1
|
Loeff L, Kerssemakers JWJ, Joo C, Dekker C. AutoStepfinder: A fast and automated step detection method for single-molecule analysis. PATTERNS 2021; 2:100256. [PMID: 34036291 PMCID: PMC8134948 DOI: 10.1016/j.patter.2021.100256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 04/08/2021] [Indexed: 01/05/2023]
Abstract
Single-molecule techniques allow the visualization of the molecular dynamics of nucleic acids and proteins with high spatiotemporal resolution. Valuable kinetic information of biomolecules can be obtained when the discrete states within single-molecule time trajectories are determined. Here, we present a fast, automated, and bias-free step detection method, AutoStepfinder, that determines steps in large datasets without requiring prior knowledge on the noise contributions and location of steps. The analysis is based on a series of partition events that minimize the difference between the data and the fit. A dual-pass strategy determines the optimal fit and allows AutoStepfinder to detect steps of a wide variety of sizes. We demonstrate step detection for a broad variety of experimental traces. The user-friendly interface and the automated detection of AutoStepfinder provides a robust analysis procedure that enables anyone without programming knowledge to generate step fits and informative plots in less than an hour. Fast, automated, and bias-free detection of steps within single-molecule trajectories Robust step detection without any prior knowledge on the data A dual-pass strategy for the detection of steps over a wide variety of scales A user-friendly interface for a simplified step fitting procedure
Single-molecule techniques have made it possible to track individual protein complexes in real time with a nanometer spatial resolution and a millisecond timescale. Accurate determination of the dynamic states within single-molecule time traces provides valuable kinetic information that underlie the function of biological macromolecules. Here, we present a new automated step detection method called AutoStepfinder, a versatile, robust, and easy-to-use algorithm that allows researchers to determine the kinetic states within single-molecule time trajectories without any bias.
Collapse
Affiliation(s)
- Luuk Loeff
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Dang TL, Le CT, Le MN, Nguyen TD, Nguyen TL, Bao S, Li S, Nguyen TA. Select amino acids in DGCR8 are essential for the UGU-pri-miRNA interaction and processing. Commun Biol 2020; 3:344. [PMID: 32620823 PMCID: PMC7334207 DOI: 10.1038/s42003-020-1071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Microprocessor, composed of DROSHA and DGCR8, processes primary microRNAs (pri-miRNAs) in miRNA biogenesis. Its cleavage efficiency and accuracy are enhanced because DGCR8 interacts with the apical UGU motif of pri-miRNAs. However, the mechanism and influence of DGCR8–UGU interaction on cellular miRNA expression are still elusive. In this study, we demonstrated that Rhed (i.e., the RNA-binding heme domain, amino acids 285–478) of DGCR8 interacts with UGU. In addition, we identified three amino acids 461–463 in Rhed, which are critical for the UGU interaction and essential for Microprocessor to accurately and efficiently process UGU-pri-miRNAs in vitro and UGU-miRNA expression in human cells. Furthermore, we found that within the DGCR8 dimer, the amino acids 461–463 from one monomer are capable of discriminating between UGU- and noUGU-pri-miRNAs. Our findings improve the current understanding of the substrate-recognizing mechanism of DGCR8 and implicate the roles of this recognition in differentiating miRNA expression in human cells. Thi Lieu Dang et al. study the mechanisms for the interaction between DGCR8 and the apical UGU motif of pri-miRNAs. They demonstrate that three amino acids in the Rhed domain of DGCR8 are critical to recognize and interact with UGU and to process pri-miRNAs. They further show amino acids 461–463 in one of the DGCR8 dimer are necessary to distinguish UGU- and noUGU-primiRNAs.
Collapse
Affiliation(s)
- Thi Lieu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Cong Truc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Minh Ngoc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Trung Duc Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Thuy Linh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Sheng Bao
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Shaohua Li
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
| |
Collapse
|
3
|
Fareh M, van Lopik J, Katechis I, Bronkhorst AW, Haagsma AC, van Rij RP, Joo C. Viral suppressors of RNAi employ a rapid screening mode to discriminate viral RNA from cellular small RNA. Nucleic Acids Res 2019; 46:3187-3197. [PMID: 29325071 PMCID: PMC5888754 DOI: 10.1093/nar/gkx1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is an indispensable mechanism for antiviral defense in insects, including mosquitoes that transmit human diseases. To escape this antiviral defense system, viruses encode suppressors of RNAi that prevent elimination of viral RNAs, and thus ensure efficient virus accumulation. Although the first animal Viral Suppressor of RNAi (VSR) was identified more than a decade ago, the molecular basis of RNAi suppression by these viral proteins remains unclear. Here, we developed a single-molecule fluorescence assay to investigate how VSRs inhibit the recognition of viral RNAs by Dcr-2, a key endoribonuclease enzyme in the RNAi pathway. Using VSRs from three insect RNA viruses (Culex Y virus, Drosophila X virus and Drosophila C virus), we reveal bimodal physical interactions between RNA molecules and VSRs. During initial interactions, these VSRs rapidly discriminate short RNA substrates from long dsRNA. VSRs engage nearly irreversible binding with long dsRNAs, thereby shielding it from recognition by Dcr-2. We propose that the length-dependent switch from rapid screening to irreversible binding reflects the main mechanism by which VSRs distinguish viral dsRNA from cellular RNA species such as microRNAs.
