1
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
2
|
Jauze L, Vie M, Miagoux Q, Rossiaud L, Vidal P, Montalvo-Romeral V, Saliba H, Jarrige M, Polveche H, Nozi J, Le Brun PR, Bocchialini L, Francois A, Cosette J, Rouillon J, Collaud F, Bordier F, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele NF, Gross DA, Hoch L, Nissan X, Ronzitti G. Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver. JCI Insight 2024; 9:e172614. [PMID: 38753465 PMCID: PMC11382881 DOI: 10.1172/jci.insight.172614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
Collapse
Affiliation(s)
- Louisa Jauze
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Mallaury Vie
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Quentin Miagoux
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucille Rossiaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Valle Montalvo-Romeral
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Hanadi Saliba
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Margot Jarrige
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Helene Polveche
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Justine Nozi
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Luca Bocchialini
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Amandine Francois
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Jérémy Rouillon
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Fanny Collaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | | | | | | | | | | | - David-Alexandre Gross
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| |
Collapse
|
3
|
Uehara K, Lee WD, Stefkovich M, Biswas D, Santoleri D, Garcia Whitlock A, Quinn W, Coopersmith T, Creasy KT, Rader DJ, Sakamoto K, Rabinowitz JD, Titchenell PM. mTORC1 controls murine postprandial hepatic glycogen synthesis via Ppp1r3b. J Clin Invest 2024; 134:e173782. [PMID: 38290087 PMCID: PMC10977990 DOI: 10.1172/jci173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
| | | | - Dipsikha Biswas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
| | | | | | | | - Kate Townsend Creasy
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Rader
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Liang JY, Wei HJ, Tang YY. Isthmin: A multifunctional secretion protein. Cytokine 2024; 173:156423. [PMID: 37979212 DOI: 10.1016/j.cyto.2023.156423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Isthmin is a polypeptide secreted by adipocytes that was first detected in Xenopus gastrula embryos. Recent studies have focused on the biological functions of isthmin in growth and development, angiogenesis, and metabolism. Distinct spatiotemporal expression of isthmin-1 (ISM-1) was observed during growth and development. ISM-1 plays an important role in the occurrence and development of cancer by regulating cell proliferation, migration, angiogenesis, and immune microenvironments. Moreover, ISM-1, as a newly identified insulin-like adipokine, increases adipocyte glucose uptake and inhibits hepatic lipid synthesis. However, the biological function of ISM-1 remains largely unknown. In this review, we highlight the structure and physiological functions of isthmin and explore its application potential, contributing to a better understanding of its function and providing prevention and treatment strategies for various diseases.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Hai-Jun Wei
- Department of Physiology, Hunan Polytechnic of Environment and Biology, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
5
|
Treatment Dilemma in Children with Late-Onset Pompe Disease. Genes (Basel) 2023; 14:genes14020362. [PMID: 36833288 PMCID: PMC9957524 DOI: 10.3390/genes14020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, there has been a significant increase in the diagnosis of asymptomatic Late-Onset Pompe Disease (LOPD) patients, who are detected via family screening or Newborn Screening (NBS). The dilemma is when to start Enzyme Replacement Therapy (ERT) in patients without any clinical sign of the disease, considering its important benefits in terms of loss of muscle but also its very high cost, risk of side effects, and long-term immunogenicity. Muscle Magnetic Resonance Imaging (MRI) is accessible, radiation-free, and reproducible; therefore, it is an important instrument for the diagnosis and follow-up of patients with LOPD, especially in asymptomatic cases. European guidelines suggest monitoring in asymptomatic LOPD cases with minimal MRI findings, although other guidelines consider starting ERT in apparently asymptomatic cases with initial muscle involvement (e.g., paraspinal muscles). We describe three siblings affected by LOPD who present compound heterozygosis and wide phenotypic variability. The three cases differ in age at presentation, symptoms, urinary tetrasaccharide levels, and MRI findings, confirming the significant phenotypic variability of LOPD and the difficulty in deciding when to start therapy.
Collapse
|
6
|
Baudot AD, Wang VMY, Leach JD, O’Prey J, Long JS, Paulus-Hock V, Lilla S, Thomson DM, Greenhorn J, Ghaffar F, Nixon C, Helfrich MH, Strathdee D, Pratt J, Marchesi F, Zanivan S, Ryan KM. Glycan degradation promotes macroautophagy. Proc Natl Acad Sci U S A 2022; 119:e2111506119. [PMID: 35737835 PMCID: PMC9245654 DOI: 10.1073/pnas.2111506119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.
Collapse
Affiliation(s)
- Alice D. Baudot
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Victoria M.-Y. Wang
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Josh D. Leach
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Jim O’Prey
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Jaclyn S. Long
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Viola Paulus-Hock
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Sergio Lilla
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - David M. Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - John Greenhorn
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Farah Ghaffar
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Colin Nixon
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Miep H. Helfrich
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Douglas Strathdee
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Judith Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Sara Zanivan
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Kevin M. Ryan
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
7
|
Mechanism of glycogen synthase inactivation and interaction with glycogenin. Nat Commun 2022; 13:3372. [PMID: 35690592 PMCID: PMC9188544 DOI: 10.1038/s41467-022-31109-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022] Open
Abstract
Glycogen is the major glucose reserve in eukaryotes, and defects in glycogen metabolism and structure lead to disease. Glycogenesis involves interaction of glycogenin (GN) with glycogen synthase (GS), where GS is activated by glucose-6-phosphate (G6P) and inactivated by phosphorylation. We describe the 2.6 Å resolution cryo-EM structure of phosphorylated human GS revealing an autoinhibited GS tetramer flanked by two GN dimers. Phosphorylated N- and C-termini from two GS protomers converge near the G6P-binding pocket and buttress against GS regulatory helices. This keeps GS in an inactive conformation mediated by phospho-Ser641 interactions with a composite “arginine cradle”. Structure-guided mutagenesis perturbing interactions with phosphorylated tails led to increased basal/unstimulated GS activity. We propose that multivalent phosphorylation supports GS autoinhibition through interactions from a dynamic “spike” region, allowing a tuneable rheostat for regulating GS activity. This work therefore provides insights into glycogen synthesis regulation and facilitates studies of glycogen-related diseases. Glycogen is a major energy reserve in eukaryotes and is synthesised in part by glycogenin (GN) and glycogen synthase (GS). Here, authors describe the structural basis of GS regulation, specifically the mechanism of inactivation by phosphorylation.
