1
|
Kornbluh AB, Baldwin A, Fatemi A, Vanderver A, Adang LA, Van Haren K, Sampson J, Eichler FS, Sadjadi R, Engelen M, Orthmann-Murphy JL. Practical Approach to Longitudinal Neurologic Care of Adults With X-Linked Adrenoleukodystrophy and Adrenomyeloneuropathy. Neurol Genet 2024; 10:e200192. [PMID: 39372123 PMCID: PMC11450743 DOI: 10.1212/nxg.0000000000200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024]
Abstract
Although X-linked adrenoleukodystrophy (ALD) has historically been considered a childhood disease managed by pediatric neurologists, it is one of the most common leukodystrophies diagnosed in adulthood. An increase in both male and female adults reaching diagnosis due to familial cases identified by state newborn screening panels and more widespread use of genetic testing results in a large cohort of presymptomatic or early symptomatic adults. This population is in urgent need of standardized assessments and follow-up care. Adults with ALD/adrenomyeloneuropathy (AMN) may be diagnosed in a variety of ways, including after another family member is identified via genetic testing or newborn screening, presenting for symptomatic evaluation, or following diagnosis with primary adrenal insufficiency. Significant provider, patient, and systems-based barriers prevent adult patients with ALD/AMN from receiving appropriate care, including lack of awareness of the importance of longitudinal neurologic management. Confirmation of and education about the diagnosis should be coordinated in conjunction with a genetic counselor. Routine surveillance for adrenal insufficiency and onset of cerebral ALD (CALD) in men should be performed systematically to avoid preventable morbidity and mortality. While women with ALD do not usually develop cerebral demyelination or adrenal insufficiency, they remain at risk for myeloneuropathy and are no longer considered "carriers." After diagnosis, patients should be connected to the robust support networks, foundations, and research organizations available for ALD/AMN. Core principles of neurologic symptom management parallel those for patients with other etiologies of progressive spastic paraplegia. Appropriate patient candidates for hematopoietic stem cell transplant (HSCT) and other investigational disease-modifying strategies require early identification to achieve optimal outcomes. All patients with ALD/AMN, regardless of sex, age, or symptom severity, benefit from a multidisciplinary approach to longitudinal care spearheaded by the neurologist. This review proposes key strategies for diagnostic confirmation, laboratory and imaging surveillance, approach to symptom management, and guidance for identification of appropriate candidates for HSCT and investigational treatments.
Collapse
Affiliation(s)
- Alexandra B Kornbluh
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Aaron Baldwin
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Ali Fatemi
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Adeline Vanderver
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Laura A Adang
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Keith Van Haren
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Jacinda Sampson
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Florian S Eichler
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Reza Sadjadi
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Marc Engelen
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| | - Jennifer L Orthmann-Murphy
- From the Division of Neurology (A.B.K.), Children's National Hospital, George Washington University Medical School, Washington DC; Division of Neurology (A.B.), Neurogenetics Translational Center of Excellence, University of Pennsylvania, Philadelphia; Kennedy Krieger Institute and The Johns Hopkins University School of Medicine (A.F.), Baltimore, MD; Division of Neurology (A.V., L.A.A.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; Department of Neurology and Pediatrics (K.V.H., J.S.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (F.S.E., R.S.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Pediatric Neurology (M.E.), Amsterdam UMC location, University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, the Netherlands; and Department of Neurology (J.L.O.-M.), University of Pennsylvania, Philadelphia
| |
Collapse
|
2
|
Liu J, Wang X, Huang D, Qi Y, Xu L, Shao Y. A novel ABCD1 gene mutation causes adrenomyeloneuropathy presenting with spastic paraplegia: A case report. Medicine (Baltimore) 2024; 103:e37874. [PMID: 38640304 PMCID: PMC11029984 DOI: 10.1097/md.0000000000037874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024] Open
Abstract
RATIONALE X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene leading to very long chain fatty acid (VLCFA) accumulation. The disease demonstrates a spectrum of phenotypes including adrenomyeloneuropathy (AMN). We aimed to identify the genetic basis of disease in a patient presenting with AMN features in order to confirm the diagnosis, expand genetic knowledge of ABCD1 mutations, and elucidate potential genotype-phenotype associations to inform management. PATIENT CONCERNS A 29-year-old male presented with a 4-year history of progressive spastic paraplegia, weakness of lower limbs, fecal incontinence, sexual dysfunction, hyperreflexia, and positive Babinski and Chaddock signs. DIAGNOSES Neuroimaging revealed brain white matter changes and spinal cord thinning. Significantly elevated levels of hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) suggested very long chain fatty acids (VLCFA) metabolism disruption. Genetic testing identified a novel hemizygous ABCD1 mutation c.249dupC (p.F83fs). These findings confirmed a diagnosis of X-linked ALD with an AMN phenotype. INTERVENTIONS The patient received dietary counseling to limit VLCFA intake. Monitoring for adrenal insufficiency and consideration of Lorenzo's oil were advised. Genetic counseling and testing were offered to at-risk relatives. OUTCOMES At present, the patient continues to experience progressive paraplegia. Adrenal function remains normal thus far without steroid replacement. Family members have undergone predictive testing. LESSONS This case expands the known mutation spectrum of ABCD1-linked X-ALD, providing insight into potential genotype-phenotype correlations. A thoughtful diagnostic approach integrating clinical, biochemical and genetic data facilitated diagnosis. Findings enabled genetic counseling for at-risk relatives regarding this X-linked disorder.