1
|
Inheritance of Monogenic Hereditary Skin Disease and Related Canine Breeds. Vet Sci 2022; 9:vetsci9080433. [PMID: 36006348 PMCID: PMC9412528 DOI: 10.3390/vetsci9080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The plasticity of the genome is an evolutionary factor in all animal species, including canines, but it can also be the origin of diseases caused by hereditary genetic mutation. Genetic changes, or mutations, that give rise to a pathology in most cases result from recessive alleles that are normally found with minority allelic frequency. The use of genetic improvement increases the consanguinity within canine breeds and, on many occasions, also increases the frequency of these recessive alleles, increasing the prevalence of these pathologies. This prevalence has been known for a long time, but mutations differ according to the canine breed. These genetic diseases, including skin diseases, or genodermatosis, which is narrowly defined as monogenic hereditary dermatosis. In this review, we focus on genodermatosis sensu estricto, i.e., monogenic, and hereditary dermatosis, in addition to the clinical features, diagnosis, pathogeny, and treatment. Specifically, this review analyzes epidermolytic and non-epidermolytic ichthyosis, junctional epidermolysis bullosa, nasal parakeratosis, mucinosis, dermoid sinus, among others, in canine breeds, such as Golden Retriever, German Pointer, Australian Shepherd, American Bulldog, Great Dane, Jack Russell Terrier, Labrador Retriever, Shar-Pei, and Rhodesian Ridgeback.
Collapse
|
2
|
Fecal Proteomic Analysis in Healthy Dogs and in Dogs Suffering from Food Responsive Diarrhea. ScientificWorldJournal 2019; 2019:2742401. [PMID: 30718980 PMCID: PMC6335819 DOI: 10.1155/2019/2742401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Different laboratory markers are routinely used in the diagnosis and management of gastrointestinal (GI) disease in dogs. In the present study, starting from feces from both healthy dogs and dogs suffering from food responsive diarrhea (FRD), we tried to find proteins differently expressed in the two groups of dogs, by using a proteomic approach. Interestingly, we found that the immunoglobulin J-chain isoform 1 (species: Canis lupus familiaris) was identified only in diseased dogs (not in healthy). J-chain combines especially IgA monomers to IgA dimers and plays a crucial role for their secretions into mucosal interface. Being the first study of that kind in the dog, it is only possible to hypothesize that their presence could be likely due to an increased activation of the immune system or to a mucosal damage or both in FRD patients. Similarly, it is still impossible to assess whether this protein could be used as diagnostic/prognostic marker of GI disease; however, this study represents a promising first step toward fecal proteomics in canine GI disorders.
Collapse
|
3
|
Lawrence YA, Dangott LJ, Rodrigues-Hoffmann A, Steiner JM, Suchodolski JS, Lidbury JA. Proteomic analysis of liver tissue from dogs with chronic hepatitis. PLoS One 2018; 13:e0208394. [PMID: 30500850 PMCID: PMC6267964 DOI: 10.1371/journal.pone.0208394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Chronic hepatitis is the most common hepatic disease in dogs. Copper accumulation is an important cause of chronic hepatitis in dogs; however, the etiology in most dogs cannot be determined. Clinical signs of chronic hepatitis are often non-specific; therefore, this disease is frequently diagnosed in an advanced stage that makes successful intervention less likely. Early diagnosis of chronic hepatitis in dogs would thus be beneficial. The identification of proteins that are differentially expressed in dogs with chronic hepatitis could contribute to the development of novel diagnostic markers for this disease and provide insight into its pathogenesis. The objective of this study was to identify novel proteins that are differentially expressed in the liver of dogs with chronic hepatitis. Hepatic tissue was collected from 8 healthy dogs during ovariohysterectomy and from 8 dogs with histologically confirmed chronic hepatitis. The proteome of the liver samples was extracted by mechanical disruption and detergent-based cell lysis and differentially labeled prior to analysis by 2-dimensional fluorescence difference gel electrophoresis. Spots with an absolute fold change value > 2.0 were selected for further analysis. Protein identification was achieved by nanoflow liquid chromatography tandem mass spectrometry. Differential expression of select proteins was validated by Western blot. Five protein spots were differentially expressed between patients with chronic hepatitis and healthy control dogs. From these 5 protein spots 11 proteins were identified. Differential expression of cytokeratin 18 and annexin 5 were confirmed by Western blot analysis. Differential protein expression was shown between dogs with chronic hepatitis and healthy control dogs. Upregulation of cytokeratin 18 in chronic hepatitis may suggest increased hepatocellular apoptosis and necrosis, whereas upregulation of annexin 5A suggests increased hepatocellular apoptosis. Further studies are needed to determine whether either protein has diagnostic utility.