Collapse
|
8
|
Soria LR, Gurung S, De Sabbata G, Perocheau DP, De Angelis A, Bruno G, Polishchuk E, Paris D, Cuomo P, Motta A, Orford M, Khalil Y, Eaton S, Mills PB, Waddington SN, Settembre C, Muro AF, Baruteau J, Brunetti‐Pierri N. Beclin-1-mediated activation of autophagy improves proximal and distal urea cycle disorders. EMBO Mol Med 2021; 13:e13158. [PMID: 33369168 PMCID: PMC7863400 DOI: 10.15252/emmm.202013158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Urea cycle disorders (UCD) are inherited defects in clearance of waste nitrogen with high morbidity and mortality. Novel and more effective therapies for UCD are needed. Studies in mice with constitutive activation of autophagy unravelled Beclin-1 as druggable candidate for therapy of hyperammonemia. Next, we investigated efficacy of cell-penetrating autophagy-inducing Tat-Beclin-1 (TB-1) peptide for therapy of the two most common UCD, namely ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL) deficiencies. TB-1 reduced urinary orotic acid and improved survival under protein-rich diet in spf-ash mice, a model of OTC deficiency (proximal UCD). In AslNeo/Neo mice, a model of ASL deficiency (distal UCD), TB-1 increased ureagenesis, reduced argininosuccinate, and improved survival. Moreover, it alleviated hepatocellular injury and decreased both cytoplasmic and nuclear glycogen accumulation in AslNeo/Neo mice. In conclusion, Beclin-1-dependent activation of autophagy improved biochemical and clinical phenotypes of proximal and distal defects of the urea cycle.
Collapse
Affiliation(s)
| | - Sonam Gurung
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Giulia De Sabbata
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | | | - Debora Paris
- Institute of Biomolecular Chemistry, National Research CouncilPozzuoliItaly
| | - Paola Cuomo
- Institute of Biomolecular Chemistry, National Research CouncilPozzuoliItaly
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research CouncilPozzuoliItaly
| | - Michael Orford
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Youssef Khalil
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Simon N Waddington
- UCL Great Ormond Street Institute of Child HealthLondonUK
- Wits/SAMRC Antiviral Gene Therapy Research UnitFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Andrés F Muro
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Julien Baruteau
- UCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Nicola Brunetti‐Pierri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineFederico II UniversityNaplesItaly
| |
Collapse
|
9
|
Huang HP, Chiang W, Stone L, Kang CK, Chuang CY, Kuo HC. Using human Pompe disease-induced pluripotent stem cell-derived neural cells to identify compounds with therapeutic potential. Hum Mol Genet 2020; 28:3880-3894. [PMID: 31518394 DOI: 10.1093/hmg/ddz218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022] Open
Abstract
Pompe disease (OMIM # 232300) is a glycogen storage disease caused by autosomal recessive mutations of the gene encoding alpha-1,4-glucosidase (GAA; EC 3.2.1.20). Despite the relatively effective employment of enzyme replacement therapy, some critical medical issues still exist in patients with this disease, including the persistence of abnormalities in the central nervous system (CNS), probably because of the inability of the recombinant GAA to pass through the blood-brain barrier. To address this issue, identification of more therapeutic agents that target the CNS of patients with Pompe disease may be required. In this study, we derived neuronal cells from Pompe disease-induced pluripotent stem cells (Pom-iPSCs) and proved that they are able to recapitulate the hallmark cellular and biochemical phenotypes of Pompe disease. Using the Pom-iPSC-derived neurons as an in vitro drug-testing model, we then identified three compounds, ebselen, wortmannin and PX-866, with therapeutic potential to alleviate Pompe disease-associated pathological phenotypes in the neurons derived from Pom-iPSCs. We confirmed that all three compounds were able to enhance the GAA activity in the Pom-iPSC-derived neurons. Moreover, they were able to enhance the GAA activity in several important internal organs of GAA-deficient mice when co-injected with recombinant human GAA, and we found that intraperitoneal injection of ebselen was able to promote the GAA activity of the GAA-heterozygous mouse brain. Our results prove the usefulness of Pom-iPSC-derived neuronal populations for identifying new compounds with therapeutic potential.
