1
|
Daci R, Flotte TR. Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int J Mol Sci 2024; 25:1050. [PMID: 38256124 PMCID: PMC10816966 DOI: 10.3390/ijms25021050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing to the intricacy of the human CNS and the blood-brain barrier, it is difficult to deliver genes, particularly since the expression of any given gene may be required in a particular CNS structure or cell type at a specific time during development. In this review, we analyzed delivery methods for AAV-mediated gene therapy in past and current clinical trials. The delivery routes analyzed were direct intraparenchymal (IP), intracerebroventricular (ICV), intra-cisterna magna (CM), lumbar intrathecal (IT), and intravenous (IV). The results demonstrated that the dose used in these routes varies dramatically. The average total doses used were calculated and were 1.03 × 1013 for IP, 5.00 × 1013 for ICV, 1.26 × 1014 for CM, and 3.14 × 1014 for IT delivery. The dose for IV delivery varies by patient weight and is 1.13 × 1015 IV for a 10 kg infant. Ultimately, the choice of intervention must weigh the risk of an invasive surgical procedure to the toxicity and immune response associated with a high dose vector.
Collapse
Affiliation(s)
- Rrita Daci
- Department of Neurosurgery, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA;
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA
| |
Collapse
|
2
|
Vera LNP, Schuh RS, Fachel FNS, Poletto E, Piovesan E, Kubaski F, Couto E, Brum B, Rodrigues G, Souza H, Giugliani R, Matte U, Baldo G, Teixeira HF. Brain and visceral gene editing of mucopolysaccharidosis I mice by nasal delivery of the CRISPR/Cas9 system. J Gene Med 2022; 24:e3410. [PMID: 35032067 DOI: 10.1002/jgm.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-L-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS Liposomes were prepared by microfluidization and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS Monodisperse mucoadhesive complexes around 110nm, which are able to efficiently permeate the PNM. In animals the treatment led to a modest increase in IDUA activity in the lung, heart and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION Non-viral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly to other neurological disorders.
Collapse
Affiliation(s)
- Luisa Natalia Pimentel Vera
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Flavia Nathielly Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Edina Poletto
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Eduarda Piovesan
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Francyne Kubaski
- Serviço de Genética Medica, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Eduarda Couto
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Bruna Brum
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| | - Graziella Rodrigues
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Hallana Souza
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil.,Serviço de Genética Medica, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Centro de Terapia Gênica do Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Campus do Vale, Av., Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Fisiologia da Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Helder F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av., Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, Beard H, Trim PJ, Winner LK, Lau AA, Snel MF, Gomila C, Ausseil J, Mei X, Giersch L, Plavsic M, Laufer R. AAVrh10 Vector Corrects Disease Pathology in MPS IIIA Mice and Achieves Widespread Distribution of SGSH in Large Animal Brains. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:174-187. [PMID: 31909089 PMCID: PMC6940615 DOI: 10.1016/j.omtm.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.
