1
|
Romero-Rodríguez B, Petek M, Jiao C, Križnik M, Zagorščak M, Fei Z, Bejarano ER, Gruden K, Castillo AG. Transcriptional and epigenetic changes during tomato yellow leaf curl virus infection in tomato. BMC PLANT BIOLOGY 2023; 23:651. [PMID: 38110861 PMCID: PMC10726652 DOI: 10.1186/s12870-023-04534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.
Collapse
Affiliation(s)
- Beatriz Romero-Rodríguez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- The Key Lab of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain.
| |
Collapse
|
2
|
Ma X, Nie Z, Huang H, Yan C, Li S, Hu Z, Wang Y, Yin H. Small RNA profiling reveals that an ovule-specific microRNA, cja-miR5179, targets a B-class MADS-box gene in Camellia japonica. ANNALS OF BOTANY 2023; 132:1007-1020. [PMID: 37831901 PMCID: PMC10808017 DOI: 10.1093/aob/mcad155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.
Collapse
Affiliation(s)
- Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Chao Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi, Jiangxi 336600, China
| | - Sijia Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
3
|
Rieger I, Weintraub G, Lev I, Goldstein K, Bar-Zvi D, Anava S, Gingold H, Shaham S, Rechavi O. Nucleus-independent transgenerational small RNA inheritance in Caenorhabditis elegans. SCIENCE ADVANCES 2023; 9:eadj8618. [PMID: 37878696 PMCID: PMC10599617 DOI: 10.1126/sciadv.adj8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
In Caenorhabditis elegans worms, epigenetic information transmits transgenerationally. Still, it is unknown whether the effects transfer to the next generation inside or outside of the nucleus. Here, we use the tractability of gene-specific double-stranded RNA-induced silencing to demonstrate that RNA interference can be inherited independently of any nuclear factors via mothers that are genetically engineered to transmit only their ooplasm but not the oocytes' nuclei to the next generation. We characterize the mechanisms and, using RNA sequencing, chimeric worms, and sequence polymorphism between different isolates, identify endogenous small RNAs which, similarly to exogenous siRNAs, are inherited in a nucleus-independent manner. From a historical perspective, these results might be regarded as partial vindication of discredited cytoplasmic inheritance theories from the 19th century, such as Darwin's "pangenesis" theory.
Collapse
Affiliation(s)
- Itai Rieger
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kesem Goldstein
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dana Bar-Zvi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Stevenson DW, Ramakrishnan S, de Santis Alves C, Coelho LA, Kramer M, Goodwin S, Ramos OM, Eshel G, Sondervan VM, Frangos S, Zumajo-Cardona C, Jenike K, Ou S, Wang X, Lee YP, Loke S, Rossetto M, McPherson H, Nigris S, Moschin S, Little DP, Katari MS, Varala K, Kolokotronis SO, Ambrose B, Croft LJ, Coruzzi GM, Schatz M, McCombie WR, Martienssen RA. The genome of the Wollemi pine, a critically endangered "living fossil" unchanged since the Cretaceous, reveals extensive ancient transposon activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554647. [PMID: 37662366 PMCID: PMC10473749 DOI: 10.1101/2023.08.24.554647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.
Collapse
Affiliation(s)
| | | | - Cristiane de Santis Alves
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Laís Araujo Coelho
- Department of Epidemiology and Biostatistics, School of Public Health; Institute for Genomics in Health; Division of Infectious Diseases, Department of Medicine, and Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203-2098, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Gil Eshel
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | | | - Samantha Frangos
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | | | - Katherine Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaojin Wang
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yin Peng Lee
- Charles River Laboratories Australia, 17-19 Hi-Tech Ct, Kilsyth VIC 3137, Australia
| | - Stella Loke
- Charles River Laboratories Australia, 17-19 Hi-Tech Ct, Kilsyth VIC 3137, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - Hannah McPherson
- National Herbarium of New South Wales, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Sebastiano Nigris
- Dipartimento di Biologia, Università degli studi di Padova, via U. Bassi 58/B, 35131 Padova, Italy; and Botanical Garden, Università degli studi di Padova, via Orto Botanico 15, 35123 Padova, Italy
| | - Silvia Moschin
- Dipartimento di Biologia, Università degli studi di Padova, via U. Bassi 58/B, 35131 Padova, Italy; and Botanical Garden, Università degli studi di Padova, via Orto Botanico 15, 35123 Padova, Italy
| | - Damon P. Little
- The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Manpreet S. Katari
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | - Kranthi Varala
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health; Institute for Genomics in Health; Division of Infectious Diseases, Department of Medicine, and Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203-2098, USA
| | - Barbara Ambrose
- The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Larry J. Croft
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Gloria M. Coruzzi
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | - Michael Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
5
|
Bakirbas A, Castro-Rodriguez R, Walker EL. The Small RNA Component of Arabidopsis thaliana Phloem Sap and Its Response to Iron Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:2782. [PMID: 37570935 PMCID: PMC10421156 DOI: 10.3390/plants12152782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
In order to discover sRNA that might function during iron deficiency stress, RNA was prepared from phloem exudates of Arabidopsis thaliana, and used for RNA-seq. Bioanalyzer results indicate that abundant RNA from phloem is small in size-less than 200 nt. Moreover, typical rRNA bands were not observed. Sequencing of eight independent phloem RNA samples indicated that tRNA-derived fragments, specifically 5' tRFs and 5' tRNA halves, are highly abundant in phloem sap, comprising about 46% of all reads. In addition, a set of miRNAs that are present in phloem sap was defined, and several miRNAs and sRNAs were identified that are differentially expressed during iron deficiency.