Collapse
Affiliation(s)
- Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Wei Chiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lee Stone
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Kai Kang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Ching-Yu Chuang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hung-Chih Kuo
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Stok M, de Boer H, Huston MW, Jacobs EH, Roovers O, Visser TP, Jahr H, Duncker DJ, van Deel ED, Reuser AJJ, van Til NP, Wagemaker G. Lentiviral Hematopoietic Stem Cell Gene Therapy Corrects Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1014-1025. [PMID: 32462050 PMCID: PMC7240064 DOI: 10.1016/j.omtm.2020.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder characterized by progressive muscle weakness. The disease is caused by mutations in the acid α-glucosidase (GAA) gene. Despite the currently available enzyme replacement therapy (ERT), roughly half of the infants with Pompe disease die before the age of 3 years. Limitations of ERT are immune responses to the recombinant enzyme, incomplete correction of the disease phenotype, lifelong administration, and inability of the enzyme to cross the blood-brain barrier. We previously reported normalization of glycogen in heart tissue and partial correction of the skeletal muscle phenotype by ex vivo hematopoietic stem cell gene therapy. In the present study, using a codon-optimized GAA (GAAco), the enzyme levels resulted in close to normalization of glycogen in heart, muscles, and brain, and in complete normalization of motor function. A large proportion of microglia in the brain was shown to be GAA positive. All astrocytes contained the enzyme, which is in line with mannose-6-phosphate receptor expression and the key role in glycogen storage and glucose metabolism. The lentiviral vector insertion site analysis confirmed no preference for integration near proto-oncogenes. This correction of murine Pompe disease warrants further development toward a cure of the human condition.
Collapse
Affiliation(s)
- Merel Stok
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Helen de Boer
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marshall W Huston
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Edwin H Jacobs
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Onno Roovers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Trudi P Visser
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Holger Jahr
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elza D van Deel
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Arnold J J Reuser
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Niek P van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Tang B, Frasinyuk MS, Chikwana VM, Mahalingan KK, Morgan CA, Segvich DM, Bondarenko SP, Mrug GP, Wyrebek P, Watt DS, DePaoli-Roach AA, Roach PJ, Hurley TD. Discovery and Development of Small-Molecule Inhibitors of Glycogen Synthase. J Med Chem 2020; 63:3538-3551. [PMID: 32134266 DOI: 10.1021/acs.jmedchem.9b01851] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The overaccumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Accumulating evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these GSDs. Using a fluorescence polarization assay designed to screen for inhibitors of the key glycogen synthetic enzyme, glycogen synthase (GS), we identified a substituted imidazole, (rac)-2-methoxy-4-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenyl-1H-imidazol-5-yl)phenol (H23), as a first-in-class inhibitor for yeast GS 2 (yGsy2p). Data from X-ray crystallography at 2.85 Å, as well as kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2p. The high conservation of residues between human and yeast GS in direct contact with H23 informed the development of around 500 H23 analogs. These analogs produced a structure-activity relationship profile that led to the identification of a substituted pyrazole, 4-(4-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrogallol, with a 300-fold improved potency against human GS. These substituted pyrazoles possess a promising scaffold for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.
Collapse
Affiliation(s)
- Buyun Tang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Mykhaylo S Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv 02094, Ukraine.,National University of Food Technologies, Kyiv 01601, Ukraine
| | - Vimbai M Chikwana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Krishna K Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Cynthia A Morgan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | | | - Galyna P Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv 02094, Ukraine.,National University of Food Technologies, Kyiv 01601, Ukraine
| | - Przemyslaw Wyrebek
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506, Kentucky, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington 40536, Kentucky, United States
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506, Kentucky, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington 40536, Kentucky, United States.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| |
Collapse
|
13
|
Palhegyi AM, Seranova E, Dimova S, Hoque S, Sarkar S. Biomedical Implications of Autophagy in Macromolecule Storage Disorders. Front Cell Dev Biol 2019; 7:179. [PMID: 31555645 PMCID: PMC6742707 DOI: 10.3389/fcell.2019.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
An imbalance between the production and clearance of macromolecules such as proteins, lipids and carbohydrates can lead to a category of diseases broadly known as macromolecule storage disorders. These include, but not limited to, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease associated with accumulation of aggregation-prone proteins, Lafora and Pompe disease associated with glycogen accumulation, whilst lipid accumulation is characteristic to Niemann-Pick disease and Gaucher disease. One of the underlying factors contributing to the build-up of macromolecules in these storage disorders is the intracellular degradation pathway called autophagy. This process is the primary clearance route for unwanted macromolecules, either via bulk non-selective degradation, or selectively via aggrephagy, glycophagy and lipophagy. Since autophagy plays a vital role in maintaining cellular homeostasis, cell viability and human health, malfunction of this process could be detrimental. Indeed, defective autophagy has been reported in a number of macromolecule storage disorders where autophagy is impaired at distinct stages, such as at the level of autophagosome formation, autophagosome maturation or improper lysosomal degradation of the autophagic cargo. Of biomedical relevance, autophagy is regulated by multiple signaling pathways that are amenable to chemical perturbations by small molecules. Induction of autophagy has been shown to improve cell viability and exert beneficial effects in experimental models of various macromolecule storage disorders where the lysosomal functionality is not overtly compromised. In this review, we will discuss the role of autophagy in certain macromolecule storage disorders and highlight the potential therapeutic benefits of autophagy enhancers in these pathological conditions.