Collapse
Affiliation(s)
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Meghan L Douglass
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sarah J Tamang
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Daniel Neumann
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Barbara M King
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Paul J Trim
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Leanne K Winner
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Adeline A Lau
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Cathy Gomila
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie, 80054 Amiens, France
| | - Jérôme Ausseil
- Unité INSERM U1043, Centre de Physiopathologie Toulouse Purpan (CPTP), Université Paul Sabatier, 31024 Toulouse, France
| | - Xin Mei
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Laura Giersch
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Mark Plavsic
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Ralph Laufer
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
4
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
5
|
Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis 2017; 40:543-554. [PMID: 28560469 PMCID: PMC5500670 DOI: 10.1007/s10545-017-0052-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 01/10/2023]
Abstract
Lysosomal storage diseases (LSDs) are rare inherited metabolic disorders characterized by a dysfunction in lysosomes, leading to waste material accumulation and severe organ damage. Enzyme replacement therapy (ERT) and haematopoietic stem cell transplant (HSCT) have been exploited as potential treatments for LSDs but pre-clinical and clinical studies have shown in some cases limited efficacy. Intravenous ERT is able to control the damage of visceral organs but cannot prevent nervous impairment. Depending on the disease type, HSCT has important limitations when performed for early variants, unless treatment occurs before disease onset. In the attempt to overcome these issues, gene therapy has been proposed as a valuable therapeutic option, either ex vivo, with target cells genetically modified in vitro, or in vivo, by inserting the genetic material with systemic or intra-parenchymal, in situ administration. In particular, the use of autologous haematopoietic stem cells (HSC) transduced with a viral vector containing a healthy copy of the mutated gene would allow supra-normal production of the defective enzyme and cross correction of target cells in multiple tissues, including the central nervous system. This review will provide an overview of the most recent scientific advances in HSC-based gene therapy approaches for the treatment of LSDs with particular focus on metachromatic leukodystrophy (MLD) and mucopolysaccharidosis type I (MPS-I).
Collapse
Affiliation(s)
- Rachele Penati
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Fumagalli
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Lau AA, Hemsley KM. Adeno-associated viral gene therapy for mucopolysaccharidoses exhibiting neurodegeneration. J Mol Med (Berl) 2017; 95:1043-1052. [PMID: 28660346 DOI: 10.1007/s00109-017-1562-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
The mucopolysaccharidoses (MPS) are a subgroup of lysosomal storage disorders that are caused by mutations in the genes involved in glycosaminoglycan breakdown. Multiple organs and tissues are affected, including the central nervous system. At present, hematopoietic stem cell transplantation and enzyme replacement therapies are approved for some of the (non-neurological) MPS. Treatments that effectively ameliorate the neurological aspects of the disease are being assessed in clinical trials. This review will focus on the recent outcomes and planned viral vector-mediated gene therapy clinical trials, and the pre-clinical data that supported these studies, for MPS-I (Hurler/Scheie syndrome), MPS-II (Hunter syndrome), and MPS-IIIA and -IIIB (Sanfilippo syndrome).
Collapse
Affiliation(s)
- Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, South Australia, 5001, Australia.
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
7
|
Connan C, Voillequin M, Chavez CV, Mazuet C, Leveque C, Vitry S, Vandewalle A, Popoff MR. Botulinum neurotoxin type B uses a distinct entry pathway mediated by CDC42 into intestinal cells versus neuronal cells. Cell Microbiol 2017; 19. [PMID: 28296078 DOI: 10.1111/cmi.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.
Collapse
Affiliation(s)
- Chloé Connan
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Marie Voillequin
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | | | | | - Christian Leveque
- INSERM, UMR_S 1072 (UNIS), Faculté de Médecine -Secteur Nord, Aix Marseille Université, Marseille, France
| | - Sandrine Vitry
- Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | | | - Michel R Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Biodistribution of Idursulfase Formulated for Intrathecal Use (Idursulfase-IT) in Cynomolgus Monkeys after Intrathecal Lumbar Administration. PLoS One 2016; 11:e0164765. [PMID: 27764180 PMCID: PMC5072681 DOI: 10.1371/journal.pone.0164765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022] Open
Abstract
Enzyme replacement therapy with intravenous idursulfase (recombinant iduronate-2-sulfatase) is approved for the treatment of Hunter syndrome. Intravenous administration does not, however, treat the neurological manifestations, due to its low central nervous system bioavailability. Using intrathecal-lumbar administration, iduronate-2-sulfatase is delivered directly to the central nervous system. This study investigates the central nervous system biodistribution of intrathecal-lumbar administered iduronate-2-sulfatase in cynomolgus monkeys. Twelve monkeys were administered iduronate-2-sulfatase in one 30 mg intrathecal-lumbar injection. Brain, spinal cord, liver, and kidneys were collected for iduronate-2-sulfatase concentration (measured by an enzyme linked immunosorbent assay) and enzyme activity measurement (via a method utilizing 4-methylumbelliferyl-α-iduronate-2-sulfate) at 1, 2, 5, 12, 24, and 48 hours following administration. The tissue enzyme linked immunosorbent assay confirmed iduronate-2-sulfatase uptake to the brain, spinal cord, kidneys, and liver in a time-dependent manner. In spinal cord and brain, iduronate-2-sulfatase appeared as early as 1 hour following administration, and peak concentrations were observed at ~2 and ~5 hours. Iduronate-2-sulfatase appeared in liver and kidneys 1 hour post intrathecal-lumbar dose with peak concentrations between 5 and 24 hours. Liver iduronate-2-sulfatase concentration was approximately 10-fold higher than kidney. The iduronate-2-sulfatase localization and enzyme activity in the central nervous system, following intrathecal administration, demonstrates that intrathecal-lumbar treatment with iduronate-2-sulfatase may be considered for further investigation as a treatment for Hunter syndrome patients with neurocognitive impairment.
