1
|
Rayêe D, Hwang DW, Chang WK, Karp IN, Zhao Y, Bowman T, Lachke SA, Singer RH, Eliscovich C, Cvekl A. Identification and classification of abundant RNA-binding proteins in the mouse lens and interactions of Carhsp1, Igf2bp1/ZBP1, and Ybx1 with crystallin and β-actin mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632466. [PMID: 39829794 PMCID: PMC11741318 DOI: 10.1101/2025.01.10.632466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
RNA-binding proteins (RBPs) are critical regulators of mRNAs controlling all processes such as RNA transcription, transport, localization, translation, mRNA:ncRNA interactions, and decay. Cellular differentiation is driven by tissue-specific and/or tissue-preferred expression of proteins needed for the optimal function of mature cells, tissues and organs. Lens fiber cell differentiation is marked by high levels of expression of crystallin genes encoding critical proteins for lens transparency and light refraction. Herein we performed proteomic and transcriptomic analyses of RBPs in differentiating mouse lenses to identify the most abundant RBPs and establish dynamic changes of their expression in differentiating lens. Expression analyses include highly abundant RBPs, including Carhsp1, Igf2bp1/ZBP1, Ybx1, Pabpc1, Ddx39, and Rbm38. Binding sites of Carhsp1, Ybx1, and Igf2bp1/ZBP1 were predicted in various crystallin and β-actin mRNAs. Immunoprecipitations using antibodies against Carhsp1, Igf2bp1/ZBP1, and Ybx1 confirmed their interactions with αA-, αB-, and γA-crystallin mRNAs. A combination of single molecule RNA FISH (smFISH) and immunofluorescence was used to probe in vivo interactions of these RBPs with αA-, αB-crystallin, and β-actin mRNAs in cytoplasm and nucleoplasm of cultured mouse lens epithelial cells. Together, these results open new avenues to perform comprehensive genetic, cell, and molecular biology studies of individual RBPs in the lens.
Collapse
|
2
|
Khoroshkin M, Buyan A, Dodel M, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Lee SB, Joshi T, Garcia K, Choi B, Miglani S, Subramanyam V, Modi H, Carpenter C, Markett D, Corces MR, Mardakheh FK, Kulakovskiy IV, Goodarzi H. Systematic identification of post-transcriptional regulatory modules. Nat Commun 2024; 15:7872. [PMID: 39251607 PMCID: PMC11385195 DOI: 10.1038/s41467-024-52215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrey Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, Inserm, Orsay, France
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fathima Trejo
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Anthony Doty
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Rithvik Baratam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tanvi Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Jia J, Fan H, Wan X, Fang Y, Li Z, Tang Y, Zhang Y, Huang J, Fang D. FUS reads histone H3K36me3 to regulate alternative polyadenylation. Nucleic Acids Res 2024; 52:5549-5571. [PMID: 38499486 PMCID: PMC11162772 DOI: 10.1093/nar/gkae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Complex organisms generate differential gene expression through the same set of DNA sequences in distinct cells. The communication between chromatin and RNA regulates cellular behavior in tissues. However, little is known about how chromatin, especially histone modifications, regulates RNA polyadenylation. In this study, we found that FUS was recruited to chromatin by H3K36me3 at gene bodies. The H3K36me3 recognition of FUS was mediated by the proline residues in the ZNF domain. After these proline residues were mutated or H3K36me3 was abolished, FUS dissociated from chromatin and bound more to RNA, resulting in an increase in polyadenylation sites far from stop codons genome-wide. A proline mutation corresponding to a mutation in amyotrophic lateral sclerosis contributed to the hyperactivation of mitochondria and hyperdifferentiation in mouse embryonic stem cells. These findings reveal that FUS is an H3K36me3 reader protein that links chromatin-mediated alternative polyadenylation to human disease.