Collapse
Affiliation(s)
- Adina Maria Palhegyi
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Elena Seranova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Simona Dimova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sheabul Hoque
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sovan Sarkar
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
15
|
Activated mTOR signaling pathway in myofibers with inherited metabolic defect might be an evidence for mTOR inhibition therapies. Chin Med J (Engl) 2019; 132:805-810. [PMID: 30897595 PMCID: PMC6595864 DOI: 10.1097/cm9.0000000000000144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Abnormally activated mechanistic target of rapamycin (mTOR) pathway has been reported in several model animals with inherited metabolic myopathies (IMMs). However, the profiles of mTOR pathway in skeletal muscles from patients are still unknown. This study aimed to analyze the activity of mTOR pathway in IMMs muscles. Methods: We collected muscle samples from 25 patients with mitochondrial myopathy (MM), lipid storage disease (LSD) or Pompe disease (PD). To evaluate the activity of mTOR pathway in muscle specimens, phosphorylation of S6 ribosomal protein (p-S6) and p70S6 kinase (p-p70S6K) were analyzed by Western blotting and immunohistochemistry. Results: Western blotting results showed that p-p70S6K/p70S6K in muscles from LSD and MM was up-regulated when compared with normal controls (NC) (NC vs. LSD, U = 2.000, P = 0.024; NC vs. MM: U = 6.000, P = 0.043). Likewise, p-S6/S6 was also up-regulated in muscles from all three subgroups of IMMs (NC vs. LSD, U = 0.000, P = 0.006; NC vs. PD, U = 0.000, P = 0.006; NC vs. MM, U = 1.000, P = 0.007). Immunohistochemical study revealed that p-S6 was mainly expressed in fibers with metabolic defect. In MM muscles, most p-S6 positive fibers showed cytochrome C oxidase (COX) deficiency (U = 5.000, P = 0.001). In LSD and PD muscles, p-S6 was mainly overexpressed in fibers with intramuscular vacuoles containing lipid droplets (U = 0.000, P = 0.002) or basophilic materials (U = 0.000, P = 0.002). Conclusion: The mTOR pathway might be activated in myofibers with various metabolic defects, which might provide evidence for mTOR inhibition therapy in human IMMs.
Collapse
|
16
|
Kakhlon O, Ferreira I, Solmesky LJ, Khazanov N, Lossos A, Alvarez R, Yetil D, Pampou S, Weil M, Senderowitz H, Escriba P, Yue WW, Akman HO. Guaiacol as a drug candidate for treating adult polyglucosan body disease. JCI Insight 2018; 3:99694. [PMID: 30185673 DOI: 10.1172/jci.insight.99694] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022] Open
Abstract
Adult polyglucosan body disease (APBD) is a late-onset disease caused by intracellular accumulation of polyglucosan bodies, formed due to glycogen-branching enzyme (GBE) deficiency. To find a treatment for APBD, we screened 1,700 FDA-approved compounds in fibroblasts derived from APBD-modeling GBE1-knockin mice. Capitalizing on fluorescent periodic acid-Schiff reagent, which interacts with polyglucosans in the cell, this screen discovered that the flavoring agent guaiacol can lower polyglucosans, a result also confirmed in APBD patient fibroblasts. Biochemical assays showed that guaiacol lowers basal and glucose 6-phosphate-stimulated glycogen synthase (GYS) activity. Guaiacol also increased inactivating GYS1 phosphorylation and phosphorylation of the master activator of catabolism, AMP-dependent protein kinase. Guaiacol treatment in the APBD mouse model rescued grip strength and shorter lifespan. These treatments had no adverse effects except making the mice slightly hyperglycemic, possibly due to the reduced liver glycogen levels. In addition, treatment corrected penile prolapse in aged GBE1-knockin mice. Guaiacol's curative effects can be explained by its reduction of polyglucosans in peripheral nerve, liver, and heart, despite a short half-life of up to 60 minutes in most tissues. Our results form the basis to use guaiacol as a treatment and prepare for the clinical trials in APBD.
Collapse
Affiliation(s)
- Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Igor Ferreira
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Leonardo J Solmesky
- Cell Screening Facility for Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Alexander Lossos
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rafael Alvarez
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Deniz Yetil
- Connecticut College, Newington, Connecticut USA
| | - Sergey Pampou
- Columbia University Department of Systems Biology Irving Cancer Research Center, New York, New York, USA
| | - Miguel Weil
- Cell Screening Facility for Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | | - Pablo Escriba
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - H Orhan Akman
- Columbia University Medical Center Department of Neurology, Houston Merritt Neuromuscular diseases research center, New York, New York, USA
| |
Collapse
|
17
|
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 2017; 61:733-749. [PMID: 29233882 PMCID: PMC5869865 DOI: 10.1042/ebc20170055] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.
Collapse
|
18
|
Kakhlon O. Pharmacological approaches for treating glycogen storage disorders involving polyglucosan body accumulation. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1405804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Or Kakhlon
- Department of Neurology, Hadassah Medical Association, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
19
|
Lim JA, Li L, Shirihai OS, Trudeau KM, Puertollano R, Raben N. Modulation of mTOR signaling as a strategy for the treatment of Pompe disease. EMBO Mol Med 2017; 9:353-370. [PMID: 28130275 PMCID: PMC5331267 DOI: 10.15252/emmm.201606547] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) coordinates biosynthetic and catabolic processes in response to multiple extracellular and intracellular signals including growth factors and nutrients. This serine/threonine kinase has long been known as a critical regulator of muscle mass. The recent finding that the decision regarding its activation/inactivation takes place at the lysosome undeniably brings mTOR into the field of lysosomal storage diseases. In this study, we have examined the involvement of the mTOR pathway in the pathophysiology of a severe muscle wasting condition, Pompe disease, caused by excessive accumulation of lysosomal glycogen. Here, we report the dysregulation of mTOR signaling in the diseased muscle cells, and we focus on potential sites for therapeutic intervention. Reactivation of mTOR in the whole muscle of Pompe mice by TSC knockdown resulted in the reversal of atrophy and a striking removal of autophagic buildup. Of particular interest, we found that the aberrant mTOR signaling can be reversed by arginine. This finding can be translated into the clinic and may become a paradigm for targeted therapy in lysosomal, metabolic, and neuromuscular diseases.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.,Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kyle M Trudeau
- Department of Medicine, Obesity and Nutrition Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
A novel image-based high-throughput screening assay discovers therapeutic candidates for adult polyglucosan body disease. Biochem J 2017; 474:3403-3420. [PMID: 28827282 DOI: 10.1042/bcj20170469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 01/26/2023]
Abstract
Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.