Collapse
Affiliation(s)
- Ahmet Bakirbas
- Biology Department and Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA;
| | | | - Elsbeth L. Walker
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Hammond RK, Gupta P, Patel P, Meyers BC. miRador: a fast and precise tool for the prediction of plant miRNAs. PLANT PHYSIOLOGY 2023; 191:894-903. [PMID: 36437740 PMCID: PMC9922418 DOI: 10.1093/plphys/kiac538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plant microRNAs (miRNAs) are short, noncoding RNA molecules that restrict gene expression via posttranscriptional regulation and function in several essential pathways, including development, growth, and stress responses. Accurately identifying miRNAs in populations of small RNA sequencing libraries is a computationally intensive process that has resulted in the misidentification of inaccurately annotated miRNA sequences. In recent years, criteria for miRNA annotation have been refined with the aim to reduce these misannotations. Here, we describe miRador, a miRNA identification tool that utilizes the most up-to-date, community-established criteria for accurate identification of miRNAs in plants. We combined target prediction and Parallel Analysis of RNA Ends (PARE) data to assess the precision of the miRNAs identified by miRador. We compared miRador to other commonly used miRNA prediction tools and found that miRador is at least as precise as other prediction tools while being substantially faster than other tools. miRador should be broadly useful for the plant community to identify and annotate miRNAs in plant genomes.
Collapse
Affiliation(s)
- Reza K Hammond
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19714, USA
| | - Pallavi Gupta
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Columbia, Missouri 65211, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Parth Patel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19714, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, 52 Agriculture Lab, Columbia, Missouri 65211, USA
| |
Collapse
|
7
|
Cai Z, Fu P, Qiu Y, Wu A, Zhang G, Wang Y, Jiang T, Ge XY, Zhu H, Peng Y. vsRNAfinder: a novel method for identifying high-confidence viral small RNAs from small RNA-Seq data. Brief Bioinform 2022; 23:6827719. [PMID: 36377755 DOI: 10.1093/bib/bbac496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-encoded small RNAs (vsRNA) have been reported to play an important role in viral infection. Unfortunately, there is still a lack of an effective method for vsRNA identification. Herein, we presented vsRNAfinder, a de novo method for identifying high-confidence vsRNAs from small RNA-Seq (sRNA-Seq) data based on peak calling and Poisson distribution and is publicly available at https://github.com/ZenaCai/vsRNAfinder. vsRNAfinder outperformed two widely used methods namely miRDeep2 and ShortStack in identifying viral miRNAs with a significantly improved sensitivity. It can also be used to identify sRNAs in animals and plants with similar performance to miRDeep2 and ShortStack. vsRNAfinder would greatly facilitate effective identification of vsRNAs from sRNA-Seq data.
Collapse
Affiliation(s)
- Zena Cai
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Ping Fu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Ye Qiu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | | | - Xing-Yi Ge
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Haizhen Zhu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Bakirbas A, Walker EL. CAN OF SPINACH, a novel long non-coding RNA, affects iron deficiency responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1005020. [PMID: 36275516 PMCID: PMC9581158 DOI: 10.3389/fpls.2022.1005020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules with functions independent of any protein-coding potential. A whole transcriptome (RNA-seq) study of Arabidopsis shoots under iron sufficient and deficient conditions was carried out to determine the genes that are iron-regulated in the shoots. We identified two previously unannotated transcripts on chromosome 1 that are significantly iron-regulated. We have called this iron-regulated lncRNA, CAN OF SPINACH (COS). cos mutants have altered iron levels in leaves and seeds. Despite the low iron levels in the leaves, cos mutants have higher chlorophyll levels than WT plants. Moreover, cos mutants have abnormal development during iron deficiency. Roots of cos mutants are longer than those of WT plants, when grown on iron deficient medium. In addition, cos mutant plants accumulate singlet oxygen during iron deficiency. The mechanism through which COS affects iron deficiency responses is unclear, but small regions of sequence similarity to several genes involved in iron deficiency responses occur in COS, and small RNAs from these regions have been detected. We hypothesize that COS is required for normal adaptation to iron deficiency conditions.
Collapse
Affiliation(s)
- Ahmet Bakirbas
- Plant Biology Graduate Program, Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Elsbeth L. Walker
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
9
|
Cuerda-Gil D, Hung YH, Panda K, Slotkin RK. A plant tethering system for the functional study of protein-RNA interactions in vivo. PLANT METHODS 2022; 18:75. [PMID: 35658900 PMCID: PMC9166424 DOI: 10.1186/s13007-022-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The sorting of RNA transcripts dictates their ultimate post-transcriptional fates, such as translation, decay or degradation by RNA interference (RNAi). This sorting of RNAs into distinct fates is mediated by their interaction with RNA-binding proteins. While hundreds of RNA binding proteins have been identified, which act to sort RNAs into different pathways is largely unknown. Particularly in plants, this is due to the lack of reliable protein-RNA artificial tethering tools necessary to determine the mechanism of protein action on an RNA in vivo. Here we generated a protein-RNA tethering system which functions on an endogenous Arabidopsis RNA that is tracked by the quantitative flowering time phenotype. Unlike other protein-RNA tethering systems that have been attempted in plants, our system circumvents the inadvertent triggering of RNAi. We successfully in vivo tethered a protein epitope, deadenylase protein and translation factor to the target RNA, which function to tag, decay and boost protein production, respectively. We demonstrated that our tethering system (1) is sufficient to engineer the downstream fate of an RNA, (2) enables the determination of any protein's function upon recruitment to an RNA, and (3) can be used to discover new interactions with RNA-binding proteins.
