1
|
Novelli M, Tolve M, Quiroz V, Carducci C, Bove R, Ricciardi G, Yang K, Manti F, Pisani F, Ebrahimi‐Fakhari D, Galosi S, Leuzzi V. Autosomal Recessive Guanosine Triphosphate Cyclohydrolase I Deficiency: Redefining the Phenotypic Spectrum and Outcomes. Mov Disord Clin Pract 2024; 11:1072-1084. [PMID: 39001623 PMCID: PMC11452796 DOI: 10.1002/mdc3.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/06/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The GCH1 gene encodes the enzyme guanosine triphosphate cyclohydrolase I (GTPCH), which catalyzes the rate-limiting step in the biosynthesis of tetrahydrobiopterin (BH4), a critical cofactor in the production of monoamine neurotransmitters. Autosomal dominant GTPCH (adGTPCH) deficiency is the most common cause of dopa-responsive dystonia (DRD), whereas the recessive form (arGTPCH) is an ultrarare and poorly characterized disorder with earlier and more complex presentation that may disrupt neurodevelopmental processes. Here, we delineated the phenotypic spectrum of ARGTPCHD and investigated the predictive value of biochemical and genetic correlates for disease outcome. OBJECTIVES The aim was to study 4 new cases of arGTPCH deficiency and systematically review patients reported in the literature. METHODS Clinical, biochemical, and genetic data and treatment response of 45 patients are presented. RESULTS Three phenotypes were outlined: (1) early-infantile encephalopathic phenotype with profound disability (24 of 45 patients), (2) dystonia-parkinsonism phenotype with infantile/early-childhood onset of developmental stagnation/regression preceding the emergence of movement disorder (7 of 45), and (3) late-onset DRD phenotype (14 of 45). All 3 phenotypes were responsive to pharmacological treatment, which for the first 2 must be initiated early to prevent disabling neurodevelopmental outcomes. A gradient of BH4 defect and genetic variant severity characterizes the 3 clinical subgroups. Hyperphenylalaninemia was not observed in the second and third groups and was associated with a higher likelihood of intellectual disability. CONCLUSIONS The clinical spectrum of arGTPCH deficiency is a continuum from early-onset encephalopathies to classical DRD. Genotype and biochemical alterations may allow early diagnosis and predict clinical severity. Early treatment remains critical, especially for the most severe patients.
Collapse
Affiliation(s)
- Maria Novelli
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Manuela Tolve
- Clinical Pathology Unit, Department of Experimental MedicineAOU Policlinico Umberto I‐Sapienza UniversityRomeItaly
| | - Vicente Quiroz
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Claudia Carducci
- Clinical Pathology Unit, Department of Experimental MedicineAOU Policlinico Umberto I‐Sapienza UniversityRomeItaly
| | - Rossella Bove
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Giacomina Ricciardi
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Kathryn Yang
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Filippo Manti
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Darius Ebrahimi‐Fakhari
- Movement Disorders Program, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Serena Galosi
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Vincenzo Leuzzi
- Child Neurology and Psychiatry Unit, Department of Human NeurosciencesSapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Baglioni V, Bozza F, Lentini G, Beatrice A, Cameli N, Colacino Cinnante EM, Terrinoni A, Nardecchia F, Pisani F. Psychiatric Manifestations in Children and Adolescents with Inherited Metabolic Diseases. J Clin Med 2024; 13:2190. [PMID: 38673463 PMCID: PMC11051134 DOI: 10.3390/jcm13082190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Inherited metabolic disorders (IEMs) can be represented in children and adolescents by psychiatric disorders. The early diagnosis of IEMs is crucial for clinical outcome and treatment. The aim of this review is to analyze the most recurrent and specific psychiatric features related to IEMs in pediatrics, based on the onset type and psychiatric phenotypes. Methods: Following the PRISMA Statement, a systematic literature review was performed using a predefined algorithm to find suitable publications in scientific databases of interest. After removing duplicates and screening titles and abstracts, suitable papers were analyzed and screened for inclusion and exclusion criteria. Finally, the data of interest were retrieved from the remaining articles. Results: The results of this study are reported by type of symptoms onset (acute and chronic) and by possible psychiatric features related to IEMs. Psychiatric phenomenology has been grouped into five main clinical manifestations: mood and anxiety disorders; schizophrenia-spectrum disorders; catatonia; eating disorders; and self-injurious behaviors. Conclusions: The inclusion of a variety of psychiatric manifestations in children and adolescents with different IEMs is a key strength of this study, which allowed us to explore the facets of seemingly different disorders in depth, avoiding possible misdiagnoses, with the related delay of early and appropriate treatments.