Collapse
|
9
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
10
|
Zerah M, Piguet F, Colle MA, Raoul S, Deschamps JY, Deniaud J, Gautier B, Toulgoat F, Bieche I, Laurendeau I, Sondhi D, Souweidane MM, Cartier-Lacave N, Moullier P, Crystal RG, Roujeau T, Sevin C, Aubourg P. Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. HUM GENE THER CL DEV 2015; 26:113-24. [PMID: 25758611 DOI: 10.1089/humc.2014.139] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
No treatment is available for early-onset forms of metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by autosomal recessive defect in arylsulfatase A (ARSA) gene causing severe demyelination in central and peripheral nervous systems. We have developed a gene therapy approach, based on intracerebral administration of AAVrh.10-hARSA vector, coding for human ARSA enzyme. We have previously demonstrated potency of this approach in MLD mice lacking ARSA expression. We describe herein the preclinical efficacy, safety, and biodistribution profile of intracerebral administration of AAVrh.10-hARSA to nonhuman primates (NHPs). NHPs received either the dose planned for patients adjusted to the brain volume ratio between child and NHP (1×dose, 1.1×10(11) vg/hemisphere, unilateral or bilateral injection) or 5-fold this dose (5×dose, 5.5×10(11) vg/hemisphere, bilateral injection). NHPs were subjected to clinical, biological, and brain imaging observations and were euthanized 7 or 90 days after injection. There was no toxicity based on clinical and biological parameters, nor treatment-related histological findings in peripheral organs. A neuroinflammatory process correlating with brain MRI T2 hypersignals was observed in the brain 90 days after administration of the 5×dose, but was absent or minimal after administration of the 1×dose. Antibody response to AAVrh.10 and hARSA was detected, without correlation with brain lesions. After injection of the 1×dose, AAVrh.10-hARSA vector was detected in a large part of the injected hemisphere, while ARSA activity exceeded the normal endogenous activity level by 14-31%. Consistently with other reports, vector genome was detected in off-target organs such as liver, spleen, lymph nodes, or blood, but not in gonads. Importantly, AAVrh.10-hARSA vector was no longer detectable in urine at day 7. Our data demonstrate requisite safe and effective profile for intracerebral AAVrh.10-hARSA delivery in NHPs, supporting its clinical use in children affected with MLD.