Collapse
Affiliation(s)
- Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nat Commun 2022; 13:3014. [PMID: 35641525 PMCID: PMC9156689 DOI: 10.1038/s41467-022-30704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Pawełkowicz ME, Skarzyńska A, Koter MD, Turek S, Pląder W. miRNA Profiling and Its Role in Multi-Omics Regulatory Networks Connected with Somaclonal Variation in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23084317. [PMID: 35457133 PMCID: PMC9031375 DOI: 10.3390/ijms23084317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
The role of miRNAs in connection with the phenomenon of somaclonal variation, which occurs during plant in vitro culture, remains uncertain. This study aims to investigate the possible role of miRNAs in multi-omics regulatory pathways in cucumber somaclonal lines. For this purpose, we performed sRNA sequencing (sRNA-seq) from cucumber fruit samples identified 8, 10 and 44 miRNAs that are differentially expressed between somaclones (S1, S2, S3 lines) and the reference B10 line of Cucumis sativus. For miRNA identification, we use ShortStack software designed to filter miRNAs from sRNAs according to specific program criteria. The identification of predicted in-silico targets revealed 2,886 mRNAs encoded by 644 genes. The functional annotation of miRNA's target genes and gene ontology classification revealed their association with metabolic processes, response to stress, multicellular organism development, biosynthetic process and catalytic activity. We checked with bioinformatic analyses for possible interactions at the level of target proteins, differentially expressed genes (DEGs) and genes affected by genomic polymorphisms. We assume that miRNAs can indirectly influence molecular networks and play a role in many different regulatory pathways, leading to somaclonal variation. This regulation is supposed to occur through the process of the target gene cleavage or translation inhibition, which in turn affects the proteome, as we have shown in the example of molecular networks. This is a new approach combining levels from DNA-seq through mRNA-seq, sRNA-seq and in silico PPI in the area of plants' somaclonal variation.
Collapse
|
12
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Effect of aneuploidy of a non-essential chromosome on gene expression in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:193-211. [PMID: 34997647 PMCID: PMC9310612 DOI: 10.1111/tpj.15665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/20/2023]
Abstract
The non-essential supernumerary maize (Zea mays) B chromosome (B) has recently been shown to contain active genes and to be capable of impacting gene expression of the A chromosomes. However, the effect of the B chromosome on gene expression is still unclear. In addition, it is unknown whether the accumulation of the B chromosome has a cumulative effect on gene expression. To examine these questions, the global expression of genes, microRNAs (miRNAs), and transposable elements (TEs) of leaf tissue of maize W22 plants with 0-7 copies of the B chromosome was studied. All experimental genotypes with B chromosomes displayed a trend of upregulated gene expression for a subset of A-located genes compared to the control. Over 3000 A-located genes are significantly differentially expressed in all experimental genotypes with the B chromosome relative to the control. Modulations of these genes are largely determined by the presence rather than the copy number of the B chromosome. By contrast, the expression of most B-located genes is positively correlated with B copy number, showing a proportional gene dosage effect. The B chromosome also causes increased expression of A-located miRNAs. Differentially expressed miRNAs potentially regulate their targets in a cascade of effects. Furthermore, the varied copy number of the B chromosome leads to the differential expression of A-located and B-located TEs. The findings provide novel insights into the function and properties of the B chromosome.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
- Present address:
College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Hua Yang
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| | - Chen Chen
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouri65211USA
| | - Jie Hou
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouri65211USA
| | - Tieming Ji
- Department of StatisticsUniversity of MissouriColumbiaMissouri65211USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouri65211USA
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
13
|
Transcriptome and Small RNA Profiling of Potato Virus Y Infected Potato Cultivars, Including Systemically Infected Russet Burbank. Viruses 2022; 14:v14030523. [PMID: 35336930 PMCID: PMC8952017 DOI: 10.3390/v14030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Potatoes are the world’s most produced non-grain crops and an important food source for billions of people. Potatoes are susceptible to numerous pathogens that reduce yield, including Potato virus Y (PVY). Genetic resistance to PVY is a sustainable way to limit yield and quality losses due to PVY infection. Potato cultivars vary in their susceptibility to PVY and include susceptible varieties such as Russet Burbank, and resistant varieties such as Payette Russet. Although the loci and genes associated with PVY-resistance have been identified, the genes and mechanisms involved in limiting PVY during the development of systemic infections have yet to be fully elucidated. To increase our understanding of PVY infection, potato antiviral responses, and resistance, we utilized RNA sequencing to characterize the transcriptomes of two potato cultivars. Since transcriptional responses associated with the extreme resistance response occur soon after PVY contact, we analyzed the transcriptome and small RNA profile of both the PVY-resistant Payette Russet cultivar and PVY-susceptible Russet Burbank cultivar 24 h post-inoculation. While hundreds of genes, including terpene synthase and protein kinase encoding genes, exhibited increased expression, the majority, including numerous genes involved in plant pathogen interactions, were downregulated. To gain greater understanding of the transcriptional changes that occur during the development of systemic PVY-infection, we analyzed Russet Burbank leaf samples one week and four weeks post-inoculation and identified similarities and differences, including higher expression of genes involved in chloroplast function, photosynthesis, and secondary metabolite production, and lower expression of defense response genes at those time points. Small RNA sequencing identified different populations of 21- and 24-nucleotide RNAs and revealed that the miRNA profiles in PVY-infected Russet Burbank plants were similar to those observed in other PVY-tolerant cultivars and that during systemic infection ~32% of the NLR-type disease resistance genes were targeted by 21-nt small RNAs. Analysis of alternative splicing in PVY-infected potato plants identified splice variants of several hundred genes, including isoforms that were more dominant in PVY-infected plants. The description of the PVYN-Wi-associated transcriptome and small RNA profiles of two potato cultivars described herein adds to the body of knowledge regarding differential outcomes of infection for specific PVY strain and host cultivar pairs, which will help further understanding of the mechanisms governing genetic resistance and/or virus-limiting responses in potato plants.
