1
|
Kumar A, Goel S, Goel S. ECLStat: A robust machine learning based visual imaging tool for electrochemiluminescence biosensing. Comput Biol Med 2024; 185:109546. [PMID: 39657443 DOI: 10.1016/j.compbiomed.2024.109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Visual electrochemiluminescence (ECL) has emerged as a prominent diagnostic method for accurately quantifying various disease markers even at point of care setting with high sensitivity and accuracy. It does not employ complicated instruments such as potentiostat and expensive imaging microscopy for quantifying trace amounts of molecules. The ECL system offers significant advantages over other detection processes, such as high sensitivity, selectivity, rapid response, multiplexing, and miniaturization capabilities, making it well-suited for future commercialization. However, the current ECL system lacks standardization and accuracy in the resulting output data due to the manual measurement of ECL signal response using open-source image processing software, which often limits the efficiency of the ECL process in real-time applications. To address the shortcomings of the existing approach and advance the ECL detection process, a fully automated machine learning-assisted standalone graphical user interface (GUI) application was developed for dedicated measurement and management of ECL-emitted light signals. The working performance of the developed program is evaluated for its real-time utility by detecting hydrogen peroxide, which is an important reactive oxygen species, and glucose, which is a significant biomarker of diabetes. The obtained results show the detection limit of 0.024 mM and 0.035 mM for H2O2 and glucose, with a quantification limit of 0.074 mM and 0.10 mM, respectively. The ultimate objective of the developed application is to improve accuracy by enabling users to apply machine learning algorithms to raw image data seamlessly without deeply comprehending the underlying computational processes and establish a standard protocol for ECL signal measurements. Moreover, the developed application can be used in other optical detection approaches such as chemiluminescence, colorimetric, and fluorescence.
Collapse
Affiliation(s)
- Abhishek Kumar
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India; Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Shashwat Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India; Oakridge International School, Bachupally, Hyderabad, Telangana 500043, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India; Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India.
| |
Collapse
|
2
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Rafee RS, Pouretedal HR, Damiri S. Quantitative analysis of CL-20 explosive by smartphone-based chemiluminescence method. LUMINESCENCE 2024; 39:e4775. [PMID: 38745525 DOI: 10.1002/bio.4775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol-NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence-time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0-240.0 and 1.1 mg⋅L-1, respectively, in optimized concentrations 1.5 × 10-3 mol⋅L-1 luminol and 1.0 × 10-2 mol⋅L-1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl- ions is due to quench of chemiluminescence reaction of the luminol-NaClO.
Collapse
Affiliation(s)
| | | | - Sajjad Damiri
- Faculty of Science, Malek-Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Wang X, Fu J, Jiang C, Liao X, Chen Y, Jia T, Chen G, Feng X. Specific and Long-Term Luminescent Monitoring of Hydrogen Peroxide in Tumor Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210948. [PMID: 36848628 DOI: 10.1002/adma.202210948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Indexed: 05/19/2023]
Abstract
Luminescent monitoring of endogenous hydrogen peroxide (H2 O2 ) in tumors is conducive to understanding metastasis and developing novel therapeutics. The clinical transformation is obstructed by the limited light penetration depth, toxicity of nano-probes, and lack of long-term monitoring modes of up to days or months. New monitoring modes are introduced via specific probes and implantable devices, which can achieve real-time monitoring with a readout frequency of 0.01 s or long-term monitoring for months to years. Near-infrared dye-sensitized upconversion nanoparticles (UCNPs) are fabricated as the luminescent probes, and the specificity to reactive oxygen species is subtly regulated by the self-assembled monolayers on the surfaces of UCNPs. Combined with the passive implanted system, a 20-day monitoring of H2 O2 in the rat model of ovarian cancer with peritoneal metastasis is achieved, in which the limited light penetration depth and toxicity of nano-probes are circumvented. The developed monitoring modes show great potential in accelerating the clinical transformation of nano-probes and biochemical detection methods.
