1
|
Rossi V, Nielson SE, Ortolano A, Lonardo I, Haroldsen E, Comer D, Price OM, Wallace N, Hevel JM. Oligomerization of protein arginine methyltransferase 1 and its effect on methyltransferase activity and substrate specificity. Protein Sci 2024; 33:e5118. [PMID: 39022984 PMCID: PMC11255602 DOI: 10.1002/pro.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
Collapse
Affiliation(s)
- Vincent Rossi
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Sarah E. Nielson
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Ariana Ortolano
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Isabella Lonardo
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Emeline Haroldsen
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Drake Comer
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Owen M Price
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | | | - Joan M. Hevel
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| |
Collapse
|
2
|
Tong C, Chang X, Qu F, Bian J, Wang J, Li Z, Xu X. Overview of the development of protein arginine methyltransferase modulators: Achievements and future directions. Eur J Med Chem 2024; 267:116212. [PMID: 38359536 DOI: 10.1016/j.ejmech.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Protein methylation is a post-translational modification (PTM) that organisms undergo. This process is considered a part of epigenetics research. In recent years, there has been an increasing interest in protein methylation, particularly histone methylation, as research has advanced. Methylation of histones is a dynamic process that is subject to fine control by histone methyltransferases and demethylases. In addition, many non-histone proteins also undergo methylation, and these modifications collectively regulate physiological phenomena, including RNA transcription, translation, signal transduction, DNA damage response, and cell cycle. Protein arginine methylation is a crucial aspect of protein methylation, which plays a significant role in regulating the cell cycle and repairing DNA. It is also linked to various diseases. Therefore, protein arginine methyltransferases (PRMTs) that are involved in this process have gained considerable attention as a potential therapeutic target for treating diseases. Several PRMT inhibitors are in phase I/II clinical trials. This paper aims to introduce the structure, biochemical functions, and bioactivity assays of PRMTs. Additionally, we will review the structure-function of currently popular PRMT inhibitors. Through the analysis of various data on known PRMT inhibitors, we hope to provide valuable assistance for future drug design and development.
Collapse
Affiliation(s)
- Chao Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| |
Collapse
|
3
|
Xiong Y, Li M, Cao Y, Li Z, Chang Y, Zhao X, Qing G. Nanofluidic Device for Detection of Lysine Methylpeptides and Sensing of Lysine Methylation. Anal Chem 2023; 95:7761-7769. [PMID: 37140051 DOI: 10.1021/acs.analchem.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protein methylation is the smallest possible yet vitally important post-translational modification (PTM). This small and chemically inert addition in proteins makes the analysis of methylation more challenging, thus calling for an efficient tool for the sake of recognition and detection. Herein, we present a nanofluidic electric sensing device based on a functionalized nanochannel that was constructed by introducing monotriazole-containing p-sulfonatocalix[4]arene (TSC) into a single asymmetric polymeric nanochannel via click chemistry. The device can selectively detect lysine methylpeptides with subpicomole sensitivity, distinguish between different lysine methylation states, and monitor the lysine methylation process by methyltransferase at the peptide level in real time. The introduced TSC molecule, with its confined asymmetric configuration, presents the remarkable ability to selectively bind to lysine methylpeptides, which, coupled with the release of the complexed Cu ions, allows the device to transform the molecular-level recognition to the discernible change in ionic current of the nanofluidic electric device, thus enabling detection. This work could serve as a stepping stone to the development of a new methyltransferase assay and the chemical that specifically targets lysine methylation in PTM proteomics.
Collapse
Affiliation(s)
- Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, College of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, College of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yongxin Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinjia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
4
|
Protein arginine N-methyltransferase activity determination with filter binding and phosphor screening (FBAPS) assay. Anal Biochem 2022; 653:114778. [PMID: 35709928 DOI: 10.1016/j.ab.2022.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022]
Abstract
We developed a cost-effective assay to measure protein arginine N-methyltransferase (PRMT) activity in a medium-throughput manner by combining P81 filter binding and phosphor screening (FBAPS). Recombinantly-expressed PRMT1 and coactivator-associated arginine methyltransferase 1 (CARM1) were used to develop the FBAPS assay using GST fusions of glycine- and arginine-rich (GAR) protein and polyA binding protein 1 (PABP1(437-488)) as substrates, respectively, and radiolabelled S-adenosyl-L-[methyl-14C]-methionine as cofactor. Methylation reactions were spotted onto P81 filter paper in a dot blot apparatus and radioactive signals were measured both by phosphor imaging and liquid scintillation counting. Kinetic parameters (KM, kcat) for enzymes and substrates were determined, and IC50 values were obtained for well-characterized inhibitors. FBAPS yielded kinetic parameters with no statistically significant difference to what was obtained using liquid scintillation counting. The IC50 values obtained by the FBAPS assay for PRMT1 and CARM1 were comparable to values reported in literature. The FBAPS assay is a modification to the P81 filter binding assay with a dot blot apparatus that allows for processing of samples in a multi-well format, moderately increasing throughput. Signal detection by phosphor imaging offers an affordable and quantitative method that can be used to screen several inhibitors simultaneously against PRMT enzymes with high accuracy.
Collapse
|
5
|
Rudenko AY, Mariasina SS, Sergiev PV, Polshakov VI. Analogs of S-Adenosyl- L-Methionine in Studies of Methyltransferases. Mol Biol 2022; 56:229-250. [PMID: 35440827 PMCID: PMC9009987 DOI: 10.1134/s002689332202011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S‑adenosyl‑L‑methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.
Collapse
Affiliation(s)
- A. Yu. Rudenko
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - S. S. Mariasina
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - V. I. Polshakov
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). J Biol Chem 2021; 297:101336. [PMID: 34688662 PMCID: PMC8592882 DOI: 10.1016/j.jbc.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Ariana Ortolano
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Arianna Towne
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA.
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
7
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|