Collapse
|
14
|
Garg V, Varshney RK. Analysis of Small RNA Sequencing Data in Plants. Methods Mol Biol 2022; 2443:497-509. [PMID: 35037223 DOI: 10.1007/978-1-0716-2067-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, next-generation sequencing (NGS) has been employed extensively for investigating the regulatory mechanisms of small RNAs. Several bioinformatics tools are available for aiding biologists to extract meaningful information from enormous amounts of data generated by NGS platforms. This chapter describes a detailed methodology for analyzing small RNA sequencing data using different open source tools. We elaborate on various steps involved in analysis, from processing the raw sequencing reads to identifying miRNAs, their targets, and differential expression studies.
Collapse
Affiliation(s)
- Vanika Garg
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
15
|
Yu J, Hulse-Kemp AM, Babiker E, Staton M. High-quality reference genome and annotation aids understanding of berry development for evergreen blueberry (Vaccinium darrowii). HORTICULTURE RESEARCH 2021; 8:228. [PMID: 34719668 PMCID: PMC8558335 DOI: 10.1038/s41438-021-00641-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 05/07/2023]
Abstract
Vaccinium darrowii Camp (2n = 2x = 24) is a native North American blueberry species and an important source of traits such as low chill requirement in commercial southern highbush blueberry breeding (Vaccinium corymbosum, 2n = 4x = 48). We present a chromosomal-scale genome of V. darrowii generated by the combination of PacBio sequencing and high throughput chromatin conformation capture (Hi-C) scaffolding technologies, yielding a total length of 1.06 Gigabases (Gb). Over 97.8% of the genome sequences are scaffolded into 24 chromosomes representing the two haplotypes. The primary haplotype assembly of V. darrowii contains 34,809 protein-coding genes. Comparison to a V. corymbosum haplotype assembly reveals high collinearity between the two genomes with small intrachromosomal rearrangements in eight chromosome pairs. With small RNA sequencing, the annotation was further expanded to include more than 200,000 small RNA loci and 638 microRNAs expressed in berry tissues. Transcriptome analysis across fruit development stages indicates that genes involved in photosynthesis are downregulated, while genes involved in flavonoid and anthocyanin biosynthesis are significantly increased at the late stage of berry ripening. A high-quality reference genome and accompanying annotation of V. darrowii is a significant new resource for assessing the evergreen blueberry contribution to the breeding of southern highbush blueberries.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS Genomics and Bioinformatics Research Unit, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ebrahiem Babiker
- USDA-ARS Thad Cochran Southern Horticultural Laboratory, Poplarville, MS, USA.
| | - Margaret Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
16
|
Wu Z, Liu H, Zhan W, Yu Z, Qin E, Liu S, Yang T, Xiang N, Kudrna D, Chen Y, Lee S, Li G, Wing RA, Liu J, Xiong H, Xia C, Xing Y, Zhang J, Qin R. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1725-1742. [PMID: 33768699 PMCID: PMC8428823 DOI: 10.1111/pbi.13586] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 05/04/2023]
Abstract
Safflower (Carthamus tinctorius L.), a member of the Asteraceae, is a popular crop due to its high linoleic acid (LA) and flavonoid (such as hydroxysafflor yellow A) contents. Here, we report the first high-quality genome assembly (contig N50 of 21.23 Mb) for the 12 pseudochromosomes of safflower using single-molecule real-time sequencing, Hi-C mapping technologies and a genetic linkage map. Phyloge nomic analysis showed that safflower diverged from artichoke (Cynara cardunculus) and sunflower (Helianthus annuus) approximately 30.7 and 60.5 million years ago, respectively. Comparative genomic analyses revealed that uniquely expanded gene families in safflower were enriched for those predicted to be involved in lipid metabolism and transport and abscisic acid signalling. Notably, the fatty acid desaturase 2 (FAD2) and chalcone synthase (CHS) families, which function in the LA and flavonoid biosynthesis pathways, respectively, were expanded via tandem duplications in safflower. CarFAD2-12 was specifically expressed in seeds and was vital for high-LA content in seeds, while tandemly duplicated CarFAD2 genes were up-regulated in ovaries compared to CarFAD2-12, which indicates regulatory divergence of FAD2 in seeds and ovaries. CarCHS1, CarCHS4 and tandem-duplicated CarCHS5˜CarCHS6, which were up-regulated compared to other CarCHS members at early stages, contribute to the accumulation of major flavonoids in flowers. In addition, our data reveal multiple alternative splicing events in gene families related to fatty acid and flavonoid biosynthesis. Together, these results provide a high-quality reference genome and evolutionary insights into the molecular basis of fatty acid and flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Wei Zhan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Niyan Xiang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Dave Kudrna
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
| | - Yan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Seunghee Lee
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
| | - Gang Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Rod A. Wing
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Hairong Xiong
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| |
Collapse
|
17
|
Subhankar B, Yamaguchi K, Shigenobu S, Aoki K. Trans-species small RNAs move long distances in a parasitic plant complex. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:187-196. [PMID: 34393597 PMCID: PMC8329266 DOI: 10.5511/plantbiotechnology.21.0121a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 05/13/2023]
Abstract
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant's parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant.
Collapse
Affiliation(s)
- Bera Subhankar
- Gradute School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Koh Aoki
- Gradute School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
18
|
Differential Response of Grapevine to Infection with ' Candidatus Phytoplasma solani' in Early and Late Growing Season through Complex Regulation of mRNA and Small RNA Transcriptomes. Int J Mol Sci 2021; 22:ijms22073531. [PMID: 33805429 PMCID: PMC8037961 DOI: 10.3390/ijms22073531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’, but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with ‘Ca. P. solani’ in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.