Collapse
Affiliation(s)
| | - Fabiola Bozza
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy; (V.B.); (G.L.); (A.B.); (N.C.); (E.M.C.C.); (A.T.); (F.N.); (F.P.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Mastrangelo M, Tolve M, Artiola C, Bove R, Carducci C, Carducci C, Angeloni A, Pisani F, Leuzzi V. Phenotypes and Genotypes of Inherited Disorders of Biogenic Amine Neurotransmitter Metabolism. Genes (Basel) 2023; 14:genes14020263. [PMID: 36833190 PMCID: PMC9957200 DOI: 10.3390/genes14020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Inherited disorders of biogenic amine metabolism are genetically determined conditions resulting in dysfunctions or lack of enzymes involved in the synthesis, degradation, or transport of dopamine, serotonin, adrenaline/noradrenaline, and their metabolites or defects of their cofactor or chaperone biosynthesis. They represent a group of treatable diseases presenting with complex patterns of movement disorders (dystonia, oculogyric crises, severe/hypokinetic syndrome, myoclonic jerks, and tremors) associated with a delay in the emergence of postural reactions, global development delay, and autonomic dysregulation. The earlier the disease manifests, the more severe and widespread the impaired motor functions. Diagnosis mainly depends on measuring neurotransmitter metabolites in cerebrospinal fluid that may address the genetic confirmation. Correlations between the severity of phenotypes and genotypes may vary remarkably among the different diseases. Traditional pharmacological strategies are not disease-modifying in most cases. Gene therapy has provided promising results in patients with DYT-DDC and in vitro models of DYT/PARK-SLC6A3. The rarity of these diseases, combined with limited knowledge of their clinical, biochemical, and molecular genetic features, frequently leads to misdiagnosis or significant diagnostic delays. This review provides updates on these aspects with a final outlook on future perspectives.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Manuela Tolve
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristiana Artiola
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rossella Bove
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Carducci
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Carducci
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Angeloni
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-649972930; Fax: +39-64440232
| | - Vincenzo Leuzzi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
4
|
Relevance of Fluorodopa PET Scan in Dopamine Responsive Dystonia and Juvenile Parkinsonism: A Systematic Review. Neurol Int 2022; 14:997-1006. [PMID: 36548184 PMCID: PMC9781753 DOI: 10.3390/neurolint14040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dopamine Responsive Dystonia (DRD) and Juvenile Parkinsonism (JP) are two diseases commonly presenting with parkinsonian symptoms in young patients. Current clinical guidelines offer a diagnostic approach based on molecular analysis. However, developing countries have limitations in terms of accessibility to these tests. We aimed to assess the utility of imaging equipment, usually more available worldwide, to help diagnose and improve patients' quality of life with these diseases. METHODS We performed a systematic literature review in English using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and meta-analysis of observational studies in epidemiology (MOOSE) protocols. We only used human clinical trials about dopamine responsive dystonia and juvenile parkinsonism patients in which a fluorodopa (FD) positron emission tomography (PET) scan was performed to identify its use in these diseases. RESULTS We included six studies that fulfilled our criteria. We found a clear pattern of decreased uptake in the putamen and caudate nucleus in JP cases. At the same time, the results in DRD were comparable to normal subjects, with only a slightly decreased marker uptake in the previously mentioned regions by the FD PET scan. CONCLUSIONS We found a distinctive pattern for each of these diseases. Identifying these findings with FD PET scans can shorten the delay in making a definitive diagnosis when genetic testing is unavailable, a common scenario in developing countries.
Collapse
|
5
|
Chen Y, Liu K, Yang Z, Wang Y, Zhou H. Case Report: Severe Hypotonia Without Hyperphenylalaninemia Caused by a Homozygous GCH1 Variant: A Case Report and Literature Review. Front Genet 2022; 13:929069. [PMID: 36204308 PMCID: PMC9532011 DOI: 10.3389/fgene.2022.929069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Dopa-responsive dystonia (DRD) comprises a group of rare but treatable dystonias that exhibit diurnal fluctuation. The GCH1 gene encodes GTP cyclohydrolase-1 (GTPCH-І), a protein that catalyzes the first rate-limiting step of tetrahydrobiopterin biosynthesis. Pathogenic variants in GCH1 are the most common causes of DRD. However, the autosomal recessive form of DRD caused by biallelic GCH1 variants is very rare. Homozygous GCH1 variants have been associated with two clinically distinct human diseases: hyperphenylalaninemia, and DRD with or without hyperphenylalaninemia. Here, we describe one patient who presented during infancy with severe truncal hypotonia and motor developmental regression but without diurnal fluctuation and hyperphenylalaninemia. Treatment with levodopa/carbidopa resulted in the complete and persistent remission of clinical symptoms without any side effects. This was accompanied by age-appropriate neurological development during follow-up. A homozygous GCH1 variant (c.604G>A/p.V202I) was identified in the patient. To our knowledge, this is the first Chinese case of DRD caused by a homozygous GCH1 variant, thus expanding the spectrum of DRD phenotypes. Autosomal recessive DRD that is associated with homozygous GCH1 variants should be considered in patients with severe truncal hypotonia, with or without diurnal fluctuation, even if there is an absence of limb dystonia and hyperphenylalaninemia.