Collapse
Affiliation(s)
- Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haonan Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyi Wan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhuoning Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Li J, Jiang H, Mu Y, Wei Z, Ma A, Sun M, Zhao J, Zhu C, Chen X. SRSF10 regulates proliferation of neural progenitor cells and affects neurogenesis in developing mouse neocortex. iScience 2023; 26:107042. [PMID: 37360696 PMCID: PMC10285642 DOI: 10.1016/j.isci.2023.107042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Alternative pre-mRNA splicing plays critical roles in brain development. SRSF10 is a splicing factor highly expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in neural development is unclear. In this study, by conditional depleting SRSF10 in neural progenitor cells (NPCs) in vivo and in vitro, we found that dysfunction of SRSF10 leads to developmental defects of the brain, which manifest as abnormal ventricle enlargement and cortical thinning anatomically, as well as decreased NPCs proliferation and weakened cortical neurogenesis histologically. Furthermore, we proved that the function of SRSF10 on NPCs proliferation involved the regulation of PI3K-AKT-mTOR-CCND2 pathway and the alternative splicing of Nasp, a gene encoding isoforms of cell cycle regulators. These findings highlight the necessity of SRSF10 in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Junjie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hanyang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yawei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ankangzhi Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Menghan Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xianhua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Baker M, Khosravi R, Salton M. Native RNA Immunoprecipitation (RIP) for Precise Detection and Quantification of Protein-Interacting RNA. Methods Mol Biol 2023; 2666:107-114. [PMID: 37166660 DOI: 10.1007/978-1-0716-3191-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Proteins with either RNA or DNA-binding motifs were shown to bind RNA. Immunoprecipitation of such proteins using antibodies and identification of the RNA-binding molecules is called RNA immunoprecipitation (RIP). The RNA precipitated with the studied protein can be detected by real-time polymerase chain reaction (PCR), microarray or sequencing. Here, we detail a method for native immunoprecipitation, without cross-linking, to isolate protein-RNA complexes followed by subsequent extraction and quantification of the co-purified RNA.
Collapse
Affiliation(s)
- Mai Baker
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami Khosravi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
7
|
Hutchins EJ, Gandhi S, Chacon J, Piacentino M, Bronner ME. RNA-binding protein Elavl1/HuR is required for maintenance of cranial neural crest specification. eLife 2022; 11:e63600. [PMID: 36189921 PMCID: PMC9529247 DOI: 10.7554/elife.63600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
While neural crest development is known to be transcriptionally controlled via sequential activation of gene regulatory networks (GRNs), recent evidence increasingly implicates a role for post-transcriptional regulation in modulating the output of these regulatory circuits. Using available single-cell RNA-sequencing datasets from avian embryos to identify potential post-transcriptional regulators, we found that Elavl1, which encodes for an RNA-binding protein with roles in transcript stability, was enriched in the premigratory cranial neural crest. Perturbation of Elavl1 resulted in premature neural crest delamination from the neural tube as well as significant reduction in transcripts associated with the neural crest specification GRN, phenotypes that are also observed with downregulation of the canonical Wnt inhibitor Draxin. That Draxin is the primary target for stabilization by Elavl1 during cranial neural crest specification was shown by RNA-sequencing, RNA immunoprecipitation, RNA decay measurement, and proximity ligation assays, further supporting the idea that the downregulation of neural crest specifier expression upon Elavl1 knockdown was largely due to loss of Draxin. Importantly, exogenous Draxin rescued cranial neural crest specification defects observed with Elavl1 knockdown. Thus, Elavl1 plays a critical a role in the maintenance of cranial neural crest specification via Draxin mRNA stabilization. Together, these data highlight an important intersection of post-transcriptional regulation with modulation of the neural crest specification GRN.