Collapse
Affiliation(s)
- Xindong Wang
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314006, P. R. China
| | - Ji Fu
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Chang Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xiaohui Liao
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Yiju Chen
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Tao Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xue Feng
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
6
|
Kagalwala HN, Lippert AR. Energy Transfer Chemiluminescent Spiroadamantane 1,2‐Dioxetane Probes for Bioanalyte Detection and Imaging. Angew Chem Int Ed Engl 2022; 61:e202210057. [DOI: 10.1002/anie.202210057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Husain N. Kagalwala
- Department of Chemistry Southern Methodist University Dallas TX 75275-0314 USA
| | | |
Collapse
|
7
|
Kagalwala HN, Lippert A. Energy Transfer Chemiluminescent Spiroadamantane 1,2‐Dioxetane Probes for Bioanalyte Detection and Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Alexander Lippert
- Southern Methodist University Chemistry 3215 Daniel Ave. 75275-0314 Dallas UNITED STATES
| |
Collapse
|
8
|
Fernandez Bats I, Carinelli S, Gonzales Mora JL, Villalonga R, Salazar P. Nickel oxide nanoparticles/carbon nanotubes nanocomposite for non‐enzymatic determination of hydrogen peroxide. ELECTROANAL 2022. [DOI: 10.1002/elan.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Pham ATT, Wallace A, Zhang X, Tohl D, Fu H, Chuah C, Reynolds KJ, Ramsey C, Tang Y. Optical-Based Biosensors and Their Portable Healthcare Devices for Detecting and Monitoring Biomarkers in Body Fluids. Diagnostics (Basel) 2021; 11:diagnostics11071285. [PMID: 34359368 PMCID: PMC8307945 DOI: 10.3390/diagnostics11071285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The detection and monitoring of biomarkers in body fluids has been used to improve human healthcare activities for decades. In recent years, researchers have focused their attention on applying the point-of-care (POC) strategies into biomarker detection. The evolution of mobile technologies has allowed researchers to develop numerous portable medical devices that aim to deliver comparable results to clinical measurements. Among these, optical-based detection methods have been considered as one of the common and efficient ways to detect and monitor the presence of biomarkers in bodily fluids, and emerging aggregation-induced emission luminogens (AIEgens) with their distinct features are merging with portable medical devices. In this review, the detection methodologies that use optical measurements in the POC systems for the detection and monitoring of biomarkers in bodily fluids are compared, including colorimetry, fluorescence and chemiluminescence measurements. The current portable technologies, with or without the use of smartphones in device development, that are combined with optical biosensors for the detection and monitoring of biomarkers in body fluids, are also investigated. The review also discusses novel AIEgens used in the portable systems for the detection and monitoring of biomarkers in body fluid. Finally, the potential of future developments and the use of optical detection-based portable devices in healthcare activities are explored.
Collapse
Affiliation(s)
- Anh Tran Tam Pham
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Angus Wallace
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Xinyi Zhang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Damian Tohl
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Hao Fu
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Clarence Chuah
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Karen J. Reynolds
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Carolyn Ramsey
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Youhong Tang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8201-2138
| |
Collapse
|
10
|
Haris U, Kagalwala HN, Kim YL, Lippert AR. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and In Vivo Imaging. Acc Chem Res 2021; 54:2844-2857. [PMID: 34110136 DOI: 10.1021/acs.accounts.1c00185] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemiluminescence is a fascinating phenomenon that evolved in nature and has been harnessed by chemists in diverse ways to improve life. This Account tells the story of our research group's efforts to formulate and manifest spiroadamantane 1,2-dioxetanes with triggerable chemiluminescence for imaging and monitoring important reactive analytes in living cells, animals, and human clinical samples. Analytes like reactive sulfur, oxygen and nitrogen species, as well as pH and hypoxia can be indicators of cellular function or dysfunction and are often implicated in the causes and effects of disease. We begin with a foundation in binding-based and activity-based fluorescence imaging that has provided transformative tools for understanding biological systems. The intense light sources required for fluorescence excitation, however, introduce autofluorescence and light scattering that reduces sensitivity and complicates in vivo imaging. Our work and the work of our collaborators were the first to demonstrate that spiroadamantane 1,2-dioxetanes had sufficient brightness and biological compatibility for in vivo imaging of enzyme activity and reactive analytes like hydrogen sulfide (H2S) inside of living mice. This launched an era of renewed interest in 1,2-dioxetanes that has resulted in a plethora of new chemiluminescence imaging agents developed by groups around the world. Our own research group focused its efforts on reactive sulfur, oxygen, and nitrogen species, pH, and hypoxia, resulting in a large family of bright chemiluminescent 1,2-dioxetanes validated for cell monitoring and in vivo imaging. These chemiluminescent probes feature low background and high sensitivity that have been proven quite useful for studying signaling, for example, the generation of peroxynitrite (ONOO-) in cellular models of immune function and phagocytosis. This high sensitivity has also enabled real-time quantitative reporting of oxygen-dependent enzyme activity and hypoxia in living cells and tumor xenograft models. We reported some of the first ratiometric chemiluminescent 1,2-dioxetane systems for imaging pH and have introduced a powerful kinetics-based approach for quantification of reactive species like azanone (nitroxyl, HNO) and enzyme activity in living cells. These tools have been applied to untangle complex signaling pathways of peroxynitrite production in radiation therapy and as substrates in a split esterase system to provide an enzyme/substrate pair to rival luciferase/luciferin. Furthermore, we have pushed chemiluminescence toward commercialization and clinical translation by demonstrating the ability to monitor airway hydrogen peroxide in the exhaled breath of asthma patients using transiently produced chemiluminescent 1,2-dioxetanedione intermediates. This body of work shows the powerful possibilities that can emerge when working at the interface of light and chemistry, and we hope that it will inspire future scientists to seek out ever brighter and more illuminating ideas.
