1
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
2
|
Wei H, Jiang H, Zhou Y, Xiao X, Zhou C, Ji X. Cerebral venous congestion alters brain metabolite profiles, impairing cognitive function. J Cereb Blood Flow Metab 2023; 43:1857-1872. [PMID: 37309740 PMCID: PMC10676144 DOI: 10.1177/0271678x231182244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Vascular cognitive impairment (VCI) represents the second most common cause of dementia after Alzheimer's disease, and pathological changes in cerebral vascular structure and function are pivotal causes of VCI. Cognitive impairment caused by arterial ischemia has been extensively studied the whole time; the influence of cerebral venous congestion on cognitive impairment draws doctors' attention in recent clinical practice, but the underlying neuropathophysiological alterations are not completely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in cognitive-behavioral deterioration and possible electrophysiological mechanisms. Using cerebral venous congestion rat models, we found these rats exhibited decreased long-term potentiation (LTP) in the hippocampal dentate gyrus and impaired spatial learning and memory. Based on untargeted metabolomics, N-acetyl-L-cysteine (NAC) deficiency was detected in cerebral venous congestion rats; supplementation with NAC appeared to ameliorate synaptic deficits, rescue impaired LTP, and mitigate cognitive impairment. In a cohort of cerebral venous congestion patients, NAC levels were decreased; NAC concentration was negatively correlated with subjective cognitive decline (SCD) score but positively correlated with mini-mental state examination (MMSE) score. These findings provide a new perspective on cognitive impairment and support further exploration of NAC as a therapeutic target for the prevention and treatment of VCI.
Collapse
Affiliation(s)
- Huimin Wei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xuechun Xiao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Torazza C, Provenzano F, Gallia E, Cerminara M, Balbi M, Bonifacino T, Tessitore S, Ravera S, Usai C, Musante I, Puliti A, Van Den Bosch L, Jafar-nejad P, Rigo F, Milanese M, Bonanno G. Genetic Downregulation of the Metabotropic Glutamate Receptor Type 5 Dampens the Reactive and Neurotoxic Phenotype of Adult ALS Astrocytes. Cells 2023; 12:1952. [PMID: 37566031 PMCID: PMC10416852 DOI: 10.3390/cells12151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100β and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Elena Gallia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tessitore
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy;
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy;
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (P.J.-n.); (F.R.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| |
Collapse
|
4
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
5
|
Schumacher-Schuh A, Bieger A, Borelli WV, Portley MK, Awad PS, Bandres-Ciga S. Advances in Proteomic and Metabolomic Profiling of Neurodegenerative Diseases. Front Neurol 2022; 12:792227. [PMID: 35173667 PMCID: PMC8841717 DOI: 10.3389/fneur.2021.792227] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are two emerging fields that hold promise to shine light on the molecular mechanisms causing neurodegenerative diseases. Research in this area may reveal and quantify specific metabolites and proteins that can be targeted by therapeutic interventions intended at halting or reversing the neurodegenerative process. This review aims at providing a general overview on the current status of proteomic and metabolomic profiling in neurodegenerative diseases. We focus on the most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We discuss the relevance of state-of-the-art metabolomics and proteomics approaches and their potential for biomarker discovery. We critically review advancements made so far, highlighting how metabolomics and proteomics may have a significant impact in future therapeutic and biomarker development. Finally, we further outline technologies used so far as well as challenges and limitations, placing the current information in a future-facing context.
