1
|
Sudakov A, Knezic B, Hengesbach M, Fürtig B, Stirnal E, Schwalbe H. Site-Specific Labeling of RNAs with Modified and 19 F-Labeled Nucleotides by Chemo-Enzymatic Synthesis. Chemistry 2023; 29:e202203368. [PMID: 36594705 DOI: 10.1002/chem.202203368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
More than 170 post-transcriptional modifications of RNAs have currently been identified. Detailed biophysical investigations of these modifications have been limited since large RNAs containing these post-transcriptional modifications are difficult to produce. Further, adequate readout of spectroscopic fingerprints are important, necessitating additional labeling procedures beyond the naturally occurring RNA modifications. Here, we report the chemo-enzymatic synthesis of RNA modifications and several structurally similar fluorine-modified analogs further optimizing a recently developed methodology.[1] This chemo-enzymatic method allows synthesis of also large RNAs. We were able to incorporate 16 modified nucleotides and 6 19 F-labeled nucleotides. To showcase the applicability of such modified large RNAs, we incorporated a 19 F-labeled cytidine into the aptamer domain of the 2'dG sensing riboswitch (2'dG-sw) from Mesoplasma florum, enabling characterizing RNA fold, ligand binding and kinetics. Thanks to the large chemical shift dispersion of 19 F, we can detect conformational heterogeneity in the apo state of the riboswitch.
Collapse
Affiliation(s)
- Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| |
Collapse
|
2
|
Taiwo KM, Olenginski LT, Nußbaumer F, Nam H, Hilber S, Kreutz C, Dayie TK. Synthesis of [7- 15N]-GTPs for RNA structure and dynamics by NMR spectroscopy. MONATSHEFTE FUR CHEMIE 2022; 153:293-299. [PMID: 35400760 PMCID: PMC8948113 DOI: 10.1007/s00706-022-02892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
Several isotope-labeling strategies have been developed for the study of RNA by nuclear magnetic resonance (NMR) spectroscopy. Here, we report a combined chemical and enzymatic synthesis of [7-15N]-guanosine-5'-triphosphates for incorporation into RNA via T7 RNA polymerase-based in vitro transcription. We showcase the utility of these labels to probe both structure and dynamics in two biologically important RNAs. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-022-02892-1.
Collapse
Affiliation(s)
- Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
- Present Address: Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
3
|
Hoogstraten CG, Terrazas M, Aviñó A, White NA, Sumita M. Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides. Methods Mol Biol 2021; 2167:183-202. [PMID: 32712921 DOI: 10.1007/978-1-0716-0716-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A full understanding of biomolecular function requires an analysis of both the dynamic properties of the system of interest and the identification of those dynamics that are required for function. We describe NMR methods based on metabolically directed specific isotope labeling for the identification of molecular disorder and/or conformational transitions on the RNA backbone ribose groups. These analyses are complemented by the use of synthetic covalently modified nucleotides constrained to a single sugar pucker, which allow functional assessment of dynamics by selectively removing a minor conformer identified by NMR from the structural ensemble.
Collapse
Affiliation(s)
- Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| | - Montserrat Terrazas
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.,Joint IRB-BSC Program in Computational Biology, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.,Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
4
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
5
|
Asadi-Atoi P, Barraud P, Tisne C, Kellner S. Benefits of stable isotope labeling in RNA analysis. Biol Chem 2020; 400:847-865. [PMID: 30893050 DOI: 10.1515/hsz-2018-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. They contain a variety of chemical modifications and many RNAs fold into complex structures. Here, we review recent progress in the analysis of RNA modification and structure on the basis of stable isotope labeling techniques. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the key tools and many breakthrough developments were made possible by the analysis of stable isotope labeled RNA. Therefore, we discuss current stable isotope labeling techniques such as metabolic labeling, enzymatic labeling and chemical synthesis. RNA structure analysis by NMR is challenging due to two major problems that become even more salient when the size of the RNA increases, namely chemical shift overlaps and line broadening leading to complete signal loss. Several isotope labeling strategies have been developed to provide solutions to these major issues, such as deuteration, segmental isotope labeling or site-specific labeling. Quantification of modified nucleosides in RNA by MS is only possible through the application of stable isotope labeled internal standards. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), it is now possible to analyze the dynamic processes of post-transcriptional RNA modification and demodification. The trend, in both NMR and MS RNA analytics, is without doubt shifting from the analysis of snapshot moments towards the development and application of tools capable of analyzing the dynamics of RNA structure and modification profiles.
