-quadruplex–hemin DNAzyme. RSC Adv 2015. [DOI: 10.1039/c4ra14460k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A G-quadruplex DNAzyme-based telomerase activity detection method is developed by utilizing telomerase-triggered generation of short G-rich extension products.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hai-Wei Fu
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ting Zhao
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
19
|
Stefan L, Lavergne T, Spinelli N, Defrancq E, Monchaud D. Surface-immobilized DNAzyme-type biocatalysis. NANOSCALE 2014; 6:2693-2701. [PMID: 24452273 DOI: 10.1039/c3nr05954e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The structure of the double helix of deoxyribonucleic acid (DNA, also called duplex-DNA) was elucidated sixty years ago by Watson, Crick, Wilkins and Franklin. Since then, DNA has continued to hold a fascination for researchers in diverse fields including medicine and nanobiotechnology. Nature has indeed excelled in diversifying the use of DNA: beyond its canonical role of repository of genetic information, DNA could also act as a nanofactory able to perform some complex catalytic tasks in an enzyme-mimicking manner. The catalytic capability of DNA was termed DNAzyme; in this context, a peculiar DNA structure, a quadruple helix also named quadruplex-DNA, has recently garnered considerable interest since its autonomous catalytic proficiency relies on its higher-order folding that makes it suitable to interact efficiently with hemin, a natural cofactor of many enzymes. Quadruplexes have thus been widely studied for their hemoprotein-like properties, chiefly peroxidase-like activity, i.e., their ability to perform hemin-mediated catalytic oxidation reactions. Recent literature is replete with applications of quadruplex-based peroxidase-mimicking DNAzyme systems. Herein, we take a further leap along the road to biochemical applications, assessing the actual efficiency of catalytic quadruplexes for the detection of picomolar levels of surface-bound analytes in an enzyme-linked immunosorbent (ELISA)-type assay. To this end, we exploit an innovative strategy based on the functionalization of DNA by a multitasking platform named RAFT (for regioselectivity addressable functionalized template), whose versatility enables the grafting of DNA whatever its nature (duplex-DNA, quadruplex-DNA, etc.). We demonstrate that the resulting biotinylated RAFT/quadruplex systems indeed acquire catalytic properties that allow for efficient luminescent detection of picomoles of surface-bound streptavidin. We also highlight some of the pitfalls that have to be faced during optimization, notably demonstrating that highly optimized experimental conditions can make DNA pre-catalysts catalytically competent whatever their secondary structures.
Collapse
Affiliation(s)
- Loic Stefan
- Institut de Chimie Moléculaire, Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France.
| | | | | | | | | |
Collapse
|
20
|
|