Collapse
Affiliation(s)
- Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Husain N. Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
11
|
Połomska J, Bar K, Sozańska B. Exhaled Breath Condensate-A Non-Invasive Approach for Diagnostic Methods in Asthma. J Clin Med 2021; 10:jcm10122697. [PMID: 34207327 PMCID: PMC8235112 DOI: 10.3390/jcm10122697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of asthma has been intensively studied, but its underlying mechanisms such as airway inflammation, control of airway tone, and bronchial reactivity are still not completely explained. There is an urgent need to implement novel, non-invasive diagnostic tools that can help to investigate local airway inflammation and connect the molecular pathways with the broad spectrum of clinical manifestations of asthma. The new biomarkers of different asthma endotypes could be used to confirm diagnosis, predict asthma exacerbations, or evaluate treatment response. In this paper, we briefly describe the characteristics of exhaled breath condensate (EBC) that is considered to be an interesting source of biomarkers of lung disorders. We look at the composition of EBC, some aspects of the collection procedure, the proposed biomarkers for asthma, and its clinical implications. We also indicate the limitations of the method and potential strategies to standardize the procedure of EBC collection and analytical methods.
Collapse
|
12
|
Alawsi T, Mattia GP, Al-Bawi Z, Beraldi R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
14
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Quimbar ME, Davis SQ, Al-Farra ST, Hayes A, Jovic V, Masuda M, Lippert AR. Chemiluminescent Measurement of Hydrogen Peroxide in the Exhaled Breath Condensate of Healthy and Asthmatic Adults. Anal Chem 2020; 92:14594-14600. [PMID: 33064450 DOI: 10.1021/acs.analchem.0c02929] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species are centrally involved in the pathophysiology of airway diseases such as asthma and chronic obstructive pulmonary disease. This study reports the development of a chemiluminescence assay and a device for measuring hydrogen peroxide in the exhaled breath condensate of asthma patients and healthy participants. A stand-alone photon detection device was constructed for use with an optimized chemiluminescence assay. Calibrations using a catalase control to scavenge residual hydrogen peroxide in calibrant solutions provided analytically sensitive and specific measurements. We evaluated exhaled breath condensate hydrogen peroxide in 60 patients (ages 20-83; 30 healthy patients and 30 asthma patients) recruited from the John Peter Smith Hospital Network. The exhaled breath condensate hydrogen peroxide concentrations trended toward higher values in asthma patients compared to healthy participants (mean 142.5 vs 115.5 nM; p = 0.32). Asthma patients who had not used an albuterol rescue inhaler in the past week were compared to those who had and showed a trend toward higher hydrogen peroxide levels (mean 172.8 vs 115.9 nM; p = 0.25), and these patients also trended toward higher hydrogen peroxide than healthy participants (mean 172.8 vs 115.5 nM; p = 0.14). This pilot study demonstrates the ability of the newly developed assay and device to measure exhaled breath condensate hydrogen peroxide in asthma patients and healthy participants. The trends observed in this study are in agreement with previous literature and warrant further investigation of using this system to measure exhaled breath condensate hydrogen peroxide for monitoring oxidative stress in asthma.