Collapse
Affiliation(s)
- Michel Zerah
- 1 Inserm U986, 94275 Le Kremlin Bicêtre , France .,2 Pediatric Neurosurgery, Necker Children's Hospital , 75014 Paris, France
| | | | - Marie-Anne Colle
- 3 INRA UMR U703 , 44000 Nantes, France .,4 Food Science and Engineering Oniris, Nantes-Atlantic College of Veterinary Medicine , 44000 Nantes, France
| | - Sylvie Raoul
- 5 Service de Neurochirurgie, CHU Nord , 44000 Nantes, France
| | - Jack-Yves Deschamps
- 3 INRA UMR U703 , 44000 Nantes, France .,4 Food Science and Engineering Oniris, Nantes-Atlantic College of Veterinary Medicine , 44000 Nantes, France
| | | | | | - Frédérique Toulgoat
- 6 Neuroradiologie Diagnostique et Interventionnelle, Hôpital Laennec, CHU de Nantes , 44000 Nantes, France
| | - Ivan Bieche
- 7 Faculté des Sciences Pharmaceutiques et Biologiques , 75005 Paris, France
| | - Ingrid Laurendeau
- 7 Faculté des Sciences Pharmaceutiques et Biologiques , 75005 Paris, France
| | - Dolan Sondhi
- 8 Department of Genetic Medicine, Weill-Cornell Medical College , New York, NY 10065
| | - Mark M Souweidane
- 9 Neurological Surgery and Pediatrics, Weill-Cornell Medical College , New York, NY 10065
| | | | | | - Ronald G Crystal
- 8 Department of Genetic Medicine, Weill-Cornell Medical College , New York, NY 10065
| | - Thomas Roujeau
- 11 Neurosurgery, Hôpitaux de Montpellier , 34000 Montpellier, France
| | - Caroline Sevin
- 1 Inserm U986, 94275 Le Kremlin Bicêtre , France .,12 Neuropediatrics Unit, Bicêtre Hospital , 94275 Le Kremlin Bicêtre, France
| | - Patrick Aubourg
- 1 Inserm U986, 94275 Le Kremlin Bicêtre , France .,12 Neuropediatrics Unit, Bicêtre Hospital , 94275 Le Kremlin Bicêtre, France
| |
Collapse
|
11
|
Piguet F, Sondhi D, Piraud M, Fouquet F, Hackett NR, Ahouansou O, Vanier MT, Bieche I, Aubourg P, Crystal RG, Cartier N, Sevin C. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum Gene Ther 2012; 23:903-14. [PMID: 22642214 DOI: 10.1089/hum.2012.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder characterized by accumulation of sulfatides in glial cells and neurons, the result of an inherited deficiency of arylsulfatase A (ARSA; EC 3.1.6.8) and myelin degeneration in the central and peripheral nervous systems. No effective treatment is currently available for the most frequent late infantile (LI) form of MLD, which results in rapid neurological degradation and early death after the onset of clinical manifestations. To potentially arrest or reverse disease progression, ARSA enzyme must be rapidly delivered to brain oligodendrocytes of patients with LI MLD. We previously showed that brain gene therapy with adeno-associated virus serotype 5 (AAV5) driving the expression of human ARSA cDNA under the control of the murine phosphoglycerate kinase (PGK) promoter alleviated most long-term disease manifestations in MLD mice. Herein, we evaluated the short-term effects of AAVrh.10 driving the expression of human ARSA cDNA under the control of the cytomegalovirus/β-actin hybrid (CAG/cu) promoter in 8-month-old MLD mice that already show marked sulfatide accumulation and brain pathology. Within 2 months, and in contrast to results with the AAV5-PGK-ARSA vector, a single intrastriatal injection of AAVrh.10cuARSA resulted in correction of brain sulfatide storage, accumulation of specific sulfatide species in oligodendrocytes, and associated brain pathology in the injected hemisphere. Better potency of the AAVrh.10cuARSA vector was mediated by higher neuronal and oligodendrocyte transduction, axonal transport of the AAVrh.10 vector and ARSA enzyme, as well as higher CAG/cu promoter driven expression of ARSA enzyme. These results strongly support the use of AAVrh.10cuARSA vector for intracerebral gene therapy in rapidly progressing early-onset forms of MLD.