Collapse
Affiliation(s)
- Yuri A. Lawrence
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Lawrence J. Dangott
- Protein Chemistry Laboratory, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Aline Rodrigues-Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Bauer A, Jagannathan V, Högler S, Richter B, McEwan NA, Thomas A, Cadieu E, André C, Hytönen MK, Lohi H, Welle MM, Roosje P, Mellersh C, Casal ML, Leeb T. MKLN1 splicing defect in dogs with lethal acrodermatitis. PLoS Genet 2018; 14:e1007264. [PMID: 29565995 PMCID: PMC5863938 DOI: 10.1371/journal.pgen.1007264] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Lethal acrodermatitis (LAD) is a genodermatosis with monogenic autosomal recessive inheritance in Bull Terriers and Miniature Bull Terriers. The LAD phenotype is characterized by poor growth, immune deficiency, and skin lesions, especially at the paws. Utilizing a combination of genome wide association study and haplotype analysis, we mapped the LAD locus to a critical interval of ~1.11 Mb on chromosome 14. Whole genome sequencing of an LAD affected dog revealed a splice region variant in the MKLN1 gene that was not present in 191 control genomes (chr14:5,731,405T>G or MKLN1:c.400+3A>C). This variant showed perfect association in a larger combined Bull Terrier/Miniature Bull Terrier cohort of 46 cases and 294 controls. The variant was absent from 462 genetically diverse control dogs of 62 other dog breeds. RT-PCR analysis of skin RNA from an affected and a control dog demonstrated skipping of exon 4 in the MKLN1 transcripts of the LAD affected dog, which leads to a shift in the MKLN1 reading frame. MKLN1 encodes the widely expressed intracellular protein muskelin 1, for which diverse functions in cell adhesion, morphology, spreading, and intracellular transport processes are discussed. While the pathogenesis of LAD remains unclear, our data facilitate genetic testing of Bull Terriers and Miniature Bull Terriers to prevent the unintentional production of LAD affected dogs. This study may provide a starting point to further clarify the elusive physiological role of muskelin 1 in vivo. Lethal acrodermatitis (LAD) is an autosomal recessive hereditary disease in dogs. It is characterized by poor growth, immune deficiency and characteristic skin lesions of the paws and of the face. We mapped the LAD locus to a ~1.11 Mb segment on canine chromosome 14. Whole genome sequence data of an LAD affected dog and 191 controls revealed a candidate causative variant in the MKLN1 gene, encoding muskelin 1. The identified variant, a single nucleotide substitution, MKLN1:c.400+3A>C, altered the 5’-splice site at the beginning of intron 4. We experimentally confirmed that this variant leads to complete skipping of exon 4 in the MKLN1 mRNA in skin. Various cellular functions have been postulated for muskelin 1 including roles in intracellular transport processes, cell morphology, cell spreading, and cell adhesion. Our data from dogs reveal a novel in vivo role for muskelin 1 that is related to the immune system and skin. MKLN1 thus represents a novel candidate gene for human patients with unsolved acrodermatitis and/or immune deficiency phenotypes. LAD affected dogs may serve as models to gain more insights into the function of muskelin 1.
Collapse
Affiliation(s)
- Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Sandra Högler
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Richter
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Neil A. McEwan
- Department of Small Animal Clinical Sciences, The University of Liverpool, Leahurst Campus, Neston, Cheshire, United Kingdom
| | - Anne Thomas
- Antagene, Animal Genetics Laboratory, La Tour de Salvagny, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes (IGDR), CNRS-UMR6290, Université Rennes1, Rennes, France
| | - Catherine André
- Institut de Génétique et Développement de Rennes (IGDR), CNRS-UMR6290, Université Rennes1, Rennes, France
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Monika M. Welle
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Roosje
- DermFocus, University of Bern, Bern, Switzerland
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern,Bern, Switzerland
| | - Cathryn Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Margret L. Casal
- Section of Medical Genetics, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
5
|
CanisOme — The protein signatures of Canis lupus familiaris diseases. J Proteomics 2016; 136:193-201. [PMID: 26776818 DOI: 10.1016/j.jprot.2016.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/19/2015] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
|
6
|
Kasana S, Din J, Maret W. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol 2015; 29:47-62. [PMID: 25468189 DOI: 10.1016/j.jtemb.2014.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed. Therefore, clinical tests for genetic disorders of zinc metabolism need to be developed.
Collapse
|
7
|
Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Abstract
Advancement in electrophoresis and mass spectrometry techniques along with the recent progresses in genomics, culminating in bovine and pig genome sequencing, widened the potential application of proteomics in the field of veterinary medicine. The aim of the present review is to provide an in-depth perspective about the application of proteomics to animal disease pathogenesis, as well as its utilization in veterinary diagnostics. After an overview on the various proteomic techniques that are currently applied to veterinary sciences, the article focuses on proteomic approaches to animal disease pathogenesis. Included as well are recent achievements in immunoproteomics (ie, the identifications through proteomic techniques of antigen involved in immune response) and histoproteomics (ie, the application of proteomics in tissue processed for immunohistochemistry). Finally, the article focuses on clinical proteomics (ie, the application of proteomics to the identification of new biomarkers of animal diseases).