Collapse
Affiliation(s)
| | - Steven Q Davis
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Sherif T Al-Farra
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Amanda Hayes
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Valentina Jovic
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Maximillian Masuda
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Alexander R Lippert
- BioLum Sciences LLC, Dallas, Texas 75206, United States.,Department of Chemistry and Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
16
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
17
|
Matinrad F, Kompany-Zareh M, Omidikia N, Dadashi M. Systematic investigation of the measurement error structure in a smartphone-based spectrophotometer. Anal Chim Acta 2020; 1129:98-107. [PMID: 32891395 DOI: 10.1016/j.aca.2020.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
Smartphones are state-of-the-art devices with several interesting features which make them promising for analytical purposes. After modification to a spectrophotometer (smart spectrophotometer), they can be utilized for the quantitative or qualitative applications. Although smartphones have widely been applied for sensing∖biosensing purposes, the error structure/type of their outputs remained unexplored. Error structure information values the objects/channels in a given data set and variables have the same importance when the noise has identical independent distribution (i.i.d). Otherwise, error structure weights them for further data analysis. In this contribution, a smartphone-based spectrophotometer was constructed integrating simple optical elements-a tungsten lamp as source and a piece of digital versatile disc (DVD) as a reflecting diffraction grating to investigate the error sources of the smartphone-spectrophotometer. For this purpose, error covariance matrices (ECMs) were calculated using a series of replication capturing error information. Afterwards, PCA and MCR-ALS were employed for the decomposition of the ECMs and resolved profiles were translated to the error types. Finally, proportional error as a heteroscedastic noise was highlighted as the most important source of variation in the error structure of the smartphone-based spectrophotometer.
Collapse
Affiliation(s)
- Fereshteh Matinrad
- Chemistry Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mohsen Kompany-Zareh
- Chemistry Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada.
| | - Nematollah Omidikia
- University of Sistan and Baluchestan, Department of Chemistry, Faculty of Science, P.O. Box 98135-674, Zahedan, Iran
| | - Mahsa Dadashi
- Chemistry Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
18
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
19
|
Li Y, Ma X, Wang W, Yan S, Liu F, Chu K, Xu G, Smith ZJ. Improving the limit of detection in portable luminescent assay readers through smart optical design. JOURNAL OF BIOPHOTONICS 2020; 13:e201900241. [PMID: 31602762 DOI: 10.1002/jbio.201900241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Critical biomarkers of disease are increasingly being detected by point-of-care assays. Chemiluminescence (CL) and electrochemiluminescence (ECL) are often used in such assays due to their convenience and that they do not require light sources or other components that could complicate or add cost to the system. Reports of these assays often include readers built on a cellphone platform or constructed from low-cost components. However, the impact the optical design has on the limit of detection (LOD) in these systems remains unexamined. Here, we report a theoretical rubric to evaluate different optical designs in terms of maximizing the use of photons emitted from a CL or ECL assay to improve the LOD. We demonstrate that the majority of cellphone designs reported in the literature are not optimized, in part due to misunderstandings of the optical tradeoffs in collection systems, and in part due to limitations imposed on the designs arising from the use of a mobile phone with a very small lens aperture. Based on the theoretical rubric, we design a new portable reader built using off-the-shelf condenser optics, and demonstrate a nearly 10× performance enhancement compared to prior reports on an ECL assays running on a portable chip.