Collapse
|
6
|
Ray S, Padmanabha H, Gowda VK, Mahale R, Christopher R, Sreedharan S, Dhar D, Kamate M, Nagappa M, Bhat M, Anjanappa R, Arunachal G, Pooja M, Mathuranath PS, Chandra SR. Disorders of Tetrahydrobiopterin Metabolism: Experience from South India. Metab Brain Dis 2022; 37:743-760. [PMID: 34997870 DOI: 10.1007/s11011-021-00889-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Disorders of tetrahydrobiopterin metabolism represent a rare group of inherited neurotransmitter disorders that manifests mainly in infancy or childhood with developmental delay, neuroregression, epilepsy, movement disorders, and autonomic symptoms. METHODOLOGY A retrospective review of genetically confirmed cases of disorders of tetrahydrobiopterin metabolism over a period of three years (Jan 2018 to Jan 2021) was performed across two paediatric neurology centres from South India. RESULTS A total of nine patients(M:F=4:5) fulfilled the eligibility criteria. The genetic variants detected include homozygous mutations in the QDPR(n=6), GCH1(n=2), and PTS(n=1) genes. The median age at onset of symptoms was 6-months(range 3-78 months), while that at diagnosis was 15-months (8-120 months), resulting in a median delay in diagnosis of 9-months. The main clinical manifestations included neuroregression (89%), developmental delay(78%), dystonia(78%) and seizures(55%). Management strategies included a phenylalanine restricted diet, levodopa/carbidopa, 5-Hydroxytryphtophan, and folinic acid. Only, Patient-2 afforded and received BH4 supplementation at a sub-optimal dose later in the disease course. We had a median duration of follow up of 15 months (range 2-48 months). Though the biochemical response has been marked; except for patients with GTPCH deficiency, only mild clinical improvement was noted with regards to developmental milestones, seizures, or dystonia in others. CONCLUSION Tetrahydrobiopterin deficiencies represent a rare yet potentially treatable cause for non-phenylketonuria hyperphenylalaninemia with better outcomes when treated early in life. Screening for disorders of biopterin metabolism in patients with hyperphenylalaninemia prevents delayed diagnosis. This study expands the genotype-phenotype spectrum of patients with disorders of tetrahydrobiopterin metabolism from South India.
Collapse
Affiliation(s)
- Somdattaa Ray
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India.
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Rohan Mahale
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Shruthy Sreedharan
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Debjyoti Dhar
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Mahesh Kamate
- Division of Pediatric Neurology, K.A.H.E.R's JN medical college, Belagavi, India
| | - Madhu Nagappa
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Maya Bhat
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Rammurthy Anjanappa
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - M Pooja
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - P S Mathuranath
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - S R Chandra
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| |
Collapse
|
7
|
Scheffer DDL, Freitas FC, Aguiar AS, Ward C, Guglielmo LGA, Prediger RD, Cronin SJF, Walz R, Andrews NA, Latini A. Impaired dopamine metabolism is linked to fatigability in mice and fatigue in Parkinson's disease patients. Brain Commun 2021; 3:fcab116. [PMID: 34423297 PMCID: PMC8374980 DOI: 10.1093/braincomms/fcab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Fatigue is a common symptom of Parkinson’s disease that compromises significantly the patients’ quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson’s disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8–10 weeks; 35–45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson’s disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Fernando Cini Freitas
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Hospital Governador Celso Ramos, Florianópolis, SC 88015-270, Brazil
| | - Aderbal Silva Aguiar
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Catherine Ward
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Roger Walz
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Center for Applied Neuroscience, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Departament of Internal Medicine, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,The Salk in Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Bozaci AE, Er E, Yazici H, Canda E, Kalkan Uçar S, Güvenc Saka M, Eraslan C, Onay H, Habif S, Thöny B, Coker M. Tetrahydrobiopterin deficiencies: Lesson from clinical experience. JIMD Rep 2021; 59:42-51. [PMID: 33977029 PMCID: PMC8100404 DOI: 10.1002/jmd2.12199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The present study describes clinical, biochemical, molecular genetic data, current treatment strategies and follow-up in nine patients with tetrahydrobiopterin (BH4) deficiency due to various inherited genetic defects. METHODS We analyzed clinical, biochemical, and molecular data of nine patients with suspected BH4 deficiency. All patients were diagnosed at Ege University Faculty of Medicine in Izmir, Turkey and comprised data collected from 2006 to 2019. The diagnostic laboratory examinations included blood phenylalanine and urinary or plasma pterins, dihydropteridine reductase (DHPR) enzyme activity measurement in dried blood spots, folic acid and monoamine neurotransmitter metabolites in cerebrospinal fluid, as well as DNA sequencing. RESULTS Among the nine patients, we identified one with autosomal recessive GTP cyclohydrolase I (ar GTPCH) deficiency, two with 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency, three with sepiapterin reductase (SR) deficiency, and three with DHPR deficiency. Similar to previous observations, the most common clinical symptoms are developmental delay, intellectual disability, and movement disorders. All patients received treatment with l-dopa and 5-hydroxytryptophan, while only the ar GTPCH, the PTPS, and one DHPR deficient patients were supplemented in addition with BH4. The recommended dose range varies among patients and depends on the type of disease. The consequences of BH4 deficiencies are quite variable; however, early diagnosis and treatment will improve outcomes. CONCLUSIONS As BH4 deficiencies are rare group of treatable neurometabolic disorders, it is essential to diagnose the underlying (genetic) defect in newborns with hyperphenylalaninemia. Irreversible brain damage and progressive neurological deterioration may occur in untreated or late diagnosed patients. Prognosis could be satisfying in the cases with early diagnose and treatment.