Collapse
|
21
|
Lim HH, Yi H, Kishimoto TK, Gao F, Sun B, Kishnani PS. A pilot study on using rapamycin-carrying synthetic vaccine particles (SVP) in conjunction with enzyme replacement therapy to induce immune tolerance in Pompe disease. Mol Genet Metab Rep 2017; 13:18-22. [PMID: 28761815 PMCID: PMC5524423 DOI: 10.1016/j.ymgmr.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
A major obstacle to enzyme replacement therapy (ERT) with recombinant human acid-α-glucosidase (rhGAA) for Pompe disease is the development of high titers of anti-rhGAA antibodies in a subset of patients, which often leads to a loss of treatment efficacy. In an effort to induce sustained immune tolerance to rhGAA, we supplemented the rhGAA therapy with a weekly intravenous injection of synthetic vaccine particles carrying rapamycin (SVP-Rapa) during the first 3 weeks of a 12-week course of ERT in GAA-KO mice, and compared this with three intraperitoneal injections of methotrexate (MTX) per week for the first 3 weeks. Empty nanoparticles (NP) were used as negative control for SVP-Rapa. Co-administration of SVP-Rapa with rhGAA resulted in more durable inhibition of anti-rhGAA antibody responses, higher efficacy in glycogen clearance in skeletal muscles, and greater improvement of motor function than mice treated with empty NP or MTX. Body weight loss was observed during the MTX-treatment but not SVP-Rapa-treatment. Our data suggest that co-administration of SVP-Rapa may be an innovative and safe strategy to induce durable immune tolerance to rhGAA during the ERT in patients with Pompe disease, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Han-Hyuk Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Haiqing Yi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | | | - Fengqin Gao
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
22
|
Mishra N, Wang P, Goldsmith D, Zhao X, Xue Y, Christians U, Minassian BA. Everolimus does not prevent Lafora body formation in murine Lafora disease. NEUROLOGY-GENETICS 2017; 3:e127. [PMID: 28097224 PMCID: PMC5224705 DOI: 10.1212/nxg.0000000000000127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/07/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Navin Mishra
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| | - Peixiang Wang
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| | - Danielle Goldsmith
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| | - Xiaochu Zhao
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| | - Yunlin Xue
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| | - Uwe Christians
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| | - Berge A Minassian
- Department of Paediatrics (Neurology) (N.M., B.A.M.) and Program in Genetics and Genome Biology (P.W., D.G., X.Z., Y.X., B.A.M.), The Hospital for Sick Children and University of Toronto, Canada; and iC42 Clinical Research and Development (U.C.), Department of Anesthesiology, University of Colorado, Denver
| |
Collapse
|
23
|
Coutinho MF, Santos JI, Matos L, Alves S. Genetic Substrate Reduction Therapy: A Promising Approach for Lysosomal Storage Disorders. Diseases 2016; 4:diseases4040033. [PMID: 28933412 PMCID: PMC5456330 DOI: 10.3390/diseases4040033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023] Open
Abstract
Lysosomal storage diseases are a group of rare genetic disorders characterized by the accumulation of storage molecules in late endosomes/lysosomes. Most of them result from mutations in genes encoding for the catabolic enzymes that ensure intralysosomal digestion. Conventional therapeutic options include enzyme replacement therapy, an approach targeting the functional loss of the enzyme by injection of a recombinant one. Even though this is successful for some diseases, it is mostly effective for peripheral manifestations and has no impact on neuropathology. The development of alternative therapeutic approaches is, therefore, mandatory, and striking innovations including the clinical development of pharmacological chaperones and gene therapy are currently under evaluation. Most of them, however, have the same underlying rationale: an attempt to provide or enhance the activity of the missing enzyme to re-establish substrate metabolism to a level that is consistent with a lack of progression and/or return to health. Here, we will focus on the one approach which has a different underlying principle: substrate reduction therapy (SRT), whose uniqueness relies on the fact that it acts upstream of the enzymatic defect, decreasing storage by downregulating its biosynthetic pathway. Special attention will be given to the most recent advances in the field, introducing the concept of genetic SRT (gSRT), which is based on the use of RNA-degrading technologies (RNA interference and single stranded antisense oligonucleotides) to promote efficient substrate reduction by decreasing its synthesis rate.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, INSA, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, INSA, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, INSA, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, INSA, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| |
Collapse
|
24
|
Neel BA, Zong H, Backer JM, Pessin JE. Identification of Atypical Peri-Nuclear Multivesicular Bodies in Oxidative and Glycolytic Skeletal Muscle of Aged and Pompe's Disease Mouse Models. Front Physiol 2015; 6:393. [PMID: 26733885 PMCID: PMC4685069 DOI: 10.3389/fphys.2015.00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/02/2015] [Indexed: 01/10/2023] Open
Abstract
Muscle wasting that occurs during aging or from disease pathology presents with an accumulation of lipid species termed ceroid or lipofuscin. This unique species of lipid has been characterized in various cell types but its properties and organization in skeletal muscle remains unclear. Using immunofluorescence and transmission electron microscopy, we were able to visualize and characterize an atypical lipid storing organelle in skeletal muscle. White myofibers contain two organelles at each pole of the myonuclei and red myofibers contain many of these structures in and around the perinuclear space. These organelles contain markers for late endosomes, are morphologically similar to multivesicular bodies, store lipid, and hypertrophy in aged muscle and a model of muscle wasting with an accumulation of large amounts of lipofuscin. Rapamycin treatment reduces the multivesicular body hypertrophy, restores late endosomal protein markers, and also increases the number and intensity of lipofuscin deposits. Together, these data demonstrate for the first time a perinuclear organelle in skeletal muscle that hypertrophies in muscle wasting phenotypes and is involved in endocytic lipid storage.