Collapse
|
19
|
Houri-Zeevi L, Teichman G, Gingold H, Rechavi O. Stress resets ancestral heritable small RNA responses. eLife 2021; 10:e65797. [PMID: 33729152 PMCID: PMC8021399 DOI: 10.7554/elife.65797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Transgenerational inheritance of small RNAs challenges basic concepts of heredity. In Caenorhabditis elegans nematodes, small RNAs are transmitted across generations to establish a transgenerational memory trace of ancestral environments and distinguish self-genes from non-self-elements. Carryover of aberrant heritable small RNA responses was shown to be maladaptive and to lead to sterility. Here, we show that various types of stress (starvation, high temperatures, and high osmolarity) induce resetting of ancestral small RNA responses and a genome-wide reduction in heritable small RNA levels. We found that mutants that are defective in various stress pathways exhibit irregular RNAi inheritance dynamics even in the absence of stress. Moreover, we discovered that resetting of ancestral RNAi responses is specifically orchestrated by factors that function in the p38 MAPK pathway and the transcription factor SKN-1/Nrf2. Stress-dependent termination of small RNA inheritance could protect from run-on of environment-irrelevant heritable gene regulation.
Collapse
Affiliation(s)
- Leah Houri-Zeevi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Guy Teichman
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
20
|
Fridrich A, Modepalli V, Lewandowska M, Aharoni R, Moran Y. Unravelling the developmental and functional significance of an ancient Argonaute duplication. Nat Commun 2020; 11:6187. [PMID: 33273471 PMCID: PMC7713132 DOI: 10.1038/s41467-020-20003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this phylogenetic gap, we characterize the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulations, Argonaute-immunoprecipitations and high-throughput sequencing, we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
21
|
Martínez Núñez M, Ruíz Rivas M, Gregorio Jorge J, Hernández PFV, Luna Suárez S, de Folter S, Chávez Montes RA, Rosas Cárdenas FDF. Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data. Genomics 2020; 113:88-103. [PMID: 33271330 DOI: 10.1016/j.ygeno.2020.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
Amaranth has been proposed as an exceptional alternative for food security and climate change mitigation. Information about the distribution, abundance, or specificity of miRNAs in amaranth species is scare. Here, small RNAs from seedlings under control, drought, heat, and cold stress conditions of the Amaranthus hypocondriacus variety "Gabriela" were sequenced and miRNA loci identified in the amaranth genome using the ShortStack software. Fifty-three genuine miRNA clustersthirty-nine belonging to conserved families, and fourteen novel, were identified. Identification of their target genes suggests that conserved amaranth miRNAs are involved in growth and developmental processes, as well as stress responses. MiR0005, an amaranth-specific miRNA, exhibited an unusual high level of expression, akin to that of conserved miRNAs. Overall, our results broaden our knowledge regarding the distribution, abundance and expression of miRNAs in amaranth, providing the basis for future research on miRNAs and their functions in this important species.
Collapse
Affiliation(s)
- Marcelino Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Magali Ruíz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Josefat Gregorio Jorge
- Consejo Nacional de Ciencia y Tecnología, Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México, México
| | - Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Silvia Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México.
| |
Collapse
|
22
|
Houri-Zeevi L, Korem Kohanim Y, Antonova O, Rechavi O. Three Rules Explain Transgenerational Small RNA Inheritance in C. elegans. Cell 2020; 182:1186-1197.e12. [PMID: 32841602 PMCID: PMC7479518 DOI: 10.1016/j.cell.2020.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Experiences trigger transgenerational small RNA-based responses in C. elegans nematodes. Dedicated machinery ensures that heritable effects are reset, but how the responses segregate in the population is unknown. We show that isogenic individuals differ dramatically in the persistence of transgenerational responses. By examining lineages of more than 20,000 worms, three principles emerge: (1) The silencing each mother initiates is distributed evenly among her descendants; heritable RNAi dissipates but is uniform in every generation. (2) Differences between lineages arise because the mothers that initiate heritable responses stochastically assume different "inheritance states" that determine the progeny's fate. (3) The likelihood that an RNAi response would continue to be inherited increases the more generations it lasts. The inheritance states are determined by HSF-1, which regulates silencing factors and, accordingly, small RNA levels. We found that, based on the parents' inheritance state, the descendants' developmental rate in response to stress can be predicted.
Collapse
Affiliation(s)
- Leah Houri-Zeevi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Yael Korem Kohanim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Bermúdez-Barrientos JR, Ramírez-Sánchez O, Chow FWN, Buck AH, Abreu-Goodger C. Disentangling sRNA-Seq data to study RNA communication between species. Nucleic Acids Res 2020; 48:e21. [PMID: 31879784 PMCID: PMC7038986 DOI: 10.1093/nar/gkz1198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Many organisms exchange small RNAs (sRNAs) during their interactions, that can target or bolster defense strategies in host-pathogen systems. Current sRNA-Seq technology can determine the sRNAs present in any symbiotic system, but there are very few bioinformatic tools available to interpret the results. We show that one of the biggest challenges comes from sequences that map equally well to the genomes of both interacting organisms. This arises due to the small size of the sRNAs compared to large genomes, and because a large portion of sequenced sRNAs come from genomic regions that encode highly conserved miRNAs, rRNAs or tRNAs. Here, we present strategies to disentangle sRNA-Seq data from samples of communicating organisms, developed using diverse plant and animal species that are known to receive or exchange RNA with their symbionts. We show that sequence assembly, both de novo and genome-guided, can be used for these sRNA-Seq data, greatly reducing the ambiguity of mapping reads. Even confidently mapped sequences can be misleading, so we further demonstrate the use of differential expression strategies to determine true parasite-derived sRNAs within host cells. We validate our methods on new experiments designed to probe the nature of the extracellular vesicle sRNAs from the parasitic nematode Heligmosomoides bakeri that get into mouse intestinal epithelial cells.