Collapse
Affiliation(s)
- Ayse Ergul Bozaci
- Department of Pediatrics, Division of Pediatric MetabolismEge University Faculty of MedicineIzmirTurkey
| | - Esra Er
- Tepecik Research and Training Hospital, Department of GeneticsIzmirTurkey
| | - Havva Yazici
- Department of Pediatrics, Division of Pediatric MetabolismEge University Faculty of MedicineIzmirTurkey
| | - Ebru Canda
- Department of Pediatrics, Division of Pediatric MetabolismEge University Faculty of MedicineIzmirTurkey
| | - Sema Kalkan Uçar
- Department of Pediatrics, Division of Pediatric MetabolismEge University Faculty of MedicineIzmirTurkey
| | - Merve Güvenc Saka
- Tepecik Research and Training Hospital, Department of GeneticsIzmirTurkey
| | - Cenk Eraslan
- Department of RadiologyEge University Faculty of MedicineIzmirTurkey
| | - Hüseyin Onay
- Department of Medical GeneticsEge University Faculty of MedicineIzmirTurkey
| | - Sara Habif
- Department of Medical BiochemistryEge University Faculty of MedicineIzmirTurkey
| | - Beat Thöny
- Division of MetabolismUniversity Children's Hospital Zurich and Children's Research CenterZurichSwitzerland
| | - Mahmut Coker
- Department of Pediatrics, Division of Pediatric MetabolismEge University Faculty of MedicineIzmirTurkey
| |
Collapse
|
9
|
Abstract
BACKGROUND Oculogyric crisis (OGC) is a form of acute dystonia characterized by sustained dystonic, conjugate, and upward deviation of the eyes. It was initially reported in patients with postencephalitic parkinsonism. But later, other factors such as medications, movement disorders, metabolic disorders, and focal brain lesions were also found to be associated with OGC. METHODS The literature regarding OGC was searched via PubMed, Google Scholar, and through citations in relevant articles till December 2019, with keywords including OGC, oculogyric eye movements, tonic eye movement, neuroleptics and OGC, antipsychotics and OGC, and all combinations of these. Only original articles (abstract or full text) that were published in the English language were reviewed. RESULTS Hypodopaminergic state is implicated in the pathogenesis of OGC. Common risk factors are younger age, male sex, severe illness, high neuroleptic dose, parenteral administration of neuroleptics, high potency of neuroleptic drugs, abrupt discontinuation of anticholinergic medication, and family history of dystonia. CONCLUSION OGC is an acute dystonic reaction leading to tonic upward deviation of eyes. It is associated with various neurometabolic, neurodegenerative, and movement disorders and medications such as antipsychotics, antiemetics, antidepressants, antiepileptics, and antimalarials. OGC can adversely impact the compliance and prognosis of the primary illness. Hence, it needs to be managed at earlier stages with appropriate medication, primarily anticholinergics.
Collapse
Affiliation(s)
- Pankaj Mahal
- Dept. of Psychiatry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Navratan Suthar
- Dept. of Psychiatry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Naresh Nebhinani
- Dept. of Psychiatry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
10
|
Opladen T, López-Laso E, Cortès-Saladelafont E, Pearson TS, Sivri HS, Yildiz Y, Assmann B, Kurian MA, Leuzzi V, Heales S, Pope S, Porta F, García-Cazorla A, Honzík T, Pons R, Regal L, Goez H, Artuch R, Hoffmann GF, Horvath G, Thöny B, Scholl-Bürgi S, Burlina A, Verbeek MM, Mastrangelo M, Friedman J, Wassenberg T, Jeltsch K, Kulhánek J, Kuseyri Hübschmann O. Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH 4) deficiencies. Orphanet J Rare Dis 2020; 15:126. [PMID: 32456656 PMCID: PMC7251883 DOI: 10.1186/s13023-020-01379-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH4 deficiencies. CONCLUSION Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for BH4 deficient patients.