Collapse
|
12
|
CNS penetration of intrathecal-lumbar idursulfase in the monkey, dog and mouse: implications for neurological outcomes of lysosomal storage disorder. PLoS One 2012; 7:e30341. [PMID: 22279584 PMCID: PMC3261205 DOI: 10.1371/journal.pone.0030341] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/14/2011] [Indexed: 02/03/2023] Open
Abstract
A major challenge for the treatment of many central nervous system (CNS) disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome) is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S). I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a) warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b) may have broader implications for CNS treatment with biopharmaceuticals.
Collapse
|
13
|
Roy E, Bruyère J, Flamant P, Bigou S, Ausseil J, Vitry S, Heard JM. GM130 gain-of-function induces cell pathology in a model of lysosomal storage disease. Hum Mol Genet 2011; 21:1481-95. [PMID: 22156940 DOI: 10.1093/hmg/ddr584] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell pathology in lysosomal storage diseases is characterized by the formation of distended vacuoles with characteristics of lysosomes. Our previous studies in mucopolysaccharidosis type IIIB (MPSIIIB), a disease in which a genetic defect induces the accumulation of undigested heparan sulfate (HS) fragments, led to the hypothesis that abnormal lysosome formation was related to events occurring at the Golgi level. We reproduced the enzyme defect of MPSIIIB in HeLa cells using tetracycline-inducible expression of shRNAs directed against α-N-acetylglucosaminidase (NAGLU) and addressed this hypothesis. HeLa cells deprived of NAGLU accumulated abnormal lysosomes. The Golgi matrix protein GM130 was over-expressed. The cis- and medial-Golgi compartments were distended, elongated and formed circularized ribbons. The Golgi microtubule network was enlarged with increased amounts of AKAP450, a partner of GM130 controlling this network. GM130 down-regulation prevented pathology in HeLa cells deprived of NAGLU, whereas GM130 over-expression in control HeLa cells mimicked the pathology of deprived cells. We concluded that abnormal lysosomes forming in cells accumulating HS fragments were the consequence of GM130 gain-of-function and subsequent alterations of the Golgi ribbon architecture. These results indicate that GM130 functions are modulated by HS glycosaminoglycans and therefore possibly controlled by extracellular cues.
Collapse
Affiliation(s)
- Elise Roy
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Vitry S, Bruyère J, Hocquemiller M, Bigou S, Ausseil J, Colle MA, Prévost MC, Heard JM. Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2984-99. [PMID: 21037080 DOI: 10.2353/ajpath.2010.100447] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.
Collapse
Affiliation(s)
- Sandrine Vitry
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Colle MA, Piguet F, Bertrand L, Raoul S, Bieche I, Dubreil L, Sloothaak D, Bouquet C, Moullier P, Aubourg P, Cherel Y, Cartier N, Sevin C. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum Mol Genet 2010; 19:147-58. [PMID: 19837699 DOI: 10.1093/hmg/ddp475] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lethal neurodegenerative disease caused by a deficiency in the lysosomal arylsulfatase A (ARSA) enzyme leading to the accumulation of sulfatides in glial and neuronal cells. We previously demonstrated in ARSA-deficient mice that intracerebral injection of a serotype 5 adeno-associated vector (AAV) encoding human ARSA corrects the biochemical, neuropathological and behavioral abnormalities. However, before considering a potential clinical application, scaling-up issues should be addressed in large animals. Therefore, we performed intracerebral injection of the same AAV vector (total dose of 3.8 x 10(11) or 1.9 x 10(12) vector genome, three sites of injection in the right hemisphere, two deposits per site of injection) into three selected areas of the centrum semiovale white matter, or in the deep gray matter nuclei (caudate nucleus, putamen, thalamus) of six non-human primates to evaluate vector distribution, as well as expression and activity of human ARSA. The procedure was perfectly tolerated, without any adverse effect or change in neurobehavioral examination. AAV vector was detected in a brain volume of 12-15 cm(3) that corresponded to 37-46% of the injected hemisphere. ARSA enzyme was expressed in multiple interconnected brain areas over a distance of 22-33 mm. ARSA activity was increased by 12-38% in a brain volume that corresponded to 50-65% of injected hemisphere. These data provide substantial evidence for potential benefits of brain gene therapy in patients with MLD.