Collapse
Affiliation(s)
- Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Shashank Gandhi
- The Miller Institute for Basic Research in Science, University of California, BerkeleyBerkeleyUnited States
| | - Jose Chacon
- Department of Biology, School of Math and Science, California State University NorthridgeNorthridgeUnited States
| | - Michael Piacentino
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
8
|
Elías-Villalobos A, Duncan C, Mata J, Helmlinger D. Quantitative analysis of protein-RNA interactions in fission yeast. STAR Protoc 2022; 3:101373. [PMID: 35586315 PMCID: PMC9108979 DOI: 10.1016/j.xpro.2022.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Characterizing the interactions between RNAs and proteins in vivo is key to better understand how organisms regulate gene expression. Here, we describe a robust and quantitative protocol to measure specific RNA-protein interactions in a native context using RNA immunoprecipitation (RIP). We provide a comprehensive experimental framework to detect cotranslational interactions and detail the quantitative analysis of purified RNAs by PCR and high-throughput sequencing. Although we developed the protocol in fission yeast, it can be readily implemented in other yeast species. For complete details on the use and execution of this protocol, please refer to Toullec et al. (2021). Simple and robust detection of RNA-protein interactions in a native context Ribonucleoprotein complex isolated by immunoprecipitation Quantitative analysis of purified RNA by PCR or high-throughput sequencing Detailed experimental pipeline to demonstrate cotranslational interactions
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla-Hospital Universitario Virgen del Rocío-CSIC, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Caia Duncan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | |
Collapse
|
9
|
Nishioka K, Daidoji T, Nakaya T. Downregulation of calcium-regulated heat stable protein 1 expression by low-temperature stimulation causes reduction of interferon-β expression and sensitivity to influenza viral infection. Virus Res 2021; 309:198659. [PMID: 34929215 DOI: 10.1016/j.virusres.2021.198659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Influenza is prevalent in temperate countries during winter when the environment is dry and cold; however, in tropical and subtropical countries, it is prevalent during the hot, humid rainy season. Thus, temperature and humidity conditions affect influenza outbreaks in different climates. Although the reason for this may be related to host conditions and the conditions under which the virus can survive, it is difficult to analyze changes in host viral responses owing to environmental changes at the cellular level. In the current study, to find candidate genes related with temperature, we analyzed the effects of low-temperature stimulation on influenza virus infection using immortalized respiratory cell lines with the same genetic background established in our laboratory. Although two cell lines with different immune response strengths exhibited enhancement of influenza virus replication following low-temperature stimulation, the mechanisms and degrees were different. In cell lines that showed greater changes, promotion of viral replication was found to involve genes related to temperature, including TRPM2 and CARHSP1. In particular, CARHSP1 expression was decreased by low-temperature stimulation in several respiratory cell lines. In knockdown experiments, because reduction of interferon-β production and sensitivity were observed, the decline may create an environment in which the initial infection cannot be controlled. This procedure may be effective for identifying candidate genes related to the host/viral responses to changes in temperature, and these results can help elucidate the relationships of temperature, humidity, and host responses with viral infection.
Collapse
Affiliation(s)
- Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
10
|
Takemoto S, Nakano M, Fukami T, Nakajima M. m 6A modification impacts hepatic drug and lipid metabolism properties by regulating carboxylesterase 2. Biochem Pharmacol 2021; 193:114766. [PMID: 34536357 DOI: 10.1016/j.bcp.2021.114766] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Methylation of adenosine at the N6 position to form N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification of mammalian mRNA. This modification is catalyzed by a methyltransferase-like 3 (METTL3)-METTL14 complex and is erased by demethylases such as fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5). m6A modification regulates mRNA stability, nuclear export, splicing, and/or protein translation via recognition by reader proteins such as members of YT521-B homology (YTH) family. Carboxylesterase 2 (CES2) is a serine esterase responsible for the hydrolysis of drugs and endogenous substrates, such as triglycerides and diacylglycerides. Here, we examined the potential regulation of human CES2 expression by m6A modification. CES2 mRNA level was significantly increased by double knockdown of METTL3 and METTL14 but was decreased by knockdown of FTO or ALKBH5 in HepaRG and HepG2 cells, leading to changes in its protein level and hydrolase activity for 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11), suggesting that m6A modification negatively regulates CES2 expression. Consistent with the changes in CES2 expression, lipid accumulation in the cells was decreased by double knockdown of METTL3 and METTL14 but was increased by knockdown of FTO or ALKBH5. RNA immunoprecipitation assays using an anti-m6A antibody showed that adenosines in the 5'-untranslated region (UTR) and the last exon of CES2 are methylated. Luciferase assays revealed that YTHDC2, which degrades m6A-containing mRNA, downregulates CES2 expression by recognition of m6A in the 5'-UTR of CES2. Collectively, we demonstrated that m6A modification has a great impact on the regulation of CES2, affecting pharmacokinetics, drug response and lipid metabolism.
Collapse
Affiliation(s)
- Seiya Takemoto
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masataka Nakano
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPINano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPINano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPINano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
11
|
Palomo-Irigoyen M, Pérez-Andrés E, Iruarrizaga-Lejarreta M, Barreira-Manrique A, Tamayo-Caro M, Vila-Vecilla L, Moreno-Cugnon L, Beitia N, Medrano D, Fernández-Ramos D, Lozano JJ, Okawa S, Lavín JL, Martín-Martín N, Sutherland JD, de Juan VG, Gonzalez-Lopez M, Macías-Cámara N, Mosén-Ansorena D, Laraba L, Hanemann CO, Ercolano E, Parkinson DB, Schultz CW, Araúzo-Bravo MJ, Ascensión AM, Gerovska D, Iribar H, Izeta A, Pytel P, Krastel P, Provenzani A, Seneci P, Carrasco RD, Del Sol A, Martinez-Chantar ML, Barrio R, Serra E, Lazaro C, Flanagan AM, Gorospe M, Ratner N, Aransay AM, Carracedo A, Varela-Rey M, Woodhoo A. HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. J Clin Invest 2021; 130:3848-3864. [PMID: 32315290 PMCID: PMC7324187 DOI: 10.1172/jci130379] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/β-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.