Collapse
Affiliation(s)
- Brian A Neel
- Department of Medicine, Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | - Haihong Zong
- Department of Medicine, Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronx, NY, USA; Department of Biochemistry, Albert Einstein College of MedicineNew York, NY, USA
| | - Jeffrey E Pessin
- Department of Medicine, Price Center for Genetic and Translational Medicine, Albert Einstein College of MedicineBronx, NY, USA; Department of Molecular Pharmacology, Albert Einstein College of MedicineBronx, NY, USA
| |
Collapse
|
25
|
Nilsson MI, MacNeil LG, Kitaoka Y, Suri R, Young SP, Kaczor JJ, Nates NJ, Ansari MU, Wong T, Ahktar M, Brandt L, Hettinga BP, Tarnopolsky MA. Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease. Free Radic Biol Med 2015; 87:98-112. [PMID: 26001726 DOI: 10.1016/j.freeradbiomed.2015.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
A unifying feature in the pathogenesis of aging, neurodegenerative disease, and lysosomal storage disorders is the progressive deposition of macromolecular debris impervious to enzyme catalysis by cellular waste disposal mechanisms (e.g., lipofuscin). Aerobic exercise training (AET) has pleiotropic effects and stimulates mitochondrial biogenesis, antioxidant defense systems, and autophagic flux in multiple organs and tissues. Our aim was to explore the therapeutic potential of AET as an ancillary therapy to mitigate autophagic buildup and oxidative damage and rejuvenate the mitochondrial-lysosomal axis in Pompe disease (GSD II/PD). Fourteen weeks of combined recombinant acid α-glucosidase (rhGAA) and AET polytherapy attenuated mitochondrial swelling, fortified antioxidant defense systems, reduced oxidative damage, and augmented glycogen clearance and removal of autophagic debris/lipofuscin in fast-twitch skeletal muscle of GAA-KO mice. Ancillary AET potently augmented the pool of PI4KA transcripts and exerted a mild restorative effect on Syt VII and VAMP-5/myobrevin, collectively suggesting improved endosomal transport and Ca(2+)- mediated lysosomal exocytosis. Compared with traditional rhGAA monotherapy, AET and rhGAA polytherapy effectively mitigated buildup of protein carbonyls, autophagic debris/lipofuscin, and P62/SQSTM1, while enhancing MnSOD expression, nuclear translocation of Nrf-2, muscle mass, and motor function in GAA-KO mice. Combined AET and rhGAA therapy reactivates cellular clearance pathways, mitigates mitochondrial senescence, and strengthens antioxidant defense systems in GSD II/PD. Aerobic exercise training (or pharmacologic targeting of contractile-activity-induced pathways) may have therapeutic potential for mitochondrial-lysosomal axis rejuvenation in lysosomal storage disorders and related conditions (e.g., aging and neurodegenerative disease).
Collapse
Affiliation(s)
- M I Nilsson
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - L G MacNeil
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Y Kitaoka
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - R Suri
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - S P Young
- Department of Pediatrics, Division of Medical Genetics/Duke University Medical Center, Durham, NC, USA
| | - J J Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, Poland
| | - N J Nates
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M U Ansari
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - T Wong
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M Ahktar
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - L Brandt
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - B P Hettinga
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - M A Tarnopolsky
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
26
|
Chandramouli C, Varma U, Stevens EM, Xiao RP, Stapleton DI, Mellor KM, Delbridge LMD. Myocardial glycogen dynamics: New perspectives on disease mechanisms. Clin Exp Pharmacol Physiol 2015; 42:415-25. [DOI: 10.1111/1440-1681.12370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | - Upasna Varma
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - Ellie M Stevens
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Rui-Ping Xiao
- Institute of Molecular Medicine; Peking University; Beijing China
| | - David I Stapleton
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- The Florey Institute of Neuroscience; Melbourne Vic. Australia
| | - Kimberley M Mellor
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lea MD Delbridge
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
27
|
Clayton NP, Nelson CA, Weeden T, Taylor KM, Moreland RJ, Scheule RK, Phillips L, Leger AJ, Cheng SH, Wentworth BM. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e206. [PMID: 25350581 PMCID: PMC4217081 DOI: 10.1038/mtna.2014.57] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/16/2014] [Indexed: 01/10/2023]
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20) and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA) has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis) as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO) designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1) was identified and conjugated to a cell penetrating peptide (GS-PPMO) to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development.
Collapse
Affiliation(s)
| | - Carol A Nelson
- Translational Medicine Consulting, Westford, Massachusetts, USA
| | - Timothy Weeden
- Genzyme, A Sanofi Company, Framingham, Massachusetts, USA
| | | | | | | | - Lucy Phillips
- Genzyme, A Sanofi Company, Framingham, Massachusetts, USA
| | - Andrew J Leger
- Genzyme, A Sanofi Company, Framingham, Massachusetts, USA
| | - Seng H Cheng
- Genzyme, A Sanofi Company, Framingham, Massachusetts, USA
| | | |
Collapse
|
28
|
Pederson BA, Turnbull J, Epp JR, Weaver SA, Zhao X, Pencea N, Roach PJ, Frankland PW, Ackerley CA, Minassian BA. Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann Neurol 2014; 74:297-300. [PMID: 23913475 DOI: 10.1002/ana.23899] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/10/2022]
Abstract
Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LBs are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis.