Collapse
Affiliation(s)
- José Roberto Bermúdez-Barrientos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Obed Ramírez-Sánchez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| |
Collapse
|
24
|
Ma X, Wiedmer J, Palma-Guerrero J. Small RNA Bidirectional Crosstalk During the Interaction Between Wheat and Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1669. [PMID: 31969895 PMCID: PMC6960233 DOI: 10.3389/fpls.2019.01669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/27/2019] [Indexed: 05/21/2023]
Abstract
Cross-kingdom RNA interference (RNAi) has been shown to play important roles during plant-pathogen interactions, and both plants and pathogens can use small RNAs (sRNAs) to silence genes in each other. This bidirectional cross-kingdom RNAi was still unexplored in the wheat-Zymoseptoria tritici pathosystem. Here, we performed a detailed analysis of the sRNA bidirectional crosstalk between wheat and Z. tritici. Using a combination of small RNA sequencing (sRNA-seq) and microRNA sequencing (mRNA-seq), we were able to identify known and novel sRNAs and study their expression and their action on putative targets in both wheat and Z. tritici. We predicted the target genes of all the sRNAs in either wheat or Z. tritici transcriptome and used degradome analysis to validate the cleavage of these gene transcripts. We could not find any clear evidence of a cross-kingdom RNAi acting by mRNA cleavage in this pathosystem. We also found that the fungal sRNA enrichment was lower in planta than during in vitro growth, probably due to the lower expression of the only Dicer gene of the fungus during plant infection. Our results support the recent finding that Z. tritici sRNAs cannot play important roles during wheat infection. However, we also found that the fungal infection induced wheat sRNAs regulating the expression of specific wheat genes, including auxin-related genes, as an immune response. These results indicate a role of sRNAs in the regulation of wheat defenses during Z. tritici infection. Our findings contribute to improve our understanding of the interactions between wheat and Z. tritici.
Collapse
Affiliation(s)
- Xin Ma
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
25
|
Prigigallo MI, Križnik M, De Paola D, Catalano D, Gruden K, Finetti-Sialer MM, Cillo F. Potato Virus Y Infection Alters Small RNA Metabolism and Immune Response in Tomato. Viruses 2019; 11:v11121100. [PMID: 31783643 PMCID: PMC6950276 DOI: 10.3390/v11121100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Potato virus Y (PVY) isolate PVYC-to induces growth reduction and foliar symptoms in tomato, but new vegetation displays symptom recovery at a later stage. In order to investigate the role of micro(mi)RNA and secondary small(s)RNA-regulated mechanisms in tomato defenses against PVY, we performed sRNA sequencing from healthy and PVYC-to infected tomato plants at 21 and 30 days post-inoculation (dpi). A total of 792 miRNA sequences were obtained, among which were 123 canonical miRNA sequences, many isomiR variants, and 30 novel miRNAs. MiRNAs were mostly overexpressed in infected vs. healthy plants, whereas only a few miRNAs were underexpressed. Increased accumulation of isomiRs was correlated with viral infection. Among miRNA targets, enriched functional categories included resistance (R) gene families, transcription and hormone factors, and RNA silencing genes. Several 22-nt miRNAs were shown to target R genes and trigger the production of 21-nt phased sRNAs (phasiRNAs). Next, 500 phasiRNA-generating loci were identified, and were shown to be mostly active in PVY-infected tissues and at 21 dpi. These data demonstrate that sRNA-regulated host responses, encompassing miRNA alteration, diversification within miRNA families, and phasiRNA accumulation, regulate R and disease-responsive genes. The dynamic regulation of miRNAs and secondary sRNAs over time suggests a functional role of sRNA-mediated defenses in the recovery phenotype.