Collapse
Affiliation(s)
- Mohamed Fareh
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Jasper van Lopik
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Iason Katechis
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Anna C Haagsma
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| |
Collapse
|
4
|
Nguyen TA, Park J, Dang TL, Choi YG, Kim VN. Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Res 2019; 46:5726-5736. [PMID: 29750274 PMCID: PMC6009577 DOI: 10.1093/nar/gky248] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction.
Collapse
Affiliation(s)
- Tuan Anh Nguyen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Joha Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea.,Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Thi Lieu Dang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yeon-Gil Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea.,Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - V Narry Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea.,Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
5
|
Croop B, Han KY. Facile single-molecule pull-down assay for analysis of endogenous proteins. Phys Biol 2019; 16:035002. [PMID: 30769341 DOI: 10.1088/1478-3975/ab0792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The single-molecule pull-down (SiMPull) assay analyzes molecular complexes in physiological conditions from cell or tissue lysates. Currently the approach requires a lengthy sample preparation process, which has largely prevented the widespread adoption of this technique in bioanalysis. Here, we present a simplified SiMPull assay based upon dichlorodimethylsilane-Tween-20 passivation and F(ab) fragment labeling. Our passivation is a much shorter process than the standard polyethylene glycol passivation used in most single-molecule studies. The use of F(ab) fragments for indirect fluorescent labeling rather than divalent F(ab')2 or whole IgG antibodies allows for the pre-incubation of the detection antibodies, reducing the sample preparation time for single-molecule immunoprecipitation samples. We examine the applicability of our approach to recombinant proteins and endogenous proteins from mammalian cell lysates.
Collapse
Affiliation(s)
- Benjamin Croop
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, United States of America
| | | |
Collapse
|
6
|
Nguyen HM, Nguyen TD, Nguyen TL, Nguyen TA. Orientation of Human Microprocessor on Primary MicroRNAs. Biochemistry 2018; 58:189-198. [DOI: 10.1021/acs.biochem.8b00944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huong Minh Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trung Duc Nguyen
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong, China
| | - Thuy Linh Nguyen
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong, China
| |
Collapse
|
7
|
Wang X, Park S, Zeng L, Jain A, Ha T. Toward Single-Cell Single-Molecule Pull-Down. Biophys J 2018; 115:283-288. [PMID: 29804751 DOI: 10.1016/j.bpj.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
Single-molecule pull-down (SiMPull) can capture native protein complexes directly from cell lysates for analysis of complex composition and activities at the single-molecule level. Although SiMPull requires many fewer cells compared to conventional pull-down assays, all studies so far have been performed using lysates from many cells. In principle, extending SiMPull to the single-cell level will allow the investigation of cell-to-cell variations on the stoichiometry and activities of biomolecular complexes. We developed a protocol to lyse bacterial cells in situ and capture the released proteins on the imaging surface using antibodies. The use of lysozymes delayed the protein release until after the flow has ceased, and the use of a 10-μm spacer reduces the capture radius within which ∼70% of target proteins can be captured to below 30 μm. Proteins thus captured can be unambiguously assigned to the originating cell. The developed platform should be compatible with high-throughput protein analysis and protein-protein interaction analysis at the single-cell level through single-molecule imaging.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa; Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Seongjin Park
- Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lanying Zeng
- Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, Texas
| | - Ankur Jain
- Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Taekjip Ha
- Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Howard Hughes Medical Institute, Baltimore, Maryland; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
8
|
Kim K, Nguyen TD, Li S, Nguyen TA. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA (NEW YORK, N.Y.) 2018; 24:892-898. [PMID: 29615481 PMCID: PMC6004053 DOI: 10.1261/rna.065862.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/29/2018] [Indexed: 05/22/2023]
Abstract
The Microprocessor complex, consisting of an RNase III DROSHA and the DGCR8 dimer, cleaves primary microRNA transcripts (pri-miRNAs) to initiate microRNA (miRNA) maturation. Pri-miRNAs are stem-loop RNAs, and ∼79% of them contain at least one of the three major and conserved RNA motifs, UG, UGU, and CNNC. We recently demonstrated that the basal UG and apical UGU motifs of pri-miRNAs interact with DROSHA and DGCR8, respectively. They help orient Microprocessor on pri-miRNA in a proper direction in which DROSHA and DGCR8 localize to the basal and apical pri-miRNA junctions, respectively. In addition, CNNC, located at ∼17 nucleotides (nt) from the Microprocessor cleavage site, interacts with SRSF3 (SRp20) to stimulate Microprocessor to process pri-miRNAs. The mechanism underlying this stimulation, however, is unknown. In this study, we discovered that SRSF3 recruits DROSHA to the basal junction in a CNNC-dependent manner, thereby enhancing Microprocessor activity. Furthermore, by generating various pri-miRNA substrates containing CNNC at different locations, we demonstrated that such stimulation only occurs when CNNC is located at ∼17 nt from the Microprocessor cleavage site. Our findings reveal the molecular mechanism of SRSF3 in pri-miRNA processing and support the previously proposed explanation for the highly conserved position of CNNC in SRSF3-enhanced pri-miRNA processing.