Collapse
Affiliation(s)
- Thomas Opladen
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital, Heidelberg, Germany.
| | - Eduardo López-Laso
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Reina Sofía, IMIBIC and CIBERER, Córdoba, Spain
| | - Elisenda Cortès-Saladelafont
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
- Unit of Pediatric Neurology and Metabolic Disorders, Department of Pediatrics, Hospital Germans Trias i Pujol, and Faculty of Medicine, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Toni S Pearson
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - H Serap Sivri
- Department of Pediatrics, Section of Metabolism, Hacettepe University, Faculty of Medicine, 06100, Ankara, Turkey
| | - Yilmaz Yildiz
- Department of Pediatrics, Section of Metabolism, Hacettepe University, Faculty of Medicine, 06100, Ankara, Turkey
| | - Birgit Assmann
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital, Heidelberg, Germany
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street-Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Simon Heales
- Neurometabolic Unit, National Hospital, Queen Square, London, UK
| | - Simon Pope
- Neurometabolic Unit, National Hospital, Queen Square, London, UK
| | - Francesco Porta
- Department of Pediatrics, AOU Città della Salute e della Scienza, Torino, Italy
| | - Angeles García-Cazorla
- Inborn errors of metabolism Unit, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Tomáš Honzík
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roser Pons
- First Department of Pediatrics of the University of Athens, Aghia Sofia Hospital, Athens, Greece
| | - Luc Regal
- Department of Pediatric, Pediatric Neurology and Metabolism Unit, UZ Brussel, Brussels, Belgium
| | - Helly Goez
- Department of Pediatrics, University of Alberta Glenrose Rehabilitation Hospital, Edmonton, Canada
| | - Rafael Artuch
- Clinical biochemistry department, Institut de Recerca Sant Joan de Déu, CIBERER and MetabERN Hospital Sant Joan de Déu, Barcelona, Spain
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital, Heidelberg, Germany
| | - Gabriella Horvath
- Department of Pediatrics, Division of Biochemical Genetics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich, Zürich, Switzerland
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Medical University of Innsbruck, Anichstr 35, Innsbruck, Austria
| | - Alberto Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Dipartimento della Salute della Donna e del Bambino, Azienda Ospedaliera Universitaria di Padova - Campus Biomedico Pietro d'Abano, Padova, Italy
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mario Mastrangelo
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Jennifer Friedman
- UCSD Departments of Neuroscience and Pediatrics, Rady Children's Hospital Division of Neurology; Rady Children's Institute for Genomic Medicine, San Diego, USA
| | - Tessa Wassenberg
- Department of Pediatric, Pediatric Neurology and Metabolism Unit, UZ Brussel, Brussels, Belgium
| | - Kathrin Jeltsch
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital, Heidelberg, Germany
| | - Jan Kulhánek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Oya Kuseyri Hübschmann
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Chen Y, Bao X, Wen Y, Wang J, Zhang Q, Yan J. Clinical and Genetic Heterogeneity in a Cohort of Chinese Children With Dopa-Responsive Dystonia. Front Pediatr 2020; 8:83. [PMID: 32185155 PMCID: PMC7058807 DOI: 10.3389/fped.2020.00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/19/2020] [Indexed: 01/28/2023] Open
Abstract
Background: The aim of this study was to investigate the genetic and clinical features of dopa-responsive dystonia (DRD) in China. Method: Characteristics of gene mutations and clinical manifestations of 31 patients diagnosed with DRD were analyzed retrospectively. Result: From January 2000 to January 2019, 31 patients were diagnosed with DRD. Twenty (64.5%) were male, and 11 (35.5%) were female. Ten patients (32.3%) had classic DRD, 19 (61.3%) had DRD-plus, and 2 (6.4%) patients had mutations in the dopamine synthetic pathway (PTS gene mutation) without a typical phenotype (not DRD or DRD-plus). Twenty-eight (90.3%) patients underwent genetic testing. Homozygous or compound heterozygous TH gene mutations were found in 22 patients. GCH1 and PTS gene mutations were found in 2 patients. Heterozygous TH mutation and genetic testing were negative in 1 patient. They took different doses of L-dopa, ranging from 0.4 to 8.7 mg/kg/d. Patients with classic DRD responded well. In patients with DRD-plus, 94.7% (18/19) responded well with residual symptoms. One patient (5.3%) did not show any improvement. Conclusion: DRD can be divided into classic DRD and DRD-plus. In this cohort, the most common pathogenic gene was TH. Fever was the important inducing factor of the disease. L-dopa has sustained and stable effects on patients with classic DRD. In patients with DRD-plus, treatment with L-dopa could ameliorate most of the symptoms.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yongxin Wen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Jiaping Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Qingping Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Jiayou Yan
- Department of Pediatric, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Koens LH, Tijssen MAJ, Lange F, Wolffenbuttel BHR, Rufa A, Zee DS, de Koning TJ. Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism. Mov Disord 2018; 33:1844-1856. [PMID: 30485556 PMCID: PMC6587951 DOI: 10.1002/mds.27484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Abstract