Collapse
Affiliation(s)
- Maria I. Prigigallo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
| | - Maja Križnik
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Domenico De Paola
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Catalano
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via G. Amendola 122/D, 70126 Bari, Italy;
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Mariella M. Finetti-Sialer
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| | - Fabrizio Cillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| |
Collapse
|
26
|
Fridrich A, Hazan Y, Moran Y. Too Many False Targets for MicroRNAs: Challenges and Pitfalls in Prediction of miRNA Targets and Their Gene Ontology in Model and Non-model Organisms. Bioessays 2019; 41:e1800169. [PMID: 30919506 PMCID: PMC6701991 DOI: 10.1002/bies.201800169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Short ("seed") or extended base pairing between microRNAs (miRNAs) and their target RNAs enables post-transcriptional silencing in many organisms. These interactions allow the computational prediction of potential targets. In model organisms, predicted targets are frequently validated experimentally; hence meaningful miRNA-regulated processes are reported. However, in non-models, these reports mostly rely on computational prediction alone. Many times, further bioinformatic analyses such as Gene Ontology (GO) enrichment are based on these in silico projections. Here such approaches are reviewed, their caveats are highlighted and the ease of picking false targets from predicted lists is demonstrated. Discoveries that shed new light on how miRNAs evolved to regulate targets in various phyletic groups are discussed, in addition to the pitfalls of target identification in non-model organisms. The goal is to prevent the misuse of bioinformatic tools, as they cannot bypass the biological understanding of miRNA-target regulation.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yael Hazan
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| |
Collapse
|
27
|
Medina C, da Rocha M, Magliano M, Raptopoulo A, Marteu N, Lebrigand K, Abad P, Favery B, Jaubert-Possamai S. Characterization of siRNAs clusters in Arabidopsis thaliana galls induced by the root-knot nematode Meloidogyne incognita. BMC Genomics 2018; 19:943. [PMID: 30563458 PMCID: PMC6297998 DOI: 10.1186/s12864-018-5296-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Root-knot nematodes (RKN), genus Meloidogyne, are plant parasitic worms that have the ability to transform root vascular cylinder cells into hypertrophied, multinucleate and metabolically over-active feeding cells. Redifferentiation into feeding cells is the result of a massive transcriptional reprogramming of root cells targeted by RKN. Since RKN are able to induce similar feeding cells in roots of thousands of plant species, these worms are thought to manipulate essential and conserved plant molecular pathways. Results Small non-coding RNAs of uninfected roots and infected root galls induced by M. incognita from Arabidopsis thaliana were sequenced by high throughput sequencing. SiRNA populations were analysed by using the Shortstack algorithm. We identified siRNA clusters that are differentially expressed in infected roots and evidenced an over-representation of the 23–24 nt siRNAs in infected tissue. This size corresponds to heterochromatic siRNAs (hc-siRNAs) which are known to regulate expression of transposons and genes at the transcriptional level, mainly by inducing DNA methylation. Conclusions Correlation of siRNA clusters expression profile with transcriptomic data identified several protein coding genes that are candidates to be regulated by siRNAs at the transcriptional level by RNA directed DNA methylation (RdDM) pathway either directly or indirectly via silencing of neighbouring transposable elements. Electronic supplementary material The online version of this article (10.1186/s12864-018-5296-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Marc Magliano
- INRA, Université Côte d'Azur, CNRS, ISA, Paris, France
| | | | | | - Kevin Lebrigand
- UCA Genomix, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, Sophia Antipolis, Nice, France
| | - Pierre Abad
- INRA, Université Côte d'Azur, CNRS, ISA, Paris, France
| | - Bruno Favery
- INRA, Université Côte d'Azur, CNRS, ISA, Paris, France
| | | |
Collapse
|
28
|
Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum. mBio 2018; 9:mBio.01292-18. [PMID: 30108170 PMCID: PMC6094484 DOI: 10.1128/mbio.01292-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.
Collapse
|
29
|
Zhang S, Dou Y, Li S, Ren G, Chevalier D, Zhang C, Yu B. DAWDLE Interacts with DICER-LIKE Proteins to Mediate Small RNA Biogenesis. PLANT PHYSIOLOGY 2018; 177:1142-1151. [PMID: 29784765 PMCID: PMC6053015 DOI: 10.1104/pp.18.00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/10/2018] [Indexed: 05/19/2023]
Abstract
DAWDLE (DDL) is a conserved forkhead-associated (FHA) domain-containing protein with essential roles in plant development and immunity. It acts in the biogenesis of microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs), which regulate gene expression at the transcriptional and/or posttranscriptional levels. However, the functional mechanism of DDL and its impact on exogenous siRNAs remain elusive. Here, we report that DDL is required for the biogenesis of siRNAs derived from sense transgenes and inverted-repeat transgenes. Furthermore, we show that a mutation in the FHA domain of DDL disrupts the interaction of DDL with DICER-LIKE1 (DCL1), which is the enzyme that catalyzes miRNA maturation from primary miRNA transcripts (pri-miRNAs), resulting in impaired pri-miRNA processing. Moreover, we demonstrate that DDL interacts with DCL3, which is a DCL1 homolog responsible for siRNA production, and this interaction is crucial for optimal DCL3 activity. These results reveal that the interaction of DDL with DCLs is required for the biogenesis of miRNAs and siRNAs in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yongchao Dou
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666
| | - Shengjun Li
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David Chevalier
- Department of Biological Sciences, East Georgia State College, Swainsboro, Georgia 30401
| | - Chi Zhang
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666
| |
Collapse
|
30
|
Mohammed J, Flynt AS, Panzarino AM, Mondal MMH, DeCruz M, Siepel A, Lai EC. Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus. Genome Res 2017; 28:52-65. [PMID: 29233922 PMCID: PMC5749182 DOI: 10.1101/gr.226068.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022]
Abstract
To assess miRNA evolution across the Drosophila genus, we analyzed several billion small RNA reads across 12 fruit fly species. These data permit comprehensive curation of species- and clade-specific variation in miRNA identity, abundance, and processing. Among well-conserved miRNAs, we observed unexpected cases of clade-specific variation in 5' end precision, occasional antisense loci, and putatively noncanonical loci. We also used strict criteria to identify a large set (649) of novel, evolutionarily restricted miRNAs. Within the bulk collection of species-restricted miRNAs, two notable subpopulations are splicing-derived mirtrons and testes-restricted, recently evolved, clustered (TRC) canonical miRNAs. We quantified miRNA birth and death using our annotation and a phylogenetic model for estimating rates of miRNA turnover. We observed striking differences in birth and death rates across miRNA classes defined by biogenesis pathway, genomic clustering, and tissue restriction, and even identified flux heterogeneity among Drosophila clades. In particular, distinct molecular rationales underlie the distinct evolutionary behavior of different miRNA classes. Mirtrons are associated with high rates of 3' untemplated addition, a mechanism that impedes their biogenesis, whereas TRC miRNAs appear to evolve under positive selection. Altogether, these data reveal miRNA diversity among Drosophila species and principles underlying their emergence and evolution.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Alex S Flynt
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Alexandra M Panzarino
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | - Matthew DeCruz
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric C Lai
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
31
|
Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F, Lan H, Cao M, Rong T, Lisch D, Lu Y. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res 2017; 45:5126-5141. [PMID: 28175341 PMCID: PMC5435991 DOI: 10.1093/nar/gkx085] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 01/02/2023] Open
Abstract
Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS.