Collapse
Affiliation(s)
- Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Encarni Pérez-Andrés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Marta Iruarrizaga-Lejarreta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Adrián Barreira-Manrique
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Miguel Tamayo-Caro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Laura Vila-Vecilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Leire Moreno-Cugnon
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nagore Beitia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Daniela Medrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - David Fernández-Ramos
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José Lozano
- Bioinformatic Platform, CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - José L Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Virginia Guitiérez de Juan
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nuria Macías-Cámara
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - David Mosén-Ansorena
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Liyam Laraba
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - Emanuela Ercolano
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - David B Parkinson
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | | | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Haizea Iribar
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián, Spain
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Philipp Krastel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Del Sol
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - María Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Eduard Serra
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Group, Institute for Health Science Research Germans Trias I Pujol (IGTP) and Program of Predictive and Personalized Medicine of Cancer (PMPPC), Barcelona, Spain
| | - Conxi Lazaro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, and.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Marta Varela-Rey
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Transcriptome-wide high-throughput mapping of protein-RNA occupancy profiles using POP-seq. Sci Rep 2021; 11:1175. [PMID: 33441968 PMCID: PMC7806670 DOI: 10.1038/s41598-020-80846-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Interaction between proteins and RNA is critical for post-transcriptional regulatory processes. Existing high throughput methods based on crosslinking of the protein–RNA complexes and poly-A pull down are reported to contribute to biases and are not readily amenable for identifying interaction sites on non poly-A RNAs. We present Protein Occupancy Profile-Sequencing (POP-seq), a phase separation based method in three versions, one of which does not require crosslinking, thus providing unbiased protein occupancy profiles on whole cell transcriptome without the requirement of poly-A pulldown. Our study demonstrates that ~ 68% of the total POP-seq peaks exhibited an overlap with publicly available protein–RNA interaction profiles of 97 RNA binding proteins (RBPs) in K562 cells. We show that POP-seq variants consistently capture protein–RNA interaction sites across a broad range of genes including on transcripts encoding for transcription factors (TFs), RNA-Binding Proteins (RBPs) and long non-coding RNAs (lncRNAs). POP-seq identified peaks exhibited a significant enrichment (p value < 2.2e−16) for GWAS SNPs, phenotypic, clinically relevant germline as well as somatic variants reported in cancer genomes, suggesting the prevalence of uncharacterized genomic variation in protein occupied sites on RNA. We demonstrate that the abundance of POP-seq peaks increases with an increase in expression of lncRNAs, suggesting that highly expressed lncRNA are likely to act as sponges for RBPs, contributing to the rewiring of protein–RNA interaction network in cancer cells. Overall, our data supports POP-seq as a robust and cost-effective method that could be applied to primary tissues for mapping global protein occupancies.
Collapse
|
13
|
Podratz JL, Tang JJ, Polzin MJ, Schmeichel AM, Nesbitt JJ, Windebank AJ, Madigan NN. Mechano growth factor interacts with nucleolin to protect against cisplatin-induced neurotoxicity. Exp Neurol 2020; 331:113376. [PMID: 32511954 DOI: 10.1016/j.expneurol.2020.113376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Mechano growth factor (MGF) is an alternatively spliced form of insulin-like growth factor-1 (IGF-1) that has shown to be neuroprotective against 6-hydroxydopamine toxicity and ischemic injury in the brain. MGF also induces neural stem cell proliferation in the hippocampus and preserves olfactory function in aging mice. Cisplatin is a chemotherapy drug that induces peripheral neuropathy in 30-40% of treated patients. Our studies were designed to see if MGF would protect dorsal root ganglion (DRG) neurons from cisplatin-induced neurotoxicity and to identify potential mechanisms that may be involved. Expression of endogenous MGF in adult DRG neurons in vivo ameliorated cisplatin-induced thermal hyperalgesia. Exogenous MGF and MGF with a cysteine added to the N-terminus (CMGF) also protected embryonic DRG neurons from cisplatin-induced cell death in vitro. Mass spectroscopy analysis of proteins bound to MGF showed that nucleolin is a key-binding partner. Antibodies against nucleolin prevented the neuroprotective effect of MGF and CMGF in culture. Both nucleolin and MGF are located in the nucleolus of DRG neurons. RNAseq of RNA associated with MGF indicated that MGF may be involved in RNA processing, protein targeting and transcription/translation. Nucleolin is an RNA binding protein that is readily shuttled between the nucleus, cytoplasm and plasma membrane. Nucleolin and MGF may work together to prevent cisplatin-induced neurotoxicity. Exploring the known mechanisms of nucleolin may help us better understand the mechanisms of cisplatin toxicity and how MGF protects DRG neurons.