Inborn errors of metabolism in adults are still largely unexplored. Despite the fact that adult‐onset phenotypes have been known for many years, little attention is given to these disorders in neurological practice. The adult‐onset presentation differs from childhood‐onset phenotypes, often leading to considerable diagnostic delay. The identification of these patients at the earliest stage of disease is important, given that early treatment may prevent or lessen further brain damage. Neurological and psychiatric symptoms occur more frequently in adult forms. Abnormalities of eye movements are also common and can be the presenting sign. Eye movement disorders can be classified as central or peripheral. Central forms are frequently observed in lysosomal storage disorders, whereas peripheral forms are a key feature of mitochondrial disease. Furthermore, oculogyric crisis is an important feature in disorders affecting dopamine syntheses or transport. Ocular motor disorders are often not reported by the patient, and abnormalities can be easily overlooked in a general examination. In adults with unexplained psychiatric and neurological symptoms, a special focus on examination of eye movements can serve as a relatively simple clinical tool to detect a metabolic disorder. Eye movements can be easily quantified and analyzed with video‐oculography, making them a valuable biomarker for following the natural course of disease or the response to therapies. Here, we review, for the first time, eye movement disorders that can occur in inborn errors of metabolism, with a focus on late‐onset forms. We provide a step‐by‐step overview that will help clinicians to examine and interpret eye movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lisette H Koens
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Fiete Lange
- University of Groningen, University Medical Center Groningen, Department of Clinical Neurophysiology, Groningen, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alessandra Rufa
- Department of Medicine Surgery and Neurosciences, University of Siena, Eye tracking and Visual Application Lab (EVA Lab)-Neurology and Neurometabolic Unit, Siena, Italy
| | - David S Zee
- Department of Neuroscience, Department of Ophthalmology, The Johns Hopkins University, The Johns Hopkins Hospital, Department of Neurology, Department of Otolaryngology-Head and Neck Surgery, Baltimore, Maryland, USA
| | - Tom J de Koning
- University of Groningen, Division of Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Barow E, Schneider SA, Bhatia KP, Ganos C. Oculogyric crises: Etiology, pathophysiology and therapeutic approaches. Parkinsonism Relat Disord 2017; 36:3-9. [DOI: 10.1016/j.parkreldis.2016.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
|
14
|
Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, Mercimek-Mahmutoglu S, Ebrahimi-Fakhari D, Warner TT, Durr A, Assmann B, Lohmann K, Kostic V, Klein C. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31:436-57. [PMID: 27079681 DOI: 10.1002/mds.26527] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.
Collapse
Affiliation(s)
- Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Anthony Lang
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital and Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Darius Ebrahimi-Fakhari
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurology & F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
| | - Alexandra Durr
- Sorbonne Université, UPMC, Inserm and Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | - Birgit Assmann
- Division of Pediatric Neurology, Department of Pediatrics I, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir Kostic
- Institute of Neurology, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Abstract
The monoamine neurotransmitter disorders are important genetic syndromes that cause disturbances in catecholamine (dopamine, noradrenaline and adrenaline) and serotonin homeostasis. These disorders result in aberrant monoamine synthesis, metabolism and transport. The clinical phenotypes are predominantly neurological, and symptoms resemble other childhood neurological disorders, such as dystonic or dyskinetic cerebral palsy, hypoxic ischaemic encephalopathy and movement disorders. As a consequence, monoamine neurotransmitter disorders are under-recognized and often misdiagnosed. The diagnosis of monoamine neurotransmitter disorders requires detailed clinical assessment, cerebrospinal fluid neurotransmitter analysis and further supportive diagnostic investigations. Prompt and accurate diagnosis of neurotransmitter disorders is paramount, as many are responsive to treatment. The treatment is usually mechanism-based, with the aim to reverse disturbances of monoamine synthesis and/or metabolism. Therapeutic intervention can lead to complete resolution of motor symptoms in some conditions, and considerably improve quality of life in others. In this Review, we discuss the clinical features, diagnosis and management of monoamine neurotransmitter disorders, and consider novel concepts, the latest advances in research and future prospects for therapy.
Collapse
|
16
|
|
17
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Abstract
Childhood neurotransmitter disorders are increasingly recognised as an expanding group of inherited neurometabolic syndromes. They are caused by disturbance in synthesis, metabolism, and homeostasis of the monoamine neurotransmitters, including the catecholamines (dopamine, norepinephrine, and epinephrine) and serotonin. Disturbances in monoamine neurotransmission will lead to neurological symptoms that often overlap with clinical features of other childhood neurological disorders (such as hypoxic ischaemic encephalopathy, cerebral palsy, other movement disorders, and paroxysmal conditions); consequently, neurotransmitter disorders are frequently misdiagnosed. The diagnosis of neurotransmitter disorders is made through detailed clinical assessment, analysis of cerebrospinal fluid neurotransmitters, and further supportive diagnostic investigations. Early and accurate diagnosis of neurotransmitter disorders is important, as many are amenable to therapeutic intervention. The principles of treatment for monoamine neurotransmitter disorders are mainly directly derived from understanding these metabolic pathways. In disorders characterized by enzyme deficiency, we aim to increase monoamine substrate availability, boost enzyme co-factor levels, reduce monoamine breakdown, and replace depleted levels of monoamines with pharmacological analogs as clinically indicated. Most monoamine neurotransmitter disorders lead to reduced levels of central dopamine and/or serotonin. Complete amelioration of motor symptoms is achievable in some disorders, such as Segawa's syndrome, and, in other conditions, significant improvement in quality of life can be attained with pharmacotherapy. In this review, we provide an overview of the clinical features and current treatment strategies for childhood monoamine neurotransmitter disorders.