Collapse
Affiliation(s)
- Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Trung Duc Nguyen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Shaohua Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Fareh M, Joo C. Probing RNA-Protein Interactions with Single-Molecule Pull-Down Assays. Methods Mol Biol 2018; 1814:267-285. [PMID: 29956238 DOI: 10.1007/978-1-4939-8591-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent advances in single-molecule techniques allow for dynamic observations of the interactions between various protein assemblies and RNA molecules with high spatiotemporal resolution. However, it remains challenging to obtain functional eukaryotic protein complexes and cost-effective fluorescently labeled RNAs to study their interactions at the single-molecule level. Here, we describe protocols combining single-molecule fluorescence with various protein complex pull-down techniques to determine the function of RNA-interacting protein complexes of interest. We provide step-by-step guidance for using novel single-molecule techniques including RNA labeling, protein complexes purification, and single-molecule imaging. As a proof-of-concept of the utility of our single-molecule approaches, we show how human Dicer and its cofactor TRBP orchestrate the biogenesis of microRNA in real time. These single-molecule pull-down and fluorescence assays provide sub-second time resolution and can be applied to various ribonucleoprotein complexes that are essential for cellular processes.
Collapse
Affiliation(s)
- Mohamed Fareh
- Department of BioNanoScience, Kavli Institute of NanoScience, Delft University of Technology, Building 58, vander Maasweg 9, Delft, 2629 HZ, The Netherlands.
- Cancer Immunology Program, Peter MacCallum Cancer Center, East Melbourne, Victoria,Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of NanoScience, Delft University of Technology, Building 58, vander Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
10
|
Xue H, Bei Y, Zhan Z, Chen X, Xu X, Fu YV. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA-Protein Interactions at the Single-Molecule Level. Front Microbiol 2017; 8:2062. [PMID: 29123507 PMCID: PMC5662892 DOI: 10.3389/fmicb.2017.02062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots) have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA-Avi and biotin-streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA) and origin recognition complex (ORC) as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.
Collapse
Affiliation(s)
- Huijun Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Bei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuqiang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu V. Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 2016; 7:13694. [PMID: 27934859 PMCID: PMC5155159 DOI: 10.1038/ncomms13694] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/03/2023] Open
Abstract
The RNA-binding protein TRBP is a central component of the Dicer complex. Despite a decade of biochemical and structural studies, the essential functionality of TRBP in microRNA (miRNA) biogenesis remains unknown. Here we show that TRBP is an integral cofactor for time-efficient Dicer processing in RNA-crowded environments. We competed for Dicer processing of pre-miRNA with a large amount of cellular RNA species and found that Dicer-TRBP, but not Dicer alone, remains resilient. To apprehend the mechanism of this substrate selectivity, we use single-molecule fluorescence. The real-time observation reveals that TRBP acts as a gatekeeper, precluding Dicer from engaging with pre-miRNA-like substrates. TRBP acquires the selectivity using the PAZ domain of Dicer, whereas Dicer moderates the RNA-binding affinity of TRBP for fast turnover. This coordinated action between TRBP and Dicer accomplishes an efficient way of discarding pre-miRNA-like substrates. The RNA binding protein TRBP is a component of the Dicer complex but its role in microRNA biogenesis remains poorly understood. Here the authors use a crowded RNA environment and single-molecule imaging to show that TRBP acts as a gatekeeper to prevent Dicer engagement with pre miRNA-like substrates.
Collapse
|