Collapse
Affiliation(s)
- Yaning Li
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangui Ma
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Wenhe Wang
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Shaojie Yan
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangshuo Liu
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Kaiqin Chu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Guobao Xu
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Zachary J Smith
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
20
|
Gnaim S, Scomparin A, Eldar-Boock A, Bauer CR, Satchi-Fainaro R, Shabat D. Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging. Chem Sci 2019; 10:2945-2955. [PMID: 30996873 PMCID: PMC6427943 DOI: 10.1039/c8sc05174g] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Chemiluminescence offers advantages over fluorescence for bioimaging, since an external light source is unnecessary with chemiluminescent agents. This report demonstrates the first encapsulation of chemiluminescence phenoxy-adamantyl-1,2-dioxetane probes with trimethyl β-cyclodextrin. Clear proof for the formation of a 1 : 1 host-guest complex between the adamantyl-1,2-dioxetane probe and trimethyl β-cyclodextrin was provided by mass spectroscopy and NMR experiments. The calculated association constant of this host-guest system, 253 M-1, indicates the formation of a stable inclusion complex. The inclusion complex significantly amplified the light emission intensity relative to the noncomplexed probe under physiological conditions. Complexation of adamantyl-dioxetane with fluorogenic dye-tethered cyclodextrin resulted in light emission through energy transfer to a wavelength that corresponds to the fluorescent emission of the conjugated dye. Remarkably, the light emission intensity of this inclusion complex was approximately 1500-fold higher than that of the non-complexed adamantyl-dioxetane guest. We present the first demonstration of microscopic cell images obtained using a chemiluminescence supramolecular dioxetane probe and demonstrate the utility of these supramolecular complexes by imaging of enzymatic activity and bio-analytes in vitro and in vivo. We anticipate that the described chemiluminescence supramolecular dioxetane probes will find use in various biological applications.
Collapse
Affiliation(s)
- Samer Gnaim
- School of Chemistry , Raymond and Beverly Sackler Faculty of Exact Sciences , Israel .
| | - Anna Scomparin
- Department of Physiology and Pharmacology , Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
- Department of Drug Science and Technology , University of Turin , Via P. Giuria 9 , 10125 Turin , Italy
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology , Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology , Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Doron Shabat
- School of Chemistry , Raymond and Beverly Sackler Faculty of Exact Sciences , Israel .
| |
Collapse
|
21
|
A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. Talanta 2019; 194:452-460. [DOI: 10.1016/j.talanta.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
|
22
|
An W, Ryan LS, Reeves AG, Bruemmer KJ, Mouhaffel L, Gerberich JL, Winters A, Mason RP, Lippert AR. A Chemiluminescent Probe for HNO Quantification and Real-Time Monitoring in Living Cells. Angew Chem Int Ed Engl 2019; 58:1361-1365. [PMID: 30476360 PMCID: PMC6396311 DOI: 10.1002/anie.201811257] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Indexed: 01/28/2023]
Abstract
Azanone (HNO) is a reactive nitrogen species with pronounced biological activity and high therapeutic potential for cardiovascular dysfunction. A critical barrier to understanding the biology of HNO and furthering clinical development is the quantification and real-time monitoring of its delivery in living systems. Herein, we describe the design and synthesis of the first chemiluminescent probe for HNO, HNOCL-1, which can detect HNO generated from concentrations of Angeli's salt as low as 138 nm with high selectivity based on the reaction with a phosphine group to form a self-cleavable azaylide intermediate. We have capitalized on this high sensitivity to develop a generalizable kinetics-based approach, which provides real-time quantitative measurements of HNO concentration at the picomolar level. HNOCL-1 can monitor dynamics of HNO delivery in living cells and tissues, demonstrating the versatility of this method for tracking HNO in living systems.
Collapse
Affiliation(s)
- Weiwei An
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Lucas S Ryan
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Audrey G Reeves
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Kevin J Bruemmer
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Lyn Mouhaffel
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| | - Jeni L Gerberich
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390-9058, USA
| | - Alexander Winters
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390-9058, USA
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390-9058, USA
| | - Alexander R Lippert
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and, Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, TX, 75205-0314, USA
| |
Collapse
|
23
|
An W, Ryan LS, Reeves AG, Bruemmer KJ, Mouhaffel L, Gerberich JL, Winters A, Mason RP, Lippert AR. A Chemiluminescent Probe for HNO Quantification and Real‐Time Monitoring in Living Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811257] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weiwei An
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Lucas S. Ryan
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Audrey G. Reeves
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Kevin J. Bruemmer
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Lyn Mouhaffel
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| | - Jeni L. Gerberich
- Prognostic Imaging Research Laboratory (PIRL) Pre-clinical Imaging Section Department of Radiology UT Southwestern Medical Center Dallas TX 75390-9058 USA
| | - Alexander Winters
- Prognostic Imaging Research Laboratory (PIRL) Pre-clinical Imaging Section Department of Radiology UT Southwestern Medical Center Dallas TX 75390-9058 USA
| | - Ralph P. Mason
- Prognostic Imaging Research Laboratory (PIRL) Pre-clinical Imaging Section Department of Radiology UT Southwestern Medical Center Dallas TX 75390-9058 USA
| | - Alexander R. Lippert
- Department of Chemistry Center for Drug Discovery, Design, and Delivery (CD4), and Center for Global Health Impact (CGHI) Southern Methodist University Dallas TX 75205-0314 USA
| |
Collapse
|
24
|
Hossain MA, Canning J, Yu Z, Ast S, Rutledge PJ, Wong JKH, Jamalipour A, Crossley MJ. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter. Analyst 2018; 142:1953-1961. [PMID: 28474014 DOI: 10.1039/c7an00535k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn2+ is observed to accelerate with an increasing rate constant, k = 1.94 min-1 at T = 15 °C and k = 3.64 min-1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.
Collapse
Affiliation(s)
- Md Arafat Hossain
- interdisciplinary Photonics Laboratories, School of Electrical and Data Engineering, University of Technology, Sydney (UTS), NSW 2007. Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Moonrungsee N, Peamaroon N, Boonmee A, Suwancharoen S, Jakmunee J. Evaluation of tyrosinase inhibitory activity in Salak (Salacca zalacca) extracts using the digital image-based colorimetric method. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0528-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Abstract
Chemiluminescence imaging offers a low background and high sensitivity approach to imaging analytes in living cells and animals. Intensity-based measurements have been developed, but require careful consideration of kinetics, probe localization, and fluctuations in quantum yield, all of which complicate quantification. Here, we report a ratiometric strategy for quantitative chemiluminescence imaging of pH. The strategy relies on an energy transfer cascade of chemiluminescence emission from a spiroadamantane 1,2-dioxetane to a ratiometric pH indicator via fluorescent dyes in Enhancer solutions. Monitoring the pH-dependent changes in chemiluminescence emission at multiple wavelengths enables ratiometric imaging and quantification of pH independent from variations due to kinetics and probe concentration.
Collapse
Affiliation(s)
- Weiwei An
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | | | | |
Collapse
|
27
|
Cao J, An W, Reeves AG, Lippert AR. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction. Chem Sci 2018; 9:2552-2558. [PMID: 29732134 PMCID: PMC5914148 DOI: 10.1039/c7sc05087a] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023] Open
Abstract
Peroxynitrite is a damaging agent of oxidative stress that has been difficult to monitor in living cells. Here, an isatin-based chemiluminescent probe for peroxynitrite is reported.
Peroxynitrite (ONOO–) is a highly reactive oxygen species which has been recognized as an endogenous mediator of physiological activities like the immune response as well as a damaging agent of oxidative stress under pathological conditions. While its biological importance is becoming clearer, many of the details of its production and mechanism of action remain elusive due to the lack of available selective and sensitive detection methods. Herein, we report the development, characterization, and biological applications of a reaction-based chemiluminescent probe for ONOO– detection, termed as PNCL. PNCL reacts with ONOO–via an isatin moiety through an oxidative decarbonylation reaction to initiate light emission that can be observed instantly with high selectivity against other reactive sulphur, oxygen, and nitrogen species. Detailed studies were performed to study the reaction between isatin and ONOO–, which confirm selectivity for ONOO– over NO2˙. PNCL has been applied for ONOO– detection in aqueous solution and live cells. Moreover, PNCL can be employed to detect cellular ONOO– generated in macrophages stimulated to mount an immune response with lipopolysaccharide (LPS). The sensitivity granted by chemiluminescent detection together with the specificity of the oxidative decarbonylation reaction provides a useful tool to explore ONOO– chemistry and biology.
Collapse
Affiliation(s)
- Jian Cao
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA . .,Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - Weiwei An
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA . .,Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - Audrey G Reeves
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
| | - Alexander R Lippert
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA . .,Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA.,Center for Global Health Impact (CGHI) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| |
Collapse
|
28
|
Roda A, Calabretta MM, Calabria D, Caliceti C, Cevenini L, Lopreside A, Zangheri M. Smartphone-Based Biosensors for Bioanalytics. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Affiliation(s)
- Jesús Espada
- Ramón y Cajal Institute for Biomedical Research (IRYCIS), Ramón y Cajal University Hospital, Colmenar Viejo Rd. Km. 9, 100, 28034 Madrid, Spain; Bionanotechnology Laboratory, Bernardo O'Higgins University, General Gana 1780, 8370854 Santiago, Chile
| |
Collapse
|