Collapse
Affiliation(s)
- Artur Schumacher-Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andrei Bieger
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wyllians V. Borelli
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Makayla K. Portley
- Neurodegenerative Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Paula Saffie Awad
- Movement Disorders Clinic, Centro de Trastornos de Movimiento (CETRAM), Santiago, Chile
| | - Sara Bandres-Ciga
- Neurodegenerative Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Sara Bandres-Ciga
| |
Collapse
|
6
|
La Cognata V, Morello G, Cavallaro S. Omics Data and Their Integrative Analysis to Support Stratified Medicine in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22094820. [PMID: 34062930 PMCID: PMC8125201 DOI: 10.3390/ijms22094820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular and clinical heterogeneity is increasingly recognized as a common characteristic of neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. This heterogeneity makes difficult the development of early diagnosis and effective treatment approaches, as well as the design and testing of new drugs. As such, the stratification of patients into meaningful disease subgroups, with clinical and biological relevance, may improve disease management and the development of effective treatments. To this end, omics technologies-such as genomics, transcriptomics, proteomics and metabolomics-are contributing to offer a more comprehensive view of molecular pathways underlying the development of NDs, helping to differentiate subtypes of patients based on their specific molecular signatures. In this article, we discuss how omics technologies and their integration have provided new insights into the molecular heterogeneity underlying the most prevalent NDs, aiding to define early diagnosis and progression markers as well as therapeutic targets that can translate into stratified treatment approaches, bringing us closer to the goal of personalized medicine in neurology.
Collapse
|
7
|
Morello G, Salomone S, D’Agata V, Conforti FL, Cavallaro S. From Multi-Omics Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:577755. [PMID: 33192262 PMCID: PMC7661549 DOI: 10.3389/fnins.2020.577755] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disorder, caused by the degeneration of upper and lower motor neurons for which there is no truly effective cure. The lack of successful treatments can be well explained by the complex and heterogeneous nature of ALS, with patients displaying widely distinct clinical features and progression patterns, and distinct molecular mechanisms underlying the phenotypic heterogeneity. Thus, stratifying ALS patients into consistent and clinically relevant subgroups can be of great value for the development of new precision diagnostics and targeted therapeutics for ALS patients. In the last years, the use and integration of high-throughput "omics" approaches have dramatically changed our thinking about ALS, improving our understanding of the complex molecular architecture of ALS, distinguishing distinct patient subtypes and providing a rational foundation for the discovery of biomarkers and new individualized treatments. In this review, we discuss the most significant contributions of omics technologies in unraveling the biological heterogeneity of ALS, highlighting how these approaches are revealing diagnostic, prognostic and therapeutic targets for future personalized interventions.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D’Agata
- Human Anatomy and Histology, University of Catania, Catania, Italy
| | | | - Sebastiano Cavallaro
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
| |
Collapse
|
8
|
Bonomo R, Cavaletti G, Skene DJ. Metabolomics markers in Neurology: current knowledge and future perspectives for therapeutic targeting. Expert Rev Neurother 2020; 20:725-738. [PMID: 32538242 DOI: 10.1080/14737175.2020.1782746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Metabolomics is an emerging approach providing new insights into the metabolic changes and underlying mechanisms involved in the pathogenesis of neurological disorders. AREAS COVERED Here, the authors present an overview of the current knowledge of metabolic profiling (metabolomics) to provide critical insight on the role of biochemical markers and metabolic alterations in neurological diseases. EXPERT OPINION Elucidation of characteristic metabolic alterations in neurological disorders is crucial for a better understanding of their pathogenesis, and for identifying potential biomarkers and drug targets. Nevertheless, discrepancies in diagnostic criteria, sample handling protocols, and analytical methods still affect the generalizability of current study results.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| |
Collapse
|
9
|
Lanznaster D, Veyrat-Durebex C, Vourc’h P, Andres CR, Blasco H, Corcia P. Metabolomics: A Tool to Understand the Impact of Genetic Mutations in Amyotrophic Lateral Sclerosis. Genes (Basel) 2020; 11:genes11050537. [PMID: 32403313 PMCID: PMC7288444 DOI: 10.3390/genes11050537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomics studies performed in patients with amyotrophic lateral sclerosis (ALS) reveal a set of distinct metabolites that can shed light on the pathological alterations taking place in each individual. Metabolites levels are influenced by disease status, and genetics play an important role both in familial and sporadic ALS cases. Metabolomics analysis helps to unravel the differential impact of the most common ALS-linked genetic mutations (as C9ORF72, SOD1, TARDBP, and FUS) in specific signaling pathways. Further, studies performed in genetic models of ALS reinforce the role of TDP-43 pathology in the vast majority of ALS cases. Studies performed in differentiated cells from ALS-iPSC (induced Pluripotent Stem Cells) reveal alterations in the cell metabolism that are also found in ALS models and ultimately in ALS patients. The development of metabolomics approaches in iPSC derived from ALS patients allow addressing and ultimately understanding the pathological mechanisms taking place in any patient. Lately, the creation of a "patient in a dish" will help to identify patients that may benefit from specific treatments and allow the implementation of personalized medicine.