Collapse
Affiliation(s)
- J L Podratz
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Tang
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - M J Polzin
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A J Windebank
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| | - N N Madigan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
14
|
|
15
|
Individual Nucleotide Resolution UV Cross-Linking and Immunoprecipitation (iCLIP) to Determine Protein-RNA Interactions. Methods Mol Biol 2018; 1649:427-454. [PMID: 29130215 DOI: 10.1007/978-1-4939-7213-5_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNA transcripts. In doing so they help direct many essential roles in cellular physiology, while their perturbed activity can contribute to disease etiology. In this chapter we detail a functional genomics approach, termed individual nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP), that can determine the interactions of RBPs with their RNA targets in high throughput and at nucleotide resolution. iCLIP achieves this by exploiting UV-induced covalent cross-links formed between RBPs and their target RNAs to both purify the RBP-RNA complexes under stringent conditions, and to cause reverse transcription stalling that then identifies the direct cross-link sites in the high throughput sequenced cDNA libraries.
Collapse
|
16
|
Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 2018; 53:335-355. [PMID: 29793351 DOI: 10.1080/10409238.2018.1473330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Carsten A Raabe
- b Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany.,c Brandenburg Medical School (MHB) , Neuruppin , Germany.,d Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany
| | - Li-Pin Lee
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Timofey S Rozhdestvensky
- e Medical Faculty, Transgenic Mouse and Genome Engineering Model Core Facility (TRAM) , University of Münster , Münster , Germany
| | - Marimuthu Citartan
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Siti Aminah Ahmed
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Thean-Hock Tang
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| |
Collapse
|
17
|
Gao M, Benge A, Mesa JM, Javier R, Liu FX. Use of RNA Immunoprecipitation Method for Determining Sinorhizobium meliloti RNA -Hfq Protein Associations In Vivo. Biol Proced Online 2018; 20:8. [PMID: 29743820 PMCID: PMC5928592 DOI: 10.1186/s12575-018-0075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 01/05/2023] Open
Abstract
Background Soil bacterium Sinorhizobium meliloti (S. meliloti) forms an endosymbiotic partnership with Medicago truncatula (M. truncatula) roots which results in root nodules. The bacteria live within root nodules where they function to fix atmospheric N2 and supply the host plant with reduced nitrogen. The bacterial RNA-binding protein Hfq (Hfq) is an important regulator for the effectiveness of the nitrogen fixation. RNA immunoprecipitation (RIP) method is a powerful method for detecting the association of Hfq protein with specific RNA in cultured bacteria, yet a RIP method for bacteria living in root nodules remains to be described. Results A modified S. meliloti gene encoding a His-tagged Hfq protein (HfqHis) was placed under the regulation of the native Hfq gene promoter (Phfqsm). The trans produced HfqHis protein was accumulated at its nature levels during all stages of the symbiosis, allowing RNAs that associated with the given protein to be immunoprecipitated with the anti-His antibody against the protein from root nodule lysates. RNAs that associated with the protein were selectively enriched in the immunoprecipitated sample. The RNAs were recovered by a simple method using heat and subsequently analyzed by RT-PCR. The nature of PCR products was determined by DNA sequencing. Hfq association with specific RNAs can be analyzed at different conditions (e. g. young or older root nodules) and/or in wild-type versus mutant strains. Conclusions This article describes the RIP method for determining Sinorhizobium meliloti RNA-Hfq associations in vivo. It is also applicable to other rhizobia living in planta, although some tissue-specific modification related to sample disruption and homogenization may be needed.