Collapse
Affiliation(s)
- Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Micheal Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130, Texcoco, Mexico.,Institute of Crop Science, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100081, China
| | - Yan Mao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Xin Tang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| |
Collapse
|
32
|
Crisp PA, Ganguly DR, Smith AB, Murray KD, Estavillo GM, Searle I, Ford E, Bogdanović O, Lister R, Borevitz JO, Eichten SR, Pogson BJ. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis. THE PLANT CELL 2017; 29:1836-1863. [PMID: 28705956 PMCID: PMC5590493 DOI: 10.1105/tpc.16.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 05/19/2023]
Abstract
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Gonzalo M Estavillo
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
| | - Ozren Bogdanović
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Justin O Borevitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| |
Collapse
|
33
|
Wang F, Johnson NR, Coruh C, Axtell MJ. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs. Nucleic Acids Res 2016; 44:7395-405. [PMID: 27207877 PMCID: PMC5009732 DOI: 10.1093/nar/gkw457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022] Open
Abstract
Plant small RNAs are subject to various modifications. Previous reports revealed widespread 3' modifications (truncations and non-templated tailing) of plant miRNAs when the 2'-O-methyltransferase HEN1 is absent. However, non-templated nucleotides in plant heterochromatic siRNAs have not been deeply studied, especially in wild-type plants. We systematically studied non-templated nucleotide patterns in plant small RNAs by analyzing small RNA sequencing libraries from Arabidopsis, tomato, Medicago, rice, maize and Physcomitrella Elevated rates of non-templated nucleotides were observed at the 3' ends of both miRNAs and endogenous siRNAs from wild-type specimens of all species. 'Off-sized' small RNAs, such as 25 and 23 nt siRNAs arising from loci dominated by 24 nt siRNAs, often had very high rates of 3'-non-templated nucleotides. The same pattern was observed in all species that we studied. Further analysis of 24 nt siRNA clusters in Arabidopsis revealed distinct patterns of 3'-non-templated nucleotides of 23 nt siRNAs arising from heterochromatic siRNA loci. This pattern of non-templated 3' nucleotides on 23 nt siRNAs is not affected by loss of known small RNA 3'-end modifying enzymes, and may result from modifications added to longer heterochromatic siRNA precursors.
Collapse
Affiliation(s)
- Feng Wang
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Nathan R Johnson
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Ceyda Coruh
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Burkhardt A, Day B. Transcriptome and Small RNAome Dynamics during a Resistant and Susceptible Interaction between Cucumber and Downy Mildew. THE PLANT GENOME 2016; 9. [PMID: 27898768 DOI: 10.3835/plantgenome2015.08.0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cucumber ( L.) downy mildew, caused by the obligate oomycete pathogen (Berk. and Curt.) Rostov., is the primary factor limiting cucumber production. Although sources of resistance have been identified, such as plant introduction line PI 197088, the genes and processes involved in mediating resistance are still unknown. In the current study, we conducted a comprehensive transcriptome and small RNAome analysis of a resistant (PI 197088) and susceptible ('Vlaspik') cucumber during a time course of infection using Illumina sequencing. We identified significantly differentially expressed (DE) genes within and between resistant and susceptible cucumber leaves over a time course of infection. Weighted gene correlation network analyses (WGCNA) created coexpression modules containing genes with unique expression patterns between Vlaspik and PI 197088. Recurring data trends indicated that resistance to cucumber downy mildew is associated with earlier response to the pathogen, hormone signaling, and regulation of nutrient supply. Candidate resistance genes were identified from multiple transcriptome analyses and literature support. Additionally, parallel sequencing of small RNAs (sRNAs) from cucumber and during the infection time course was used to identify and quantify novel and existing microRNA (miRNA) in both species. Predicted miRNA targets of cucumber transcripts suggest a complex interconnectedness of gene expression regulation in this plant-pathogen system. This work bioinformatically uncovered gene expression patterns involved in the mediation of or response to resistance. Herein, we provide the foundation for future work to validate candidate resistance genes and miRNA-based regulation proposed in this study.
Collapse
|
35
|
Gregory BD, Meyers BC. Genomic approaches for studying transcriptional and post-transcriptional processes. Methods 2014; 67:1-2. [DOI: 10.1016/j.ymeth.2014.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Coruh C, Shahid S, Axtell MJ. Seeing the forest for the trees: annotating small RNA producing genes in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:87-95. [PMID: 24632306 PMCID: PMC4001702 DOI: 10.1016/j.pbi.2014.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 05/09/2023]
Abstract
A key goal in genomics is the complete annotation of the expressed regions of the genome. In plants, substantial portions of the genome make regulatory small RNAs produced by Dicer-Like (DCL) proteins and utilized by Argonaute (AGO) proteins. These include miRNAs and various types of endogenous siRNAs. Small RNA-seq, enabled by cheap and fast DNA sequencing, has produced an enormous volume of data on plant miRNA and siRNA expression in recent years. In this review, we discuss recent progress in using small RNA-seq data to produce stable and reliable annotations of miRNA and siRNA genes in plants. In addition, we highlight key goals for the future of small RNA gene annotation in plants.
Collapse
Affiliation(s)
- Ceyda Coruh
- Department of Biology, Penn State University, University Park, PA 16802, USA; Plant Biology Intercollegiate Ph.D. Program, Penn State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Saima Shahid
- Department of Biology, Penn State University, University Park, PA 16802, USA; Plant Biology Intercollegiate Ph.D. Program, Penn State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, Penn State University, University Park, PA 16802, USA; Plant Biology Intercollegiate Ph.D. Program, Penn State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|