Collapse
Affiliation(s)
- Débora Lanznaster
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- Correspondence:
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Neurologie, 37000 Tours, France
| |
Collapse
|
10
|
Saito K, Hattori K, Andou T, Satomi Y, Gotou M, Kobayashi H, Hidese S, Kunugi H. Characterization of Postprandial Effects on CSF Metabolomics: A Pilot Study with Parallel Comparison to Plasma. Metabolites 2020; 10:metabo10050185. [PMID: 32384774 PMCID: PMC7281358 DOI: 10.3390/metabo10050185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebrospinal fluid (CSF) metabolites reflect biochemical diffusion/export from the brain and possibly serve as biomarkers related to brain disease severity, pathophysiology, and therapeutic efficacy/toxicity. Metabolomic studies using blood matrices have demonstrated interindividual and preanalytical variation of blood metabolites, whereas those of CSF metabolites remain unclear. In this study, we aimed to delineate the postprandial effects on CSF metabolites because fasting of patients with brain-related disorders is challenging. We collected pre- and postprandial (1.5, 3, and 6 h) plasma and CSF from nine healthy subjects. Using a mass-spectrometry-based global metabolomics approach, 150 and 130 hydrophilic metabolites and 263 and 340 lipids were detected in CSF and plasma, respectively. Principal component analysis of CSF hydrophilic metabolites and lipids primarily classified individual subjects at any time point, suggesting that the postprandial effects had a lower impact than interindividual variations on CSF metabolites. Individually, less than 10% of the CSF metabolites were putatively altered by postprandial effects (with either significant differences or over 2-fold changes, but not both) at any time point. Thus, global CSF metabolite levels are not directly associated with food intake, and except for several putatively altered CSF metabolites, postprandial effects are not a major concern when applying CSF metabolomics to screen biomarkers.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Correspondence: ; Tel.: +81-44-270-6628; Fax: +81-44-270-6627
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (H.K.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Tomohiro Andou
- Axcelead Drug Discovery Partners, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan;
| | - Yoshinori Satomi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan; (Y.S.); (M.G.); (H.K.)
| | - Masamitsu Gotou
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan; (Y.S.); (M.G.); (H.K.)
| | - Hiroyuki Kobayashi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan; (Y.S.); (M.G.); (H.K.)
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (H.K.)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (H.K.)