Collapse
Affiliation(s)
- Mengsheng Gao
- Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, 32610 USA
| | - Anne Benge
- Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, 32610 USA
| | - Julia M Mesa
- Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, 32610 USA
| | - Regina Javier
- Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, 32610 USA
| | - Feng-Xia Liu
- 2Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
18
|
Doyle F, Lapsia S, Spadaro S, Wurz ZE, Bhaduri-McIntosh S, Tenenbaum SA. Engineering Structurally Interacting RNA (sxRNA). Sci Rep 2017; 7:45393. [PMID: 28350000 PMCID: PMC5368982 DOI: 10.1038/srep45393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
RNA-based three-way junctions (3WJs) are naturally occurring structures found in many functional RNA molecules including rRNA, tRNA, snRNA and ribozymes. 3WJs are typically characterized as resulting from an RNA molecule folding back on itself in cis but could also form in trans when one RNA, for instance a microRNA binds to a second structured RNA, such as a mRNA. Trans-3WJs can influence the final shape of one or both of the RNA molecules and can thus provide a means for modulating the availability of regulatory motifs including potential protein or microRNA binding sites. Regulatory 3WJs generated in trans represent a newly identified regulatory category that we call structurally interacting RNA or sxRNA for convenience. Here we show that they can be rationally designed using familiar cis-3WJ examples as a guide. We demonstrate that an sxRNA "bait" sequence can be designed to interact with a specific microRNA "trigger" sequence, creating a regulatable RNA-binding protein motif that retains its functional activity. Further, we show that when placed downstream of a coding sequence, sxRNA can be used to switch "ON" translation of that sequence in the presence of the trigger microRNA and the amount of translation corresponded with the amount of microRNA present.
Collapse
Affiliation(s)
- Francis Doyle
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY New York 12203, USA
| | - Sameer Lapsia
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Salvatore Spadaro
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Zachary E. Wurz
- HocusLocus, LLC, 253 Fuller Road, Nanofab North, Albany NY 12203, USA
| | - Sumita Bhaduri-McIntosh
- Pediatric Infectious Diseases, Departments of Pediatrics and Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Scott A. Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY New York 12203, USA
| |
Collapse
|
19
|
Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. Proc Natl Acad Sci U S A 2017; 114:2206-2211. [PMID: 28193894 DOI: 10.1073/pnas.1616371114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a multipurpose RNA-binding protein (RBP) involved in normal and pathological RNA metabolism. Transcriptome-wide mapping and in vitro evolution identify consensus hnRNP A1 binding motifs; however, such data do not reveal how surrounding RNA sequence and structural context modulate affinity. We determined the affinity of hnRNP A1 for all possible sequence variants (n = 16,384) of the HIV exon splicing silencer 3 (ESS3) 7-nt apical loop. Analysis of the affinity distribution identifies the optimal motif 5'-YAG-3' and shows how its copy number, position in the loop, and loop structure modulate affinity. For a subset of ESS3 variants, we show that specificity is determined by association rate constants and that variants lacking the minimal sequence motif bind competitively with consensus RNA. Thus, the results reveal general rules of specificity of hnRNP A1 and provide a quantitative framework for understanding how it discriminates between alternative competing RNA ligands in vivo.
Collapse
|
20
|
Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27198714 DOI: 10.1002/wrna.1364] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Deep sequencing has been revolutionizing biology and medicine in recent years, providing single base-level precision for our understanding of nucleic acid sequences in high throughput fashion. Sequencing of RNA, or RNA-Seq, is now a common method to analyze gene expression and to uncover novel RNA species. Aspects of RNA biogenesis and metabolism can be interrogated with specialized methods for cDNA library preparation. In this study, we review current RNA-Seq methods for general analysis of gene expression and several specific applications, including isoform and gene fusion detection, digital gene expression profiling, targeted sequencing and single-cell analysis. In addition, we discuss approaches to examine aspects of RNA in the cell, technical challenges of existing RNA-Seq methods, and future directions. WIREs RNA 2017, 8:e1364. doi: 10.1002/wrna.1364 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | | | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
21
|
Abstract
The relevance of RNA-protein interactions in modulating mRNA and noncoding RNA function is increasingly appreciated and several methods have been recently developed to map them. The RNA immunoprecipitation (RIP) is a powerful method to study the physical association between individual proteins and RNA molecules in vivo. The basic principles of RIP are very similar to those of chromatin immunoprecipitation (ChIP), a largely used tool in the epigenetic field, but with some important caveats. The approach is based on the use of a specific antibody raised against the protein of interest to pull down the RNA-binding protein (RBP) and target-RNA complexes. Any RNA that is associated with this protein complex will also be isolated and can be further analyzed by polymerase chain reaction-based methods, hybridization, or sequencing.Several variants of this technique exist and can be divided into two main classes: native and cross-linked RNA immunoprecipitation. The native RIP allows to reveal the identity of RNAs directly bound by the protein and their abundance in the immunoprecipitated sample, while cross-linked RIP leads to precisely map the direct and indirect binding site of the RBP of interest to the RNA molecule.In this chapter both the protocols applied to mammalian cells are described taking into account the caveats and considerations required for designing, performing, and interpreting the results of these experiments.