Collapse
Affiliation(s)
- Paria Asadi-Atoi
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Pierre Barraud
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carine Tisne
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
6
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
7
|
Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods 2019; 167:66-77. [PMID: 31128236 DOI: 10.1016/j.ymeth.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Exciting discoveries of naturally occurring ligand-sensing and disease-linked noncoding RNAs have promoted significant interests in understanding RNA-small molecule interactions. NMR spectroscopy is a powerful tool for characterizing intermolecular interactions. In this review, we describe protocols and approaches for applying NMR spectroscopy to investigate interactions between RNA and small molecules. We review protocols for RNA sample preparation, methods for identifying RNA-binding small molecules, approaches for mapping RNA-small molecule interactions, determining complex structures, and characterizing binding kinetics. We hope this review will provide a guideline to streamline NMR applications in studying RNA-small molecule interactions, facilitating both basic mechanistic understandings of RNA functions and translational efforts in developing RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
White NA, Sumita M, Marquez VE, Hoogstraten CG. Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA (NEW YORK, N.Y.) 2018; 24:1542-1554. [PMID: 30111534 PMCID: PMC6191710 DOI: 10.1261/rna.067579.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage function in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2'-endo conformations while maintaining an intact 2'-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2'-endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relationships in RNA.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Victor E Marquez
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
LeBlanc RM, Longhini AP, Tugarinov V, Dayie TK. NMR probing of invisible excited states using selectively labeled RNAs. JOURNAL OF BIOMOLECULAR NMR 2018; 71:165-172. [PMID: 29858959 DOI: 10.1007/s10858-018-0184-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are invaluable for probing sparsely and transiently populated biomolecular states that cannot be directly detected by traditional NMR experiments and that are invisible by other biophysical approaches. A notable gap for RNA is the absence of CPMG experiments for measurement of methine base 1H and methylene C5' chemical shifts of ribose moieties in the excited state, partly because of complications from homonuclear 13C-13C scalar couplings. Here we present site-specific 13C labeling that makes possible the design of pulse sequences for recording accurate 1H-13C MQ and SQ CPMG experiments for ribose methine H1'-C1' and H2'-C2', base and ribose 1H CPMG, as well as a new 1H-13C TROSY-detected methylene (CH2) C5' CPMG relaxation pulse schemes. We demonstrate the utility of these experiments for two RNAs, the A-Site RNA known to undergo exchange and the IRE RNA suspected of undergoing exchange on microseconds to millisecond time-scale. We anticipate the new labeling approaches will facilitate obtaining structures of invisible states and provide insights into the relevance of such states for RNA-drug interactions.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Department of Chemistry & Biochemistry, University of Maryland, College Park, 8314 Paint Branch Dr, College Park, MD, 20782, USA
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Andrew P Longhini
- Department of Chemistry & Biochemistry, University of Maryland, College Park, 8314 Paint Branch Dr, College Park, MD, 20782, USA
- University of California, Santa Barbara, CA, 93106, USA
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-052, USA
| | - T Kwaku Dayie
- Department of Chemistry & Biochemistry, University of Maryland, College Park, 8314 Paint Branch Dr, College Park, MD, 20782, USA.
| |
Collapse
|
10
|
Chen B, Longhini AP, Nußbaumer F, Kreutz C, Dinman JD, Dayie TK. CCR5 RNA Pseudoknots: Residue and Site-Specific Labeling correlate Internal Motions with microRNA Binding. Chemistry 2018; 24:5462-5468. [PMID: 29412477 PMCID: PMC7640883 DOI: 10.1002/chem.201705948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Dr., College Park, MD, 20742, USA
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| | - Andrew P Longhini
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Dr., College Park, MD, 20742, USA
| | - T Kwaku Dayie
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, 8314 Paint Branch Dr., College Park, MD, 20782, USA
| |
Collapse
|
11
|
Affiliation(s)
- Bruce A Shapiro
- RNA Structure and Design Section, National Cancer Institute, Frederick, MD 21702, USA.
| | - Stuart F J Le Grice
- RT Biochemistry Section, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
12
|
Nußbaumer F, Juen MA, Gasser C, Kremser J, Müller T, Tollinger M, Kreutz C. Synthesis and incorporation of 13C-labeled DNA building blocks to probe structural dynamics of DNA by NMR. Nucleic Acids Res 2017; 45:9178-9192. [PMID: 28911104 PMCID: PMC5587810 DOI: 10.1093/nar/gkx592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
We report the synthesis of atom-specifically 13C-modified building blocks that can be incorporated into DNA via solid phase synthesis to facilitate investigations on structural and dynamic features via NMR spectroscopy. In detail, 6-13C-modified pyrimidine and 8-13C purine DNA phosphoramidites were synthesized and incorporated into a polypurine tract DNA/RNA hybrid duplex to showcase the facile resonance assignment using site-specific labeling. We also addressed micro- to millisecond dynamics in the mini-cTAR DNA. This DNA is involved in the HIV replication cycle and our data points toward an exchange process in the lower stem of the hairpin that is up-regulated in the presence of the HIV-1 nucleocapsid protein 7. As another example, we picked a G-quadruplex that was earlier shown to exist in two folds. Using site-specific 8-13C-2'deoxyguanosine labeling we were able to verify the slow exchange between the two forms on the chemical shift time scale. In a real-time NMR experiment the re-equilibration of the fold distribution after a T-jump could be monitored yielding a rate of 0.012 min-1. Finally, we used 13C-ZZ-exchange spectroscopy to characterize the kinetics between two stacked X-conformers of a Holliday junction mimic. At 25°C, the refolding process was found to occur at a forward rate constant of 3.1 s-1 and with a backward rate constant of 10.6 s-1.
Collapse
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|