Collapse
Affiliation(s)
- J. Ng
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London, London, UK
- Neurology, Great Ormond Street Hospital NHS Trust, London, UK
| | - S. J. R. Heales
- Clinical Chemistry, Great Ormond Street Hospital NHS Trust, London, UK
- Neurometabolic Unit, National Hospital of Neurology and Neurosurgery, London, UK
| | - M. A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London, London, UK
- Neurology, Great Ormond Street Hospital NHS Trust, London, UK
- Developmental Neurosciences, Room 111 Level 1 CMGU, UCL-Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
19
|
Abstract
Dystonia is a common movement disorder seen by neurologists in clinic. Genetic forms of the disease are important to recognize clinically and also provide valuable information about possible pathogenic mechanisms within the wider disorder. In the past few years, with the advent of new sequencing technologies, there has been a step change in the pace of discovery in the field of dystonia genetics. In just over a year, four new genes have been shown to cause primary dystonia (CIZ1, ANO3, TUBB4A and GNAL), PRRT2 has been identified as the cause of paroxysmal kinesigenic dystonia and other genes, such as SLC30A10 and ATP1A3, have been linked to more complicated forms of dystonia or new phenotypes. In this review, we provide an overview of the current state of knowledge regarding genetic forms of dystonia—related to both new and well-known genes alike—and incorporating genetic, clinical and molecular information. We discuss the mechanistic insights provided by the study of the genetic causes of dystonia and provide a helpful clinical algorithm to aid clinicians in correctly predicting the genetic basis of various forms of dystonia.
Collapse
Affiliation(s)
- Gavin Charlesworth
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | | |
Collapse
|
20
|
Abstract
Dystonia has been defined as a syndrome of involuntary, sustained muscle contractions affecting one or more sites of the body, frequently causing twisting and repetitive movements or abnormal postures. Dystonia is also a clinical sign that can be the presenting or prominent manifestation of many neurodegenerative and neurometabolic disorders. Etiological categories include primary dystonia, secondary dystonia, heredodegenerative diseases with dystonia, and dystonia plus. Primary dystonia includes syndromes in which dystonia is the sole phenotypic manifestation with the exception that tremor can be present as well. Most primary dystonia begins in adults, and approximately 10% of probands report one or more affected family members. Many cases of childhood- and adolescent-onset dystonia are due to mutations in TOR1A and THAP1. Mutations in THAP1 and CIZ1 have been associated with sporadic and familial adult-onset dystonia. Although significant recent progress had been made in defining the genetic basis for most of the dystonia-plus and heredodegenerative diseases with dystonia, a major gap remains in understanding the genetic etiologies for most cases of adult-onset primary dystonia. Common themes in the cellular biology of dystonia include G1/S cell cycle control, monoaminergic neurotransmission, mitochondrial dysfunction, and the neuronal stress response.
Collapse
Affiliation(s)
- Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
21
|
Exome sequencing identifies GCDH (glutaryl-CoA dehydrogenase) mutations as a cause of a progressive form of early-onset generalized dystonia. Hum Genet 2011; 131:435-42. [DOI: 10.1007/s00439-011-1086-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/28/2011] [Indexed: 01/20/2023]
|
22
|
The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 2011; 10:721-33. [DOI: 10.1016/s1474-4422(11)70141-7] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Bodzioch M, Lapicka-Bodzioch K, Rudzinska M, Pietrzyk JJ, Bik-Multanowski M, Szczudlik A. Severe dystonic encephalopathy without hyperphenylalaninemia associated with an 18-bp deletion within the proximal GCH1
promoter. Mov Disord 2010; 26:337-40. [DOI: 10.1002/mds.23364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 11/06/2022] Open
|
24
|
Opladen T, Hoffmann G, Hörster F, Hinz AB, Neidhardt K, Klein C, Wolf N. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 2010; 26:157-61. [DOI: 10.1002/mds.23329] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/18/2010] [Accepted: 06/02/2010] [Indexed: 11/10/2022] Open
|
25
|
Pons R. The phenotypic spectrum of paediatric neurotransmitter diseases and infantile parkinsonism. J Inherit Metab Dis 2009; 32:321-32. [PMID: 19107571 DOI: 10.1007/s10545-008-1007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/15/2008] [Accepted: 10/17/2008] [Indexed: 11/28/2022]
Abstract
Paediatric neurotransmitter diseases are a group of inherited disorders attributable to a disturbance of neurotransmitter metabolism. The monoamines, catecholamines and serotonin, also called biogenic amines, are neurotransmitters with multiple roles including psychomotor function, hormone secretion, cardiovascular, respiratory and gastrointestinal control, sleep mechanisms, body temperature and pain. Given the multiple functions of monoamines, disorders of their metabolism comprise a wide spectrum of manifestations, with motor dysfunction being the most prominent clinical feature. The severity of the clinical manifestations ranges from mild to severe. Patients with severe and intermediate phenotypes may present with infantile parkinsonism that differs in a number of aspects from the parkinsonism in nigrostriatal degeneration. Analysis of monoamine metabolites and pterins in spinal fluid assists in the diagnosis of these disorders. Treatment options include tetrahydrobiopterin supplementation, L: -dopa, 5-hydroxytryptophan, and medications that potentiate monoamine transmission. Response to treatment is variable.