Collapse
|
22
|
Shigunov P, Dallagiovanna B. Stem Cell Ribonomics: RNA-Binding Proteins and Gene Networks in Stem Cell Differentiation. Front Mol Biosci 2015; 2:74. [PMID: 26734617 PMCID: PMC4686646 DOI: 10.3389/fmolb.2015.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cells are undifferentiated cells with the ability to self-renew and the potential to differentiate into all body cell types. Stem cells follow a developmental genetic program and are able to respond to alterations in the environment through various signaling pathways. The mechanisms that control these processes involve the activation of transcription followed by a series of post-transcriptional events. These post-transcriptional steps are mediated by the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs creating a regulatory gene network. Characterizing these RNA-protein networks is essential to understanding the regulatory mechanisms underlying the control of stem cell fate. Ribonomics is the combination of classical biochemical purification protocols with the high-throughput identification of transcripts applied to the functional characterization of RNA-protein complexes. Here, we describe the different approaches that can be used in a ribonomic approach and how they have contributed to understanding the function of several RBPs with central roles in stem cell biology.
Collapse
Affiliation(s)
- Patrícia Shigunov
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation Curitiba, Brazil
| | - Bruno Dallagiovanna
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation Curitiba, Brazil
| |
Collapse
|
23
|
Carmel MS, Kahane N, Oberman F, Miloslavski R, Sela-Donenfeld D, Kalcheim C, Yisraeli JK. A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis. PLoS One 2015; 10:e0136408. [PMID: 26317350 PMCID: PMC4552865 DOI: 10.1371/journal.pone.0136408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
Background VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos. Results and Conclusions Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity.
Collapse
Affiliation(s)
- Michal Shoshkes Carmel
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitza Kahane
- Department of Medical Neurobiology, IMRIC, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Miloslavski
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100, Rehovot, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
24
|
Maizels Y, Oberman F, Miloslavski R, Ginzach N, Berman M, Yisraeli JK. Localization of cofilin mRNA to the leading edge of migrating cells promotes directed cell migration. J Cell Sci 2015; 128:1922-33. [DOI: 10.1242/jcs.163972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
mRNA trafficking, which enables the localization of mRNAs to particular intracellular targets, occurs in a wide variety of cells. The importance of the resulting RNA distribution for cellular functions, however, has been difficult to assess. We have found that cofilin-1 mRNA is rapidly localized to the leading edge of human lung carcinoma cells and that VICKZ family RNA-binding proteins help mediate this localization through specific interactions with the 3′UTR of cofilin mRNA. Using a phagokinetic assay for cell motility, we have been able to quantify the effect of mRNA localization on the rescue of lung carcinoma cells in which cofilin was knocked down by using short hairpin RNA (shRNA). Although restoring cofilin protein to normal endogenous levels rescues general lamellipodia formation around the periphery of the cell, only when the rescuing cofilin mRNA can localize to the leading edge is it capable of also fully rescuing directed cell movement. These results demonstrate that localization of an mRNA can provide an additional level of regulation for the function of its protein product.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Rachel Miloslavski
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Nava Ginzach
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Malka Berman
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
25
|
Gregory BD, Meyers BC. Genomic approaches for studying transcriptional and post-transcriptional processes. Methods 2014; 67:1-2. [DOI: 10.1016/j.ymeth.2014.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construction for next-generation sequencing: overviews and challenges. Biotechniques 2014; 56:61-4, 66, 68, passim. [PMID: 24502796 DOI: 10.2144/000114133] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 01/03/2023] Open
Abstract
High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed.
Collapse
Affiliation(s)
- Steven R Head
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA
| | - H Kiyomi Komori
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Sarah A LaMere
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Thomas Whisenant
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | | |
Collapse
|