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Di Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuna Qi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yankun Shao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Xiong C, Jia LN, Xiong WX, Wu XT, Xiong LL, Wang TH, Zhou D, Hong Z, Liu Z, Tang L. Structural insights into substrate recognition and translocation of human peroxisomal ABC transporter ALDP. Signal Transduct Target Ther 2023; 8:74. [PMID: 36810450 PMCID: PMC9944889 DOI: 10.1038/s41392-022-01280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/22/2022] [Accepted: 11/30/2022] [Indexed: 02/24/2023] Open
Abstract
Dysfunctions of ATP-binding cassette, subfamily D, member 1 (ABCD1) cause X-linked adrenoleukodystrophy, a rare neurodegenerative disease that affects all human tissues. Residing in the peroxisome membrane, ABCD1 plays a role in the translocation of very long-chain fatty acids for their β-oxidation. Here, the six cryo-electron microscopy structures of ABCD1 in four distinct conformational states were presented. In the transporter dimer, two transmembrane domains form the substrate translocation pathway, and two nucleotide-binding domains form the ATP-binding site that binds and hydrolyzes ATP. The ABCD1 structures provide a starting point for elucidating the substrate recognition and translocation mechanism of ABCD1. Each of the four inward-facing structures of ABCD1 has a vestibule that opens to the cytosol with variable sizes. Hexacosanoic acid (C26:0)-CoA substrate binds to the transmembrane domains (TMDs) and stimulates the ATPase activity of the nucleotide-binding domains (NBDs). W339 from the transmembrane helix 5 (TM5) is essential for binding substrate and stimulating ATP hydrolysis by substrate. ABCD1 has a unique C-terminal coiled-coil domain that negatively modulates the ATPase activity of the NBDs. Furthermore, the structure of ABCD1 in the outward-facing state indicates that ATP molecules pull the two NBDs together and open the TMDs to the peroxisomal lumen for substrate release. The five structures provide a view of the substrate transport cycle and mechanistic implication for disease-causing mutations.
Collapse
Affiliation(s)
- Chao Xiong
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China.,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Li-Na Jia
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China.,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Xi Xiong
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China.,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Tong Wu
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China.,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Liu-Lin Xiong
- Institute of Neurological Disease, State Key Lab of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, State Key Lab of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China.,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Hong
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China. .,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China.
| | - Zheng Liu
- School of Life and Health, Kobilka Institute of Innovative Drug Discovery, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
| | - Lin Tang
- Department of Neurology, State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China. .,Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
5
|
Baker CV, Cady Keller A, Lutz R, Eveans K, Baumert K, DiPerna JC, Rizzo WB. Newborn Screening for X-Linked Adrenoleukodystrophy in Nebraska: Initial Experiences and Challenges. Int J Neonatal Screen 2022; 8:ijns8020029. [PMID: 35645283 PMCID: PMC9149921 DOI: 10.3390/ijns8020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by pathogenic variants in ABCD1 resulting in defective peroxisomal oxidation of very long-chain fatty acids. Most male patients develop adrenal insufficiency and one of two neurologic phenotypes: a rapidly progressive demyelinating disease in mid-childhood (childhood cerebral X-ALD, ccALD) or an adult-onset spastic paraparesis (adrenomyeloneuropathy, AMN). The neurodegenerative course of ccALD can be halted if patients are treated with hematopoietic stem cell transplantation at the earliest onset of white matter disease. Newborn screening for X-ALD can be accomplished by measuring C26:0-lysophosphatidylcholine in dried blood spots. In Nebraska, X-ALD newborn screening was instituted in July 2018. Over a period of 3.3 years, 82,920 newborns were screened with 13 positive infants detected (4 males, 9 females), giving a birth prevalence of 1:10,583 in males and 1:4510 in females. All positive newborns had DNA variants in ABCD1. Lack of genotype-phenotype correlations, absence of predictive biomarkers for ccALD or AMN, and a high proportion of ABCD1 variants of uncertain significance are unique challenges in counseling families. Surveillance testing for adrenal and neurologic disease in presymptomatic X-ALD males will improve survival and overall quality of life.
Collapse
Affiliation(s)
- Craig V. Baker
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.V.B.); (A.C.K.); (R.L.)
| | - Alyssa Cady Keller
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.V.B.); (A.C.K.); (R.L.)
| | - Richard Lutz
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.V.B.); (A.C.K.); (R.L.)
| | - Karen Eveans
- Nebraska Newborn Screening Program, Department of Health and Human Services, Lincoln, NE 68509, USA; (K.E.); (K.B.)
| | - Krystal Baumert
- Nebraska Newborn Screening Program, Department of Health and Human Services, Lincoln, NE 68509, USA; (K.E.); (K.B.)
| | | | - William B. Rizzo
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-2560
| |
Collapse
|
6
|
Dong B, Lv W, Xu L, Zhao Y, Sun X, Wang Z, Cheng B, Fu Z, Wang Y. Identification of Two Novel Mutations of ABCD1 Gene in Pedigrees with X-Linked Adrenoleukodystrophy and Review of the Literature. Int J Endocrinol 2022; 2022:5479781. [PMID: 35479665 PMCID: PMC9038410 DOI: 10.1155/2022/5479781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is an inherited peroxisomal metabolism disorder, resulting from the loss-of-function mutation of ATP-binding cassette protein subfamily D1 (ABCD1) gene. The dysfunction of ALD protein, a peroxisomal ATP-binding cassette transporter, results in the excessive saturated very long-chain fatty acids (VLCFAs) accumulation in organs including the brain, spine, and adrenal cortex. X-ALD is characterized as the childhood, adolescent, adult cerebral ALD, adrenomyeloneuropathy (AMN), adrenal insufficiency, and asymptomatic phenotypes, exhibiting a high variety of clinical neurological manifestations with or without adrenocortical insufficiency. RESULTS In this study, we reported two cases of X-ALD, which were first diagnosed as adrenal insufficiency (Addison's disease) and treated with adrenocortical supplement. However, both of the cases progressed as neurological symptoms and signs after decades. Elevated VLCFAs level, brain MRI scan, and genetic analysis confirmed final diagnosis. In addition, we identified two novel mutations of ABCD1 gene, NM_000033.3 (ABCD1): c.874_876delGAG (p.Glu292del) and NM_000033.3 (ABCD1): c.96_97delCT (p.Tyr33Profs∗161), in exon 1 of ABCD1 gene. Sanger sequencing confirmed that the proband's mother of the first case was heterozygous carrying the same variant. Adrenal insufficiency-only type is very rare; however, it may be the starting performance of X-ALD. In addition, we summarized reported mutation sites and clinical manifestations to investigate the correlationship of phenotype-genotype of X-ALD. CONCLUSIONS The early warning manifestations should be noticed, and the probability of X-ALD should be considered. This report could be beneficial for the early diagnosis and genetic counseling for patients with X-ALD.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuhang Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhongchao Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bingfei Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhengju Fu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
7
|
Collaco JM, Raraigh KS, Betz J, Aksit MA, Blau N, Brown J, Dietz HC, MacCarrick G, Nogee LM, Sheridan MB, Vernon HJ, Beaty TH, Louis TA, Cutting GR. Accurate assignment of disease liability to genetic variants using only population data. Genet Med 2021; 24:87-99. [PMID: 34906463 DOI: 10.1016/j.gim.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The growing size of public variant repositories prompted us to test the accuracy of pathogenicity prediction of DNA variants using population data alone. METHODS Under the a priori assumption that the ratio of the prevalence of variants in healthy population vs that in affected populations form 2 distinct distributions (pathogenic and benign), we used a Bayesian method to assign probability to a variant belonging to either distribution. RESULTS The approach, termed Bayesian prevalence ratio (BayPR), accurately parsed 300 of 313 expertly curated CFTR variants: 284 of 296 pathogenic/likely pathogenic variants in 1 distribution and 16 of 17 benign/likely benign variants in another. BayPR produced an area under the receiver operating characteristic curve of 0.99 for 103 functionally confirmed missense CFTR variants, which is equal to or exceeds 10 commonly used algorithms (area under the receiver operating characteristic curve range = 0.54-0.99). Application of BayPR to expertly curated variants in 8 genes associated with 7 Mendelian conditions led to the assignment of a disease-causing probability of ≥80% to 1350 of 1374 (98.3%) pathogenic/likely pathogenic variants and of ≤20% to 22 of 23 (95.7%) benign/likely benign variants. CONCLUSION Irrespective of the variant type or functional effect, the BayPR approach provides probabilities of pathogenicity for DNA variants responsible for Mendelian disorders using only the variant counts in affected and unaffected population samples.
Collapse
Affiliation(s)
- Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Raraigh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joshua Betz
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Melis Atalar Aksit
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland
| | - Jordan Brown
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Harry C Dietz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Gretchen MacCarrick
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Molly B Sheridan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hilary J Vernon
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Thomas A Louis
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
8
|
Trinh The S, Trieu Tien S, Vu Van T, Nguyen Ngoc N, Tran Ngoc Thao M, Tran Van K, Vu Nhat D, Do Nhu B. Successful Pregnancy Following Preimplantation Genetic Diagnosis of Adrenoleukodystrophy by Detection of Mutation on the ABCD1 Gene. APPLICATION OF CLINICAL GENETICS 2021; 14:313-319. [PMID: 34285547 PMCID: PMC8286725 DOI: 10.2147/tacg.s318884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Background Adrenoleukodystrophy (ALD) is a rare sex-linked recessive disorder that disrupts adrenal gland function and the white matter of the nervous system. According to recent epidemiological statistics, up to this moment, the disease is the most recorded peroxisomal disorder. ABCD1 is a gene related to ALD, with more than 850 unique mutations have been reported. Early diagnosis of the disease would help to consult families with ALD to plan for interventions to prevent passing along the pathogenic mutations to their children. Material and Methods A heterozygous ABCD1 gene mutation related to ALD found in a Vietnamese woman was used to design primers for the polymerase chain reaction (PCR) to amplify the segment spanning the mutation. Then, combining sequencing methods for the PCR products, especially Sanger sequencing and next-generation sequencing (NGS), a protocol was developed to detect mutations on the ABCD1 gene to apply for the DNA samples of in-vitro fertilization (IVF) embryos biopsied at the blastocyst stage to screen for pathogenic alleles. Results The established protocol for PGD of ALD detected mutant alleles in 5/8 embryos (62.5%), while the remaining 3 embryos (37.5%) did not carry any mutation. One of the 3 embryos was transferred, and a healthy female baby was born after a full-term pregnancy. Conclusion The developed protocol was helpful for the preimplantation genetic diagnosis process to help families with the monogenic disease of ALD but wish to have healthy children.
Collapse
Affiliation(s)
- Son Trinh The
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, 12108, Vietnam
| | - Sang Trieu Tien
- Department of Biology and Genetics, Vietnam Military Medical University, Hanoi, 12108, Vietnam
| | - Tam Vu Van
- Director Office, Hai Phong Hospital of Obstetrics and Gynecology, Haiphong, 40000, Vietnam.,Obstetrics and Gynecology Department of Haiphong University of Medicine and Pharmacy, Haiphong, 40000, Vietnam
| | - Nhat Nguyen Ngoc
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, 12108, Vietnam
| | - My Tran Ngoc Thao
- Département de formation Biologie moléculaire et cellulaire, Sorbonne University, Paris, 75006, France
| | - Khoa Tran Van
- Department of Biology and Genetics, Vietnam Military Medical University, Hanoi, 12108, Vietnam
| | - Dinh Vu Nhat
- Director Office, Military Hospital 103, Hanoi, 12108, Vietnam.,Department of Trauma and Orthopedic Surgery, Vietnam Military Medical University, Hanoi, 121-08, Vietnam
| | - Binh Do Nhu
- Division of Military Science, Military Hospital 103, Hanoi, 12108, Vietnam.,Department of Infectious Disease, Vietnam Military Medical University, Hanoi, 12108, Vietnam
| |
Collapse
|
9
|
Juchniewicz P, Piotrowska E, Kloska A, Podlacha M, Mantej J, Węgrzyn G, Tukaj S, Jakóbkiewicz-Banecka J. Dosage Compensation in Females with X-Linked Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22094514. [PMID: 33925963 PMCID: PMC8123450 DOI: 10.3390/ijms22094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023] Open
Abstract
Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
- Correspondence: ; Tel.: +48-58-523-6040
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| |
Collapse
|
10
|
Newborn Screening for X-Linked Adrenoleukodystrophy in Georgia: Experiences from a Pilot Study Screening of 51,081 Newborns. Int J Neonatal Screen 2020; 6:ijns6040081. [PMID: 33239602 PMCID: PMC7711439 DOI: 10.3390/ijns6040081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/30/2023] Open
Abstract
We screened 51,081 newborns for X-linked adrenoleukodystrophy (ALD) using a two-tiered strategy quantifying very long chain lysophosphatadylcholines (LPC). Our testing strategy used flow injection tandem mass spectrometry for the first-tier analysis of LPCs, and second-tier quantification of C26:0 LPC using liquid chromatography tandem mass spectrometry. There were 364 specimens considered abnormal using our first-tier algorithm that relied on the four LPC measurements and post-analytical tools. Second-tier test results were reported as normal or abnormal based on a cutoff for the single analyte, C26:0 LPC. Eleven cases were reported as abnormal based on second-tier test results. One male with ALD was identified, and two females with peroxisomal biogenesis disorders were also identified. A single female case remains unresolved, due to a loss to follow up after a negative molecular test result for ABCD1 gene sequencing. The positive predictive value for confirmed, clinically relevant disorders during this pilot study was 27.3%. Challenges identified during the study period were based around coverage for confirmatory testing, particularly if family members needed molecular testing, which is an ongoing issue with newborn screening in Georgia. We also encountered issues with the follow up for a patient who remained asymptomatic. Due to the different timelines involved with clinical findings in ALD, follow-up coordination may be more difficult, particularly if the child identified by newborn screening (NBS) is the only member of the family affected, or able to be tested.
Collapse
|
11
|
Rattay TW, Rautenberg M, Söhn AS, Hengel H, Traschütz A, Röben B, Hayer SN, Schüle R, Wiethoff S, Zeltner L, Haack TB, Cegan A, Schöls L, Schleicher E, Peter A. Defining diagnostic cutoffs in neurological patients for serum very long chain fatty acids (VLCFA) in genetically confirmed X-Adrenoleukodystrophy. Sci Rep 2020; 10:15093. [PMID: 32934269 PMCID: PMC7494896 DOI: 10.1038/s41598-020-71248-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls (n = 104). Receiver operating curve analysis was used to optimize VLCFA cutoff values, which differentiate patients with genetically confirmed X-ALD and Non-X-ALD individuals. The serum concentration of C26:0 was superior to C24:0 for the detection of X-ALD. The best differentiation of Non-X-ALD and X-ALD individuals was obtained with a cutoff value of < 1.0 for the C24:0/C22:0 ratio resulting in a sensitivity of 97%, a specificity of 94.1% and a positive predictive value (PPV) of 83.8% for true X-ALD. Our findings further suggested a cutoff of < 0.02 for the ratio C26:0/C22:0 leading to a sensitivity of 90.9%, a specificity of 95.0%, and a PPV of 80.6%. Pearson correlation indicated a significant positive association between total blood cholesterol and VLCFA values. Usage of serum VLCFA are economical and established biomarkers suitable for the guidance of genetic testing matching the X-ALD phenotype. We suggest using our new optimized cutoff values, especially the two ratios (C24:0/C22:0 and C26:0/C22:0), in combination with standard lipid profiles.
Collapse
Affiliation(s)
- Tim W Rattay
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Maren Rautenberg
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anne S Söhn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Andreas Traschütz
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Benjamin Röben
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Stefanie N Hayer
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sarah Wiethoff
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Lena Zeltner
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center of Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center of Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center of Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Erwin Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry/Central Laboratory, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry/Central Laboratory, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Sci Rep 2019; 9:10502. [PMID: 31324846 PMCID: PMC6642094 DOI: 10.1038/s41598-019-46685-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/27/2019] [Indexed: 01/11/2023] Open
Abstract
The peroxisomal ABC transporter, Comatose (CTS), a full length transporter from Arabidopsis has intrinsic acyl-CoA thioesterase (ACOT) activity, important for physiological function. We used molecular modelling, mutagenesis and biochemical analysis to identify amino acid residues important for ACOT activity. D863, Q864 and T867 lie within transmembrane helix 9. These residues are orientated such that they might plausibly contribute to a catalytic triad similar to type II Hotdog fold thioesterases. When expressed in Saccharomyces cerevisiae, mutation of these residues to alanine resulted in defective of β-oxidation. All CTS mutants were expressed and targeted to peroxisomes and retained substrate-stimulated ATPase activity. When expressed in insect cell membranes, Q864A and S810N had similar ATPase activity to wild type but greatly reduced ACOT activity, whereas the Walker A mutant K487A had greatly reduced ATPase and no ATP-dependent ACOT activity. In wild type CTS, ATPase but not ACOT was stimulated by non-cleavable C14 ether-CoA. ACOT activity was stimulated by ATP but not by non-hydrolysable AMPPNP. Thus, ACOT activity depends on functional ATPase activity but not vice versa, and these two activities can be separated by mutagenesis. Whether D863, Q864 and T867 have a catalytic role or play a more indirect role in NBD-TMD communication is discussed.
Collapse
|
13
|
Chen YJ, Wang MW, Dong EL, Lin XH, Wang N, Zhang ZQ, Lin X, Chen WJ. Chinese patients with adrenoleukodystrophy and Zellweger spectrum disorder presenting with hereditary spastic paraplegia. Parkinsonism Relat Disord 2019; 65:256-260. [PMID: 31227335 DOI: 10.1016/j.parkreldis.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION X-linked adrenoleukodystrophy (ALD) and Zellweger spectrum disorder (ZSD) are peroxisomal diseases characterized by accumulation of very long chain fatty acids (VLCFA) in plasma and tissues. Considering the wide variability of manifestation, patients of ALD and atypical ZSD are easily misdiagnosed as hereditary spastic paraplegia (HSP) on their clinical grounds. Here, we aimed to determine the frequency of peroxisome diseases and compare their phenotypic spectra with HSP. METHODS We first applied targeted sequencing in 120 pedigrees with spastic paraplegia, and subsequently confirmed 74 HSP families. We then performed whole exome sequencing for the probands of the 46 remaining pedigrees lacking known HSP-causal genes. Detailed clinical, radiological features, and VLCFA analyses are presented. RESULTS Seven ALD pedigrees with ABCD1 mutations and one ZSD family harboring bi-allelic mutations of PEX16 were identified. Clinically, in addition to spastic paraplegia, four ALD probands presented adrenocortical insufficiency, and the ZSD proband and her affected sister both developed thyroid problems. VLCFA analysis showed that ratios of C24/C22 and C26/C22 were specifically increased in ALD probands. Moreover, three ALD probands and the ZSD proband had abnormalities in brain or spinal imaging. CONCLUSIONS Our study reports the first ZSD case in China that manifested spastic paraplegia, and emphasized the finding that peroxisomal diseases comprise a significant proportion (8/120) of spastic paraplegia entities. These findings extend our current understanding of the ALD and ZSD diseases.
Collapse
Affiliation(s)
- Yi-Jun Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Hong Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Zai-Qiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Captical Medical University, Beijing, 100070, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
14
|
Wiens K, Berry SA, Choi H, Gaviglio A, Gupta A, Hietala A, Kenney-Jung D, Lund T, Miller W, Pierpont EI, Raymond G, Winslow H, Zierhut HA, Orchard PJ. A report on state-wide implementation of newborn screening for X-linked Adrenoleukodystrophy. Am J Med Genet A 2019; 179:1205-1213. [PMID: 31074578 PMCID: PMC6619352 DOI: 10.1002/ajmg.a.61171] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Minnesota became the fourth state to begin newborn screening (NBS) for X‐linked adrenoleukodystrophy (X‐ALD) in 2017. As there is limited retrospective data available on NBS for X‐ALD, we analyzed Minnesota's NBS results from the first year of screening. C26:0 lysophosphatidylcholine (C26:0‐LPC) screening results of 67,836 infants and confirmatory testing (ABCD1 gene and serum VLCFA analysis) for screen positives were obtained. Fourteen infants (nine males, five females) screened positive for X‐ALD and all were subsequently confirmed to have X‐ALD, with zero false positives. The birth prevalence of X‐ALD in screened infants was 1 in 4,845 and 1 in 3,878 males, more than five times previous reported incidences. Pedigrees of affected infants were analyzed, and 17 male (mean age of 17) and 24 female relatives were subsequently diagnosed with X‐ALD. Phenotypes of these family members included self‐reported mild neuropathy symptoms in two males and seven females, and childhood cerebral disease (ccALD) and adrenal insufficiency in one male. We observed fewer cases of ccALD and adrenal insufficiency than expected in male family members (5.9% of males for both) compared to previous observations. Together, these findings suggest that the spectrum of X‐ALD may be broader than previously described and that milder cases may previously have been underrepresented. Other challenges included a high frequency of variants of uncertain significance in ABCD1 and an inability to predict phenotypic severity. We posit that thoughtful planning to address these novel challenges and coordination by dedicated specialists will be imperative for successful implementation of population‐based screening for X‐ALD.
Collapse
Affiliation(s)
- Katie Wiens
- Division of Genetics and Metabolism, Departments of Pediatrics and Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Susan A Berry
- Division of Genetics and Metabolism, Departments of Pediatrics and Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Hyoung Choi
- Division of Pediatric Neurology, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Amy Gaviglio
- Minnesota Department of Health, St. Paul, MN, USA
| | - Ashish Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Amy Hietala
- Minnesota Department of Health, St. Paul, MN, USA
| | - Daniel Kenney-Jung
- Division of Pediatric Neurology, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gerald Raymond
- Division of Pediatric Neurology, Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | - Heather A Zierhut
- Department of Genetics, Cell, Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Rodenburg RJ. The functional genomics laboratory: functional validation of genetic variants. J Inherit Metab Dis 2018; 41:297-307. [PMID: 29445992 PMCID: PMC5959958 DOI: 10.1007/s10545-018-0146-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Currently, one of the main challenges in human molecular genetics is the interpretation of rare genetic variants of unknown clinical significance. A conclusive diagnosis is of importance for the patient to obtain certainty about the cause of the disease, for the clinician to be able to provide optimal care to the patient and to predict the disease course, and for the clinical geneticist for genetic counseling of the patient and family members. Conclusive evidence for pathogenicity of genetic variants is therefore crucial. This review gives an introduction to the problem of the interpretation of genetic variants of unknown clinical significance in view of the recent advances in genetic screening, and gives an overview of the possibilities for functional tests that can be performed to answer questions about the function of genes and the functional consequences of genetic variants ("functional genomics") in the field of inborn errors of metabolism (IEM), including several examples of functional genomics studies of mitochondrial disorders and several other IEM.
Collapse
Affiliation(s)
- Richard J Rodenburg
- Radboudumc, Radboud Center for Mitochondrial Medicine, 774 Translational Metabolic Laboratory, Department of Pediatrics, PO Box 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Park JS, Park D. Spastic paraparesis caused by X-linked adrenoleukodystrophy mimicking vacuolar myelopathy in a human immunodeficiency virus patient: A case report. Medicine (Baltimore) 2018; 97:e10756. [PMID: 29768358 PMCID: PMC5976296 DOI: 10.1097/md.0000000000010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Vacuolar myelopathy is one of most common cause of spastic paresis in patients with human immunodeficiency virus (HIV) infection. However, X-linked adrenoleukodystrophy (X-ALD), which is a metabolic disorder caused by impairment of peroxisomal beta-oxidation of very-long-chain fatty acids (VLCFA), also manifests as various neurological deteriorations including adult onset spastic paraparesis. To the best of our knowledge, there has been no report of newly developed spastic paresis due to X-ALD in a patient with HIV infection. PATIENT CONCERNS A 30-year-old male had presented with progressive spastic paraparesis for 1 year. DIAGNOSIS X-ALD. INTERVENTION Brain and spine magnetic resonance imaging (MRI), VLCFA, and genetic test. OUTCOMES His spinal MRI mimicked vacuolar myelopathy, but he was finally diagnosed with X-ALD using the VLCFA and genetic test. LESSONS Although rare, isolated spastic paraparesis can occur in HIV patients; additional tests such as VLCFA can be useful for the differential diagnosis. More data are needed to understand the pathological mechanisms underlying the two diseases.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Neurology
- Department of Neurology, Kyungpook National University Chilgok Hospital
| | - Donghwi Park
- Department of Rehabilitation Medicine, Daegu Fatima Hospital
- Department of Phamacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
17
|
Tran C, Patel J, Stacy H, Mamak EG, Faghfoury H, Raiman J, Clarke JTR, Blaser S, Mercimek-Mahmutoglu S. Long-term outcome of patients with X-linked adrenoleukodystrophy: A retrospective cohort study. Eur J Paediatr Neurol 2017; 21:600-609. [PMID: 28274546 DOI: 10.1016/j.ejpn.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder associated with leukodystrophy, myeloneuropathy and adrenocortical insufficiency. We performed a retrospective cohort study to evaluate long-term outcome of patients with X-ALD. METHOD All patients with X-ALD diagnosed between 1989 and 2012 were included. Electronic patient charts were reviewed for clinical features, biochemical investigations, molecular genetic testing, neuroimaging, long-term outcome and treatment. RESULTS Forty-eight patients from 18 unrelated families were included (15 females; 33 males). Seventeen patients were symptomatic at the time of the biochemical diagnosis including 14 with neurocognitive dysfunction and 3 with Addison disease only. Thirty-one asymptomatic individuals were identified by positive family history of X-ALD. During follow-up, eight individuals developed childhood cerebral X-ALD (CCALD), one individual developed adrenomyeloneuropathy (AMN), six individuals developed Addison disease only, and five individuals remained asymptomatic. Direct sequencing of ABCD1 confirmed the genetic diagnosis in 29 individuals. Seven patients with CCALD underwent hematopoietic stem cell transplantation (HSCT). Nine patients lost the follow-up. There was no correlation between clinical severity score, Loes score and elevated degree of elevated very long chain fatty acid (VLCFA) levels in CCALD. CONCLUSION Our study reports forty-eight new patients with X-ALD and their long-term outcome. Only 35% of the patients presented with neurological features or Addison disease. The remaining individuals were identified due to positive family history. Close monitoring of asymptomatic males resulted in early HSCT to prevent progressive lethal neurodegenerative disease. Identification of patients with X-ALD is important to improve neurodevelopmental outcome of asymptomatic males.
Collapse
Affiliation(s)
- Christel Tran
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; Division of Genetic Medicine, Center for Molecular Diseases, Lausanne University Hospital, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
| | - Jaina Patel
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Hewson Stacy
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Eva G Mamak
- Department of Psychology, The Hospital for Sick Children, Canada
| | - Hanna Faghfoury
- The Fred A Litwin and Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Canada
| | - Julian Raiman
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Joe T R Clarke
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada; Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
18
|
Breen DP, Stinton V, De Silva RN. A hill walker with long chains. Pract Neurol 2017; 17:71-73. [DOI: 10.1136/practneurol-2016-001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2016] [Indexed: 11/04/2022]
|
19
|
Kemp S, Huffnagel IC, Linthorst GE, Wanders RJ, Engelen M. Adrenoleukodystrophy - neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol 2016; 12:606-15. [PMID: 27312864 DOI: 10.1038/nrendo.2016.90] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
X-Linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, which leads to the accumulation of very long-chain fatty acids in plasma and tissues. Virtually all men with ALD develop adrenal insufficiency and myelopathy. Approximately 60% of men develop progressive cerebral white matter lesions (known as cerebral ALD). However, one cannot identify these individuals until the early changes are seen using brain imaging. Women with ALD also develop myelopathy, but generally at a later age than men and adrenal insufficiency or cerebral ALD are very rare. Owing to the multisystem symptomatology of the disease, patients can be assessed by the paediatrician, general practitioner, endocrinologist or a neurologist. This Review describes current knowledge on the clinical presentation, diagnosis and treatment of ALD, and highlights gaps in our knowledge of the natural history of the disease owing to an absence of large-scale prospective cohort studies. Such studies are necessary for the identification of new prognostic biomarkers to improve care for patients with ALD, which is particularly relevant now that newborn screening for ALD is being introduced.
Collapse
Affiliation(s)
- Stephan Kemp
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Genetic Metabolic Diseases, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Irene C Huffnagel
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Neurology, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gabor E Linthorst
- Endocrinology and Metabolism, Academisch Medisch Centrum, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald J Wanders
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Genetic Metabolic Diseases, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Neurology, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Abstract
OBJECTIVE Inherited metabolic diseases (IMDs) can affect many organ systems, including the endocrine system. There are limited data regarding endocrine dysfunctions related to IMDs in adults, however, no data exist in pediatric patients with IMDs. The aim of this study was to investigate endocrine dysfunctions in patients with IMDs by assessing their demographic, clinical, and laboratory data. METHODS Data were obtained retrospectively from the medical reports of patients with IMDs who were followed by the division of pediatric metabolism and nutrition between June 2011 and November 2013. RESULTS In total, 260 patients [139 males (53%) and 121 females (47%)] with an IMD diagnosis were included in the study. The mean age of the patients was 5.94 (range; 0.08 to 49) years and 95.8% (249 of 260 patients) were in the pediatric age group. Growth status was evaluated in 258 patients and of them, 27 (10.5%) had growth failure, all cases of which were attributed to non-endocrine reasons. There was a significant correlation between growth failure and serum albumin levels below 3.5 g/dL (p=0.002). Only three of 260 (1.1%) patients had endocrine dysfunction. Of these, one with lecithin-cholesterol acyltransferase deficiency and another with Kearns-Sayre syndrome had diabetes, and one with glycerol kinase deficiency had glucocorticoid deficiency. CONCLUSION Endocrine dysfunction in patients with IMDs is relatively rare. For this reason, there is no need to conduct routine endocrine evaluations in most patients with IMDs unless a careful and detailed history and a physical examination point to an endocrine dysfunction.
Collapse
Affiliation(s)
- Şahin Erdöl
- Uludağ University Faculty of Medicine, Department of Pediatrics, Division of Metabolism, Bursa, Turkey
| | - Halil Sağlam
- Uludağ University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Endocrinology, Bursa, Turkey, E-mail:
| |
Collapse
|
21
|
Wiesinger C, Eichler FS, Berger J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. APPLICATION OF CLINICAL GENETICS 2015; 8:109-21. [PMID: 25999754 PMCID: PMC4427263 DOI: 10.2147/tacg.s49590] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding a peroxisomal ABC transporter. In this review, we compare estimates of incidence derived from different populations in order to provide an overview of the worldwide incidence of X-ALD. X-ALD presents with heterogeneous phenotypes ranging from adrenomyeloneuropathy (AMN) to inflammatory demyelinating cerebral ALD (CALD). A large number of different mutations has been described, providing a unique opportunity for analysis of functional domains within ABC transporters. Yet the molecular basis for the heterogeneity of clinical symptoms is still largely unresolved, as no correlation between genotype and phenotype exists in X-ALD. Beyond ABCD1, environmental triggers and other genetic factors have been suggested as modifiers of the disease course. Here, we summarize the findings of numerous reports that aimed at identifying modifier genes in X-ALD and discuss potential problems and future approaches to address this issue. Different options for prenatal diagnosis are summarized, and potential pitfalls when applying next-generation sequencing approaches are discussed. Recently, the measurement of very long-chain fatty acids in lysophosphatidylcholine for the identification of peroxisomal disorders was included in newborn screening programs.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Florian S Eichler
- Department for Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Abstract
OBJECTIVES Kallmann syndrome (KS) usually combines an anosmia and a hypogonadotrophic hypogonadism. Hearing impairment was described in a few cases of KS. Our objective is to describe an unusual presentation of KS in 2 cases and to explore the pattern of inheritance in this family. PATIENTS Two brothers presented with a sensorineural hearing impairment associated with cryptorchidism and abnormal movements. RESULTS Genome-wide array analysis identified a large deletion of KAL1 in both patients confirming the diagnosis of Kallmann syndrome. The absence of familial history has been explained by a somatic mosaicism identified in their mother. CONCLUSION The description of a hearing defect in 2 brothers with Kallmann syndrome allows asserting that deafness is part of the clinical features of this disease and must lead the physician to monitor the hearing function of Kallmann patients.
Collapse
|
23
|
A case report of two brothers with ATR-X syndrome due to low maternal frequency of somatic mosaicism for an intragenic deletion in the ATRX. J Hum Genet 2014; 59:408-10. [DOI: 10.1038/jhg.2014.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/08/2022]
|
24
|
Theda C, Gibbons K, Defor TE, Donohue PK, Golden WC, Kline AD, Gulamali-Majid F, Panny SR, Hubbard WC, Jones RO, Liu AK, Moser AB, Raymond GV. Newborn screening for X-linked adrenoleukodystrophy: further evidence high throughput screening is feasible. Mol Genet Metab 2014; 111:55-7. [PMID: 24268529 PMCID: PMC3935823 DOI: 10.1016/j.ymgme.2013.10.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 11/17/2022]
Abstract
X-linked adrenoleukodystrophy (ALD) is characterized by adrenal insufficiency and neurologic involvement with onset at variable ages. Plasma very long chain fatty acids are elevated in ALD; even in asymptomatic patients. We demonstrated previously that liquid chromatography tandem mass spectrometry measuring C26:0 lysophosphatidylcholine reliably identifies affected males. We prospectively applied this method to 4689 newborn blood spot samples; no false positives were observed. We show that high throughput neonatal screening for ALD is methodologically feasible.
Collapse
Affiliation(s)
- Christiane Theda
- Royal Women's Hospital, Neonatal Services, 20 Flemington Road, Parkville VIC 3052, Australia; The University of Melbourne and the Murdoch Childrens Research Institute, Melbourne, Australia; Frederick Memorial Hospital, 400 W 7th Street, Frederick, MD 21701, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins Children's Center, 1800 Orleans Street, Baltimore, MD 21287, USA.
| | - Katy Gibbons
- Neurogenetics, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Todd E Defor
- Department of Biostatistics and Informatics Core, University of Minnesota Medical School, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - Pamela K Donohue
- Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins Children's Center, 1800 Orleans Street, Baltimore, MD 21287, USA; Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | - W Christopher Golden
- Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins Children's Center, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, 6701 N Charles Street, Baltimore, MD 21204, USA
| | - Fizza Gulamali-Majid
- Maryland Department of Health and Mental Hygiene, 201 W Preston Street, Room 1A6, Baltimore, MD 21201, USA
| | - Susan R Panny
- Maryland Department of Health and Mental Hygiene, 201 W Preston Street, Room 1A6, Baltimore, MD 21201, USA
| | - Walter C Hubbard
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Osler 527, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - Richard O Jones
- Neurogenetics, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Anita K Liu
- Neurogenetics, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Ann B Moser
- Neurogenetics, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Gerald V Raymond
- Neurogenetics, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA; University of Minnesota, 12-150 Phillips Wangensteen Building, MMC-295, 516 Delaware Street, SE, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Kemp S, Berger J, Aubourg P. X-linked adrenoleukodystrophy: Clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1465-74. [DOI: 10.1016/j.bbadis.2012.03.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/08/2012] [Accepted: 03/20/2012] [Indexed: 12/28/2022]
|
26
|
Engelen M, Kemp S, de Visser M, van Geel BM, Wanders RJA, Aubourg P, Poll-The BT. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 2012; 7:51. [PMID: 22889154 PMCID: PMC3503704 DOI: 10.1186/1750-1172-7-51] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/11/2012] [Indexed: 12/21/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. The disease is caused by mutations in the ABCD1 gene that encodes the peroxisomal membrane protein ALDP which is involved in the transmembrane transport of very long-chain fatty acids (VLCFA; ≥C22). A defect in ALDP results in elevated levels of VLCFA in plasma and tissues. The clinical spectrum in males with X-ALD ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. The majority of heterozygous females will develop symptoms by the age of 60 years. In individual patients the disease course remains unpredictable. This review focuses on the diagnosis and management of patients with X-ALD and provides a guideline for clinicians that encounter patients with this highly complex disorder.
Collapse
Affiliation(s)
- Marc Engelen
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Haynes CA, De Jesús VR. Improved analysis of C26:0-lysophosphatidylcholine in dried-blood spots via negative ion mode HPLC-ESI-MS/MS for X-linked adrenoleukodystrophy newborn screening. Clin Chim Acta 2012; 413:1217-21. [DOI: 10.1016/j.cca.2012.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
28
|
|
29
|
Abstract
PURPOSE OF REVIEW Disease states characterized by abnormal cellular function or proliferation frequently reflect aberrant genetic information. By revealing disease-specific DNA mutations, we gain insight into normal physiology, pathophysiology, potential therapeutic targets and are better equipped to evaluate an individual's disease risks. This review examines recent advances in our understanding of the genetic basis of adrenal cortical disease. RECENT FINDINGS Important advances made in the past year have included identification of KCNJ5 potassium channel mutations in the pathogenesis of both aldosterone-producing adenomas and familial hyperaldosteronism type III; characterization of phosphodiesterase 11A as a modifier of phenotype in Carney complex caused by protein kinase, cAMP-dependent, regulatory subunit, type-I mutations; the finding of 11β-hydroxysteroid dehydrogenase type I mutations as a novel mechanism for cortisone reductase deficiency; and demonstration of potential mortality benefit in pursuing comprehensive presymptomatic screening for patients with Li-Fraumeni syndrome, including possible reduction in risks associated with adrenocortical carcinoma. SUMMARY This research review provides a framework for the endocrinologist to maintain an up-to-date understanding of adrenal cortical disease genetics.
Collapse
Affiliation(s)
- Adi Bar-Lev
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
Vantyghem MC, Dobbelaere D, Mention K, Wemeau JL, Saudubray JM, Douillard C. Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012; 7:11. [PMID: 22284844 PMCID: PMC3349544 DOI: 10.1186/1750-1172-7-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/28/2012] [Indexed: 02/07/2023] Open
Abstract
Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- Service d'Endocrinologie et Maladies Métaboliques, 1, Rue Polonovski, Hôpital C Huriez, Centre Hospitalier Régional et Universitaire de Lille, 59037 Lille cedex, France.
| | | | | | | | | | | |
Collapse
|