Collapse
Affiliation(s)
- R Pons
- First Department of Paediatrics, Agia Sofia Hospital, Thivon & Papadiamantopoulou, Athens 115 27, Greece.
| |
Collapse
|
26
|
Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis 2009; 32:333-42. [PMID: 19234759 DOI: 10.1007/s10545-009-1067-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 11/25/2022]
Abstract
Defects in the metabolism or regeneration of tetrahydrobiopterin (BH4) were initially discovered in patients with hyperphenylalaninaemia who had progressive neurological deterioration despite optimal metabolic control (malignant hyperphenylalaninaemia). BH4 is an essential cofactor not only for phenylalanine hydroxylase, but also for tyrosine and two tryptophan hydroxylases, three nitric oxide synthases, and glyceryl-ether monooxygenase. Defective activity of tyrosine and tryptophan hydroxylases explains the neurological deterioration in patients with BH4 deficiency with progressive mental and physical retardation, central hypotonia and peripheral spasticity, seizures and microcephaly. Five separate genetic conditions affect BH4 synthesis or regeneration: deficiency of GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase, sepiapterin reductase, dihydropteridine reductase (DHPR) and pterin-4alpha-carbinolamine dehydratase. Only the latter of these conditions is relatively benign and is associated with transient hyperphenylalaninaemia. All these conditions can be identified in newborns by an elevated phenylalanine, with the exception of sepiapterin reductase and the dominant form of GTP cyclohydrolase I deficiency that results in biopterin deficiency/insufficiency only in the brain. Diagnosis relies on the measurement of pterin metabolites in urine, dihydropteridine reductase in blood spots, neurotransmitters and pterins in the CSF and on the demonstration of reduced enzyme activity (red blood cells or fibroblasts) or causative mutations in the relative genes. The outcome of BH4 deficiency is no longer malignant if therapy is promptly initiated to reduce plasma phenylalanine levels and replace missing neurotransmitters. This is accomplished by a special diet and/or BH4 supplements and administration of L-dopa, carbidopa, 5-hydroxytryptophan, and, in certain cases, a MAO-B inhibitor. Patients with DHPR deficiency also require folinic acid supplements, since DHPR may help in maintaining folate in the tetrahydro form. Several patients with BH4 deficiency treated since the newborn period have reached adult age with good outcome.
Collapse
Affiliation(s)
- Nicola Longo
- Division of Medical Genetics, Department of Pediatrics and Pathology, University of Utah, 2C 412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
27
|
Zschocke J. Dominant versus recessive: molecular mechanisms in metabolic disease. J Inherit Metab Dis 2008; 31:599-618. [PMID: 18932014 DOI: 10.1007/s10545-008-1016-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 12/17/2022]
Abstract
Inborn errors of metabolism used to be regarded as simple monogenic traits, but a closer look at how different alleles of a gene determine different phenotypes shows that the molecular mechanisms in the individual case are often complicated. Most metabolic disorders represent a spectrum of phenotypes from normal via attenuated to severe (and sometimes prenatally fatal), and disease manifestation is often influenced by other specific genetic or exogenous factors. The terms 'dominant' or 'recessive' relate to the functional consequences of differing alleles in the (compound) heterozygous individual; the terms are irrelevant for homozygous individuals and inappropriate for X-linked disorders. Mutations affecting the same amino acid residue may be associated with different inheritance patterns. True dominant inheritance in metabolism is rare; it may be found e.g. in tightly regulated biosynthetic pathways or when minor changes in metabolite concentrations have a functional effect. Some disorders such as erythropoietic protoporphyria show pseudodominant inheritance due to prevalent loss-of-function polymorphisms in the general population and are better acknowledged as recessive traits. The term 'variable expressivity' is not helpful with regard to autosomal recessive disorders when variable phenotypes are explained by different mutations in the respective gene. Clonal unmasking of a heterozygous mutation through somatic loss of the second allele, the main pathomechanism in inherited tumour predisposition syndromes, is rare in metabolic disorders, but focal congenital hyperinsulinism is a notable exception. Somatic mosaicism for an OTC gene mutation is given as an example of an apparently heterozygous mutation pattern in a boy with an X-linked disease.
Collapse
Affiliation(s)
- Johannes Zschocke
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|