Collapse
|
9
|
|
10
|
Campbell GA, Crow D. Severe zinc responsive dermatosis in a litter of Pharaoh Hounds. J Vet Diagn Invest 2010; 22:663-6. [PMID: 20622248 DOI: 10.1177/104063871002200432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A litter of 3-month-old Pharaoh Hound puppies presented to the referring veterinarian with severe generalized erythematous-crusted papules with pruritus, accompanied by exfoliation and erythema of footpads, inappetence, lethargy, and retarded growth. Three of 5 puppies (2 male and 1 female) were affected. Representative areas were biopsied from 1 affected male puppy and were routinely processed. Histologically, there was marked epidermal hyperplasia with a disorganized appearance of the epidermis and massive parakeratotic hyperkeratosis, compatible with zinc-responsive dermatosis. Low serum zinc concentrations were documented, and the affected animals partially responded to intravenous zinc supplementation but did not respond to oral supplementation. One male puppy died as a result of unrelated causes and was necropsied. The remaining 4 puppies were followed over 2 years. Growth was stunted, and enamel hypoplasia of permanent dentition developed compared with unaffected littermates. Intravenous zinc supplementation at 3-4 week intervals was required to prevent further skin lesion development. One dog died at 3 years of age of renal failure.
Collapse
Affiliation(s)
- Gregory A Campbell
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
11
|
Cummings JE, Kovacic JP. The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care (San Antonio) 2009; 19:215-40. [PMID: 19691507 DOI: 10.1111/j.1476-4431.2009.00418.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To review zinc physiology and pathophysiology and the importance of zinc toxicity and deficiency in veterinary patients. DATA SOURCES A review of human and veterinary medical literature. HUMAN DATA SYNTHESIS There is a significant amount of original research in humans and animals on the role of zinc in multiple organ systems. There is also significant data available on human patients with zinc abnormalities. VETERINARY DATA SYNTHESIS Zinc deficiency has been studied in dogs with genetic disease and dietary deficiency leading to dermatological disease and immune deficiency. Zinc toxicity has been described after ingestion of metallic foreign bodies containing zinc. CONCLUSIONS Historically, the role of zinc in health and disease has been studied through patients with toxicity or severe deficiency with obvious clinical signs. As the ubiquitous contribution of zinc to structure and function in biological systems was discovered, clinically significant but subtle deficiency states have been revealed. In human medicine, mild zinc deficiencies are currently thought to cause chronic metabolic derangement leading to or exacerbating immune deficiency, gastrointestinal problems, endocrine disorders, neurologic dysfunction, cancer, accelerated aging, degenerative disease, and more. Determining the causal relationships between mild zinc deficiency and concurrent disease is complicated by the lack of sensitive or specific tests for zinc deficiency. The prevalence of zinc deficiency and its contribution to disease in veterinary patients is not well known. Continued research is warranted to develop more sensitive and specific tests to assess zinc status, to determine which patients are at risk for deficiency, and to optimize supplementation in health and disease.
Collapse
|
12
|
Schmitt S, Küry S, Giraud M, Dréno B, Kharfi M, Bézieau S. An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat 2009; 30:926-33. [PMID: 19370757 DOI: 10.1002/humu.20988] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acrodermatitis enteropathica (AE) is a very rare inherited recessive disease caused by severe zinc deficiency. It typically occurs in early infancy and is characterized by periorificial and acral dermatitis, alopecia, and diarrhea. In 2002, both we and others identified the AE SLC39A4 gene located at 8q24.3, and described the first causative mutations for the disease. The SLC39A4 gene encodes a zinc-specific transporter belonging to the Zinc/Iron-regulated transporter-like family, which is highly expressed in the duodenum and jejunum. The SLC39A4 mutations are spread over the entire gene and include many different types of mutations. We report here the identification of five novel variants, including three likely pathogenic mutations. Since the first description, 31 mutations or unclassified variants of SLC39A4 have been reported in this gene. Although most of the patients with AE carry homozygous or compound heterozygous mutations, some of them have either no SLC39A4 mutation or only a monoallelic mutation. Thus, a genotype-phenotype correlation is not easily defined for all AE patients, and the molecular basis of the disease could be more complex than previously described. In cases unexplained by current genetic analyses, the most plausible molecular causes could be a dysregulation of the SLC39A4 gene transcription -- involving either metal response elements (MREs) or a modifier gene -- or the existence of another putative AE gene. In this review, we summarize the current knowledge of SLC39A4 mutations, as well as the future prospects to fully unravel the pathogenesis of AE.
Collapse
Affiliation(s)
- Sébastien Schmitt
- Centre Hospitalier Universitaire (CHU) de Nantes, Pôle de Biologie, Service de Génétique Médicale, Nantes, France.
| | | | | | | | | | | |
Collapse
|