Collapse
|
29
|
Turnbull J, Epp JR, Goldsmith D, Zhao X, Pencea N, Wang P, Frankland PW, Ackerley CA, Minassian BA. PTG protein depletion rescues malin-deficient Lafora disease in mouse. Ann Neurol 2014; 75:442-6. [PMID: 24419970 DOI: 10.1002/ana.24104] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 11/11/2022]
Abstract
Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.
Collapse
Affiliation(s)
- Julie Turnbull
- Program in Genetics and Genome Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Correction of glycogen storage disease type III with rapamycin in a canine model. J Mol Med (Berl) 2014; 92:641-50. [PMID: 24509886 DOI: 10.1007/s00109-014-1127-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/27/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED Recently, we reported that progression of liver fibrosis and skeletal myopathy caused by extensive accumulation of cytoplasmic glycogen at advanced age is the major feature of a canine model of glycogen storage disease (GSD) IIIa. Here, we aim to investigate whether rapamycin, a specific inhibitor of mTOR, is an effective therapy for GSD III. Our data show that rapamycin significantly reduced glycogen content in primary muscle cells from human patients with GSD IIIa by suppressing the expression of glycogen synthase and glucose transporter 1. To test the treatment efficacy in vivo, rapamycin was daily administered to GSD IIIa dogs starting from age 2 (early-treatment group) or 8 months (late-treatment group), and liver and skeletal muscle biopsies were performed at age 12 and 16 months. In both treatment groups, muscle glycogen accumulation was not affected at age 12 months but significantly inhibited at 16 months. Liver glycogen content was reduced in the early-treatment group but not in the late-treatment group at age 12 months. Both treatments effectively reduced liver fibrosis at age 16 months, consistent with markedly inhibited transition of hepatic stellate cells into myofibroblasts, the central event in the process of liver fibrosis. Our results suggest a potential useful therapy for GSD III. KEY MESSAGES Rapamycin inhibited glycogen accumulation in GSD IIIa patient muscle cells. Rapamycin reduced muscle glycogen content in GSD IIIa dogs at advanced age. Rapamycin effectively prevented progression of liver fibrosis in GSD IIIa dogs. Our results suggest rapamycin as potential useful therapy for patients with GSD III.
Collapse
|
31
|
Farah BL, Madden L, Li S, Nance S, Bird A, Bursac N, Yen PM, Young SP, Koeberl DD. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease. FASEB J 2014; 28:2272-80. [PMID: 24448824 DOI: 10.1096/fj.13-244202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.
Collapse
Affiliation(s)
- Benjamin L Farah
- 2Duke University Medical Center, Box 103856, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Elder ME, Nayak S, Collins SW, Lawson LA, Kelley JS, Herzog RW, Modica RF, Lew J, Lawrence RM, Byrne BJ. B-Cell depletion and immunomodulation before initiation of enzyme replacement therapy blocks the immune response to acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr 2013; 163:847-54.e1. [PMID: 23601496 PMCID: PMC3981605 DOI: 10.1016/j.jpeds.2013.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 01/08/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate whether B-cell depletion before enzyme replacement therapy (ERT) initiation can block acid alpha-glucosidase (GAA) antibody responses and improve clinical outcomes. STUDY DESIGN Six subjects with Pompe disease (including 4 cross-reacting immunologic material-negative infants) aged 2-8 months received rituximab and sirolimus or mycophenolate before ERT. Four subjects continued to receive sirolimus, rituximab every 12 weeks, and intravenous immunoglobulin monthly for the duration of ERT. Sirolimus trough levels, IgG, CD3, CD4, CD8, CD19, CD20, N-terminal pro-brain natriuretic peptide, creatine kinase, creatine kinase-MB, C-reactive protein, platelets, alkaline phosphatase, gamma-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase were measured regularly. RESULTS Immunomodulation achieved B-cell depletion without adverse effects. After 17-36 months of rituximab, sirolimus and ERT, all subjects lacked antibodies against GAA, 4 continued to gain motor milestones, yet 2 progressed to require invasive ventilation. The absence of infusion-associated reactions allowed the use of accelerated infusion rates. CONCLUSION B-cell depletion and T-cell immunomodulation in infants naïve to ERT was accomplished safely and eliminated immune responses against GAA, thereby optimizing clinical outcome; however, this approach did not necessarily influence sustained independent ventilation. Importantly, study outcomes support the initiation of immunomodulation before starting ERT, because the study regimen allowed for prompt initiation of treatment.
Collapse
Affiliation(s)
- Melissa E. Elder
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Sushrusha Nayak
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | | | - Lee Ann Lawson
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Jeffry S. Kelley
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Renee F. Modica
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Judy Lew
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL,Powell Gene Therapy Center, University of Florida, Gainesville, FL
| |
Collapse
|
33
|
Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc Natl Acad Sci U S A 2013; 110:10812-7. [PMID: 23754387 DOI: 10.1073/pnas.1308421110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction is an important modulator of disease course in amyotrophic lateral sclerosis (ALS). We report here that a familial mouse model (transgenic mice over-expressing the G93A mutation of the Cu/Zn superoxide dismutase 1 gene) of ALS enters a progressive state of acidosis that is associated with several metabolic (hormonal) alternations that favor lipolysis. Extensive investigation of the major determinants of H(+) concentration (i.e., the strong ion difference and the strong ion gap) suggests that acidosis is also due in part to the presence of an unknown anion. Consistent with a compensatory response to avert pathological acidosis, ALS mice harbor increased accumulation of glycogen in CNS and visceral tissues. The altered glycogen is associated with fluctuations in lysosomal and neutral α-glucosidase activities. Disease-related changes in glycogen, glucose, and α-glucosidase activity are also found in spinal cord tissue samples of autopsied patients with ALS. Collectively, these data provide insights into the pathogenesis of ALS as well as potential targets for drug development.
Collapse
|
34
|
Kakhlon O, Glickstein H, Feinstein N, Liu Y, Baba O, Terashima T, Akman HO, Dimauro S, Lossos A. Polyglucosan neurotoxicity caused by glycogen branching enzyme deficiency can be reversed by inhibition of glycogen synthase. J Neurochem 2013; 127:101-13. [PMID: 23607684 DOI: 10.1111/jnc.12277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 12/25/2022]
Abstract
Uncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.1.18) expression using lentiviruses harboring short hairpin RNA (shRNA). GBE1 suppression in embryonic cortical neurons led to polyglucosan accumulation and associated apoptosis, which were reversible by rapamycin or starvation treatments. Further analysis revealed that rapamycin and starvation led to phosphorylation and inactivation of glycogen synthase (GS, EC 2.4.1.11), dephosphorylated and activated in the GBE1-suppressed neurons. These protective effects of rapamycin and starvation were reversed by overexpression of phosphorylation site mutant GS only if its glycogen binding site was intact. While rapamycin and starvation induce autophagy, autophagic maturation was not required for their corrective effects, which prevailed even if autophagic flux was inhibited by vinblastine. Furthermore, polyglucosans were not observed in any compartment along the autophagic pathway. Our data suggest that glycogen branching enzyme repression in glycogenoses can cause pathogenic polyglucosan buildup, which might be corrected by GS inhibition.
Collapse
Affiliation(s)
- Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Taylor KM, Meyers E, Phipps M, Kishnani PS, Cheng SH, Scheule RK, Moreland RJ. Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease. PLoS One 2013; 8:e56181. [PMID: 23457523 PMCID: PMC3572993 DOI: 10.1371/journal.pone.0056181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/25/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid α-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1 to 2 years of age to a slower progressive course that causes significant morbidity and early mortality in children and adults. The aim of this study is to better understand the biochemical consequences of glycogen accumulation in the Pompe mouse. We evaluated glycogen metabolism in heart, triceps, quadriceps, and liver from wild type and several strains of GAA−/− mice. Unexpectedly, we observed that lysosomal glycogen storage correlated with a robust increase in factors that normally promote glycogen biosynthesis. The GAA−/− mouse strains were found to have elevated glycogen synthase (GS), glycogenin, hexokinase, and glucose-6-phosphate (G-6-P, the allosteric activator of GS). Treating GAA−/− mice with recombinant human GAA (rhGAA) led to a dramatic reduction in the levels of glycogen, GS, glycogenin, and G-6-P. Lysosomal glycogen storage also correlated with a dysregulation of phosphorylase, which normally breaks down cytoplasmic glycogen. Analysis of phosphorylase activity confirmed a previous report that, although phosphorylase protein levels are identical in muscle lysates from wild type and GAA−/− mice, phosphorylase activity is suppressed in the GAA−/− mice in the absence of AMP. This reduction in phosphorylase activity likely exacerbates lysosomal glycogen accumulation. If the dysregulation in glycogen metabolism observed in the mouse model of Pompe disease also occurs in Pompe patients, it may contribute to the observed broad spectrum of disease severity.
Collapse
Affiliation(s)
- Kristin M. Taylor
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Elizabeth Meyers
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Michael Phipps
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Seng H. Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Ronald K. Scheule
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Rodney J. Moreland
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Richard E, Douillard-Guilloux G, Caillaud C. New insights into therapeutic options for Pompe disease. IUBMB Life 2011; 63:979-86. [PMID: 22002928 DOI: 10.1002/iub.529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022]
Abstract
Glycogen storage disease type II or Pompe disease (GSD II, MIM 232300) is a rare inherited metabolic myopathy caused by a deficiency of lysosomal acid α-glucosidase or acid maltase (GAA; EC 3.2.1.20), resulting in a massive lysosomal glycogen accumulation in cardiac and skeletal muscles. Affected individuals exhibit either severe hypotonia associated with hypertrophic cardiomyopathy (infantile forms) or progressive muscle weakness (late-onset forms). Even if enzyme replacement therapy has recently become a standard treatment, it suffers from several limitations. This review will present the main results of enzyme replacement therapy and the recent findings concerning alternative treatments for Pompe disease, such as gene therapy, enzyme enhancement therapy, and substrate reduction therapy.
Collapse
Affiliation(s)
- Emmanuel Richard
- Université de Bordeaux, Biothérapies des Maladies Génétiques et Cancers, U1035, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
38
|
Ashe KM, Bangari D, Li L, Cabrera-Salazar MA, Bercury SD, Nietupski JB, Cooper CGF, Aerts JMFG, Lee ER, Copeland DP, Cheng SH, Scheule RK, Marshall J. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease. PLoS One 2011; 6:e21758. [PMID: 21738789 PMCID: PMC3126858 DOI: 10.1371/journal.pone.0021758] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/06/2011] [Indexed: 12/14/2022] Open
Abstract
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.
Collapse
Affiliation(s)
- Karen M. Ashe
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Dinesh Bangari
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Lingyun Li
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | | | - Scott D. Bercury
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | | | | | | | - Edward R. Lee
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Diane P. Copeland
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Seng H. Cheng
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Ronald K. Scheule
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - John Marshall
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| |
Collapse
|