| |
Collapse
|
11
|
Valbuena GN, Cantoni L, Tortarolo M, Bendotti C, Keun HC. Spinal Cord Metabolic Signatures in Models of Fast- and Slow-Progressing SOD1 G93A Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:1276. [PMID: 31920474 PMCID: PMC6914819 DOI: 10.3389/fnins.2019.01276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
The rate of disease progression in amyotrophic lateral sclerosis (ALS) is highly variable, even between patients with the same genetic mutations. Metabolic alterations may affect disease course variability in ALS patients, but challenges in identifying the preclinical and early phases of the disease limit our understanding of molecular mechanisms underlying differences in the rate of disease progression. We examined effects of SOD1G93A on thoracic and lumbar spinal cord metabolites in two mouse ALS models with different rates of disease progression: the transgenic SOD1G93A-C57BL/6JOlaHsd (C57-G93A, slow progression) and transgenic SOD1G93A-129SvHsd (129S-G93A, fast progression) strains. Samples from three timepoints (presymptomatic, disease onset, and late stage disease) were analyzed using Gas Chromatography-Mass Spectrometry metabolomics. Tissue metabolome differences in the lumbar spinal cord were driven primarily by mouse genetic background, although larger responses were observed in metabolic trajectories after the onset of symptoms. The significantly affected lumbar spinal cord metabolites were involved in energy and lipid metabolism. In the thoracic spinal cord, metabolic differences related to genetic background, background-SOD1 genotype interactions, and longitudinal SOD1G93A effects. The largest responses in thoracic spinal cord metabolic trajectories related to SOD1G93A effects before onset of visible symptoms. More metabolites were significantly affected in the thoracic segment, which were involved in energy homeostasis, neurotransmitter synthesis and utilization, and the oxidative stress response. We find evidence that initial metabolic alterations in SOD1G93A mice confer disadvantages for maintaining neuronal viability under ALS-related stressors, with slow-progressing C57-G93A mice potentially having more favorable spinal cord bioenergetic profiles than 129S-G93A. These genetic background-associated metabolic differences together with the different early metabolic responses underscore the need to better characterize the impact of germline genetic variation on cellular responses to ALS gene mutations both before and after the onset of symptoms in order to understand their impact on disease development.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Tortarolo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Caterina Bendotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Pharaoh G, Sataranatarajan K, Street K, Hill S, Gregston J, Ahn B, Kinter C, Kinter M, Van Remmen H. Metabolic and Stress Response Changes Precede Disease Onset in the Spinal Cord of Mutant SOD1 ALS Mice. Front Neurosci 2019; 13:487. [PMID: 31213966 PMCID: PMC6554287 DOI: 10.3389/fnins.2019.00487] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Many Amyotrophic Lateral Sclerosis (ALS) patients experience hypermetabolism, or an increase in measured vs. calculated metabolic rate. The cause of hypermetabolism and the effects on neuronal metabolism in ALS are currently unknown, but the efficacy of dietary interventions shows promise for metabolism as an ALS therapeutic target. The goal of this study is to measure changes in metabolic pathways as a function of disease progression in spinal cords of the SOD1G93A mouse model of ALS. We conducted a comprehensive assessment of protein expression for metabolic pathways, antioxidants, chaperones, and proteases in lumbar spinal cord from male SOD1G93A mice at pre-onset, onset, and end-stages of the disease using targeted proteomic analysis. These results reveal that protein content of metabolic proteins including proteins involved in glycolysis, β-oxidation, and mitochondrial metabolism is altered in SOD1G93A mouse spinal cord well before disease onset. The changes in mitochondrial metabolism proteins are associated with decreased maximal respiration and glycolytic flux in SOD1G93A dermal fibroblasts and increased hydrogen peroxide and lipid hydroperoxide production in mitochondria from sciatic nerve and gastrocnemius muscle fibers at end stage of disease. Consistent with redox dysregulation, expression of the glutathione antioxidant system is decreased, and peroxiredoxins and catalase expression are increased. In addition, stress response proteases and chaperones, including those involved in the mitochondrial unfolded protein response (UPRmt), are induced before disease onset. In summary, we report that metabolic and stress response changes occur in SOD1G93A lumbar spinal cord before motor symptom onset, and are primarily caused by SOD1G93A expression and do not vary greatly as a function of disease course.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | | | - Kaitlyn Street
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Shauna Hill
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jake Gregston
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States.,Oklahoma City VA Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
14
|
Lanznaster D, de Assis DR, Corcia P, Pradat PF, Blasco H. Metabolomics Biomarkers: A Strategy Toward Therapeutics Improvement in ALS. Front Neurol 2018; 9:1126. [PMID: 30619076 PMCID: PMC6305341 DOI: 10.3389/fneur.2018.01126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Biomarkers research in amyotrophic lateral sclerosis (ALS) holds the promise of improving ALS diagnosis, follow-up of patients, and clinical trials outcomes. Metabolomics have a big impact on biomarkers identification. In this mini-review, we provide the main findings of metabolomics studies in ALS and discuss the most relevant therapeutics attempts that targeted some prominent alterations found in ALS, like glutamate excitotoxicity, oxidative stress, alterations in energetic metabolism, and creatinine levels. Metabolomics studies have reported putative diagnosis or prognosis biomarkers, but discrepancies among these studies did not allow validation of metabolic biomarkers for clinical use in ALS. In this context, we wonder whether metabolomics knowledge could improve ALS therapeutics. As metabolomics identify specific metabolic pathways modified by disease progression and/or treatment, we support that adjuvant or combined treatment should be used to rescue these pathways, creating a new perspective for ALS treatment. Some ongoing clinical trials are already trying to target these pathways. As clinical trials in ALS have been disappointing and considering the heterogeneity of the disease presentation, we support the application of a pharmacometabolomic approach to evaluate the individual response to drug treatments and their side effects, enabling the development of personalized treatments for ALS. We suggest that the best strategy to apply metabolomics for ALS therapeutics progress is to establish a metabolic signature for ALS patients in order to improve the knowledge of patient metabotypes, to choose the most adequate pharmacological treatment, and to follow the drug response and side effects, based on metabolomics biomarkers.
Collapse
Affiliation(s)
| | | | - Philippe Corcia
- Université de Tours, Inserm U1253, Tours, France.,Centre Constitutif SLA, CHRU Bretonneau, Tours, France.,Federation des centres SLA de Tours et Limoges, LITORALS, Tours, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Hélène Blasco
- Université de Tours, Inserm U1253, Tours, France.,Service de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| |
Collapse
|
15
|
Surowiec I, Johansson E, Stenlund H, Rantapää-Dahlqvist S, Bergström S, Normark J, Trygg J. Quantification of run order effect on chromatography - mass spectrometry profiling data. J Chromatogr A 2018; 1568:229-234. [PMID: 30007791 DOI: 10.1016/j.chroma.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/31/2018] [Accepted: 07/04/2018] [Indexed: 12/23/2022]
Abstract
Chromatographic systems coupled with mass spectrometry detection are widely used in biological studies investigating how levels of biomolecules respond to different internal and external stimuli. Such changes are normally expected to be of low magnitude and therefore all experimental factors that can influence the analysis need to be understood and minimized. Run order effect is commonly observed and constitutes a major challenge in chromatography-mass spectrometry based profiling studies that needs to be addressed before the biological evaluation of measured data is made. So far there is no established consensus, metric or method that quickly estimates the size of this effect. In this paper we demonstrate how orthogonal projections to latent structures (OPLS®) can be used for objective quantification of the run order effect in profiling studies. The quantification metric is expressed as the amount of variation in the experimental data that is correlated to the run order. One of the primary advantages with this approach is that it provides a fast way of quantifying run-order effect for all detected features, not only internal standards. Results obtained from quantification of run order effect as provided by the OPLS can be used in the evaluation of data normalization, support the optimization of analytical protocols and identification of compounds highly influenced by instrumental drift. The application of OPLS for quantification of run order is demonstrated on experimental data from plasma profiling performed on three analytical platforms: GCMS metabolomics, LCMS metabolomics and LCMS lipidomics.
Collapse
Affiliation(s)
- Izabella Surowiec
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87 Umeå, Sweden.
| | - Erik Johansson
- Sartorius Stedim Data Analytics, Tvistevägen 48, 907 36 Umeå, Sweden
| | - Hans Stenlund
- Swedish Metabolomics Centre, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Solbritt Rantapää-Dahlqvist
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University Hospital