Collapse
|
16
|
Mechanisms of distribution of mouse β-galactosidase in the adult GM1-gangliosidosis brain. Gene Ther 2008; 16:303-8. [DOI: 10.1038/gt.2008.149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Abstract
✓ Most lysosomal storage disorders are characterized by progressive central nervous system impairment, with or without systemic involvement. Affected individuals have an array of symptoms related to brain dysfunction, the most devastating of which is neurodegeneration following a period of normal development. The blood–brain barrier has represented a significant impediment to developing therapeutic approaches to treat brain disease, but novel approaches—including enzyme replacement, small-molecule, gene, and cell-based therapies—have given children afflicted by these conditions and those who care for them hope for the future.
Collapse
Affiliation(s)
- Gregory M. Enns
- 1Division of Medical Genetics, Department of Pediatrics, and
| | - Stephen L. Huhn
- 2Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford; and
- 3StemCells, Inc., Palo Alto, California
| |
Collapse
|
18
|
Abstract
Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved.
Collapse
Affiliation(s)
- Katherine P Ponder
- Washington University School of Medicine, Department of Internal Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The use of gene therapy to correct or replace deficient genes has been a long-standing aspiration. RECENT FINDINGS Recent findings from basic and applied research suggest that at last it may be possible to translate experimental procedures into effective patient therapies for genetic diseases. Therapies for neurodegenerative diseases potentially include, as their targets, both monogenic conditions (e.g. lysosomal storage disorders) and more genetically complex diseases (such as Alzheimer's and Parkinson's disorders). SUMMARY The use of gene therapy to target the central nervous system presents specific technical and biological challenges. These may be overcome by using novel gene vector delivery strategies. Current research should illuminate the temporal window required to achieve a successful therapy. As greater knowledge is accumulated about gene therapy, correlations will be made between the level of gene expression from the therapeutic vector, the extent of correction after treatment, and the stage of disease progression when therapy is initiated.
Collapse
Affiliation(s)
- Monica Cardone
- Telethon Institute of Genetics and Medicine, Naples, Italy.
| |
Collapse
|
20
|
Sevin C, Verot L, Benraiss A, Van Dam D, Bonnin D, Nagels G, Fouquet F, Gieselmann V, Vanier MT, De Deyn PP, Aubourg P, Cartier N. Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Ther 2006; 14:405-14. [PMID: 17093507 DOI: 10.1038/sj.gt.3302883] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by genetic deficiency of arylsulfatase A (ARSA) enzyme. Failure in catalyzing the degradation of its major substrate, sulfatide (Sulf), in oligodendrocytes and Schwann cells leads to severe demyelination in the peripheral (PNS) and central nervous system (CNS), and early death of MLD patients. The ARSA knockout mice develop a disease that resembles MLD but is milder, without significant demyelination in the PNS and CNS. We showed that adeno-associated virus serotype 5-mediated gene transfer in the brain of ARSA knockout mice reverses Sulf storage and prevents neuropathological abnormalities and neuromotor disabilities when vector injections are performed at a pre-symptomatic stage of disease. Direct injection of viral particles into the brain of ARSA knockout mice at a symptomatic stage results in sustained expression of ARSA, prevention of Sulf storage and neuropathological abnormalities. Despite these significant corrections, the treated mice continue to develop neuromotor disability. We show that more subtle biochemical abnormalities involving gangliosides and galactocerebroside are in fact not corrected.
Collapse
Affiliation(s)
- C Sevin
- Institut National de la Santé et de la Recherche Médicale Inserm U745, Laboratory of Molecular Genetics and Université ParisV, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|