1
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. Caenorhabditis elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. eLife 2024; 13:RP93979. [PMID: 38747717 PMCID: PMC11095941 DOI: 10.7554/elife.93979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
- Claudia D Consalvo
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Helen M Donelick
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Debra M Eckert
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Peter S Shen
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
2
|
Camino LP, Dutta A, Barroso S, Pérez-Calero C, Katz JN, García-Rubio M, Sung P, Gómez-González B, Aguilera A. DICER ribonuclease removes harmful R-loops. Mol Cell 2023; 83:3707-3719.e5. [PMID: 37827159 PMCID: PMC11034902 DOI: 10.1016/j.molcel.2023.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/08/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.
Collapse
Affiliation(s)
- Lola P Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Arijit Dutta
- Greehey Children's Cancer Research Institute, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Jeffrey N Katz
- Greehey Children's Cancer Research Institute, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Patrick Sung
- Greehey Children's Cancer Research Institute, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
3
|
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife 2023; 12:e85120. [PMID: 37068011 PMCID: PMC10159624 DOI: 10.7554/elife.85120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis. Biochemical assays indicated ancient Dicer possessed ATPase function, that like extant invertebrate Dicers, is stimulated by dsRNA. Analyses revealed that dsRNA stimulates ATPase activity by increasing ATP affinity, reflected in Michaelis constants. Deuterostome Dicer-1 ancestor, while exhibiting lower dsRNA affinity, retained some ATPase activity; importantly, ATPase activity was undetectable in the vertebrate Dicer-1 ancestor, which had even lower dsRNA affinity. Reverting residues in the ATP hydrolysis pocket was insufficient to rescue hydrolysis, but additional substitutions distant from the pocket rescued vertebrate Dicer-1's ATPase function. Our work suggests Dicer lost ATPase function in the vertebrate ancestor due to loss of ATP affinity, involving motifs distant from the active site, important for coupling dsRNA binding to the active conformation. By competing with Dicer for viral dsRNA, RIG-I-like receptors important for interferon signaling may have allowed or actively caused loss of ATPase function.
Collapse
Affiliation(s)
| | | | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of FloridaGainesvilleUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
4
|
Singh RK, Jonely M, Leslie E, Rejali NA, Noriega R, Bass BL. Transient kinetic studies of the antiviral Drosophila Dicer-2 reveal roles of ATP in self-nonself discrimination. eLife 2021; 10:65810. [PMID: 33787495 PMCID: PMC8079148 DOI: 10.7554/elife.65810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
Some RIG-I-like receptors (RLRs) discriminate viral and cellular dsRNA by their termini, and Drosophila melanogaster Dicer-2 (dmDcr-2) differentially processes dsRNA with blunt or 2 nucleotide 3’-overhanging termini. We investigated the transient kinetic mechanism of the dmDcr-2 reaction using a rapid reaction stopped-flow technique and time-resolved fluorescence spectroscopy. Indeed, we found that ATP binding to dmDcr-2’s helicase domain impacts association and dissociation kinetics of dsRNA in a termini-dependent manner, revealing termini-dependent discrimination of dsRNA on a biologically relevant time scale (seconds). ATP hydrolysis promotes transient unwinding of dsRNA termini followed by slow rewinding, and directional translocation of the enzyme to the cleavage site. Time-resolved fluorescence anisotropy reveals a nucleotide-dependent modulation in conformational fluctuations (nanoseconds) of the helicase and Platform–PAZ domains that is correlated with termini-dependent dsRNA cleavage. Our study offers a kinetic framework for comparison to other Dicers, as well as all members of the RLRs involved in innate immunity.
Collapse
Affiliation(s)
- Raushan K Singh
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - McKenzie Jonely
- Department of Chemistry, University of Utah, Salt Lake City, United States
| | - Evan Leslie
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Nick A Rejali
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, United States
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
5
|
Donelick HM, Talide L, Bellet M, Aruscavage PJ, Lauret E, Aguiar ERGR, Marques JT, Meignin C, Bass BL. In vitro studies provide insight into effects of Dicer-2 helicase mutations in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2020; 26:1847-1861. [PMID: 32843367 PMCID: PMC7668257 DOI: 10.1261/rna.077289.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 05/03/2023]
Abstract
In vitro, Drosophila melanogaster Dicer-2 (Dcr-2) uses its helicase domain to initiate processing of dsRNA with blunt (BLT) termini, and its Platform•PAZ domain to initiate processing of dsRNA with 3' overhangs (ovrs). To understand the relationship of these in vitro observations to roles of Dcr-2 in vivo, we compared in vitro effects of two helicase mutations to their impact on production of endogenous and viral siRNAs in flies. Consistent with the importance of the helicase domain in processing BLT dsRNA, both point mutations eliminated processing of BLT, but not 3'ovr, dsRNA in vitro. However, the mutations had different effects in vivo. A point mutation in the Walker A motif of the Hel1 subdomain, G31R, largely eliminated production of siRNAs in vivo, while F225G, located in the Hel2 subdomain, showed reduced levels of endogenous siRNAs, but did not significantly affect virus-derived siRNAs. In vitro assays monitoring dsRNA cleavage, dsRNA binding, ATP hydrolysis, and binding of the accessory factor Loquacious-PD provided insight into the different effects of the mutations on processing of different sources of dsRNA in flies. Our in vitro studies suggest effects of the mutations in vivo relate to their effects on ATPase activity, dsRNA binding, and interactions with Loquacious-PD. Our studies emphasize the importance of future studies to characterize dsRNA termini as they exist in Drosophila and other animals.
Collapse
Affiliation(s)
- Helen M Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Loïc Talide
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Matthieu Bellet
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Emilie Lauret
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Eric R G R Aguiar
- Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Joao T Marques
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Bouvette J, Korkut DN, Fouillen A, Amellah S, Nanci A, Durocher Y, Omichinski JG, Legault P. High-yield production of human Dicer by transfection of human HEK293-EBNA1 cells grown in suspension. BMC Biotechnol 2018; 18:76. [PMID: 30522464 PMCID: PMC6282390 DOI: 10.1186/s12896-018-0485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure. Results Transfection conditions were first optimized to achieve expression levels between 10 and 18 mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4–9 mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5 nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2 ± 0.5 min− 1) and KM (1.2 ± 0.3 μM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption. Conclusions The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway. Electronic supplementary material The online version of this article (10.1186/s12896-018-0485-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Bouvette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Dursun Nizam Korkut
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Aurélien Fouillen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Soumiya Amellah
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Antonio Nanci
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Yves Durocher
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.
| |
Collapse
|
7
|
Sinha NK, Iwasa J, Shen PS, Bass BL. Dicer uses distinct modules for recognizing dsRNA termini. Science 2018; 359:329-334. [PMID: 29269422 PMCID: PMC6154394 DOI: 10.1126/science.aaq0921] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022]
Abstract
Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.
Collapse
Affiliation(s)
- Niladri K. Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Peter S. Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
8
|
Lipshitz HD, Claycomb JM, Smibert CA. Post-transcriptional regulation of gene expression. Methods 2017; 126:1-2. [DOI: 10.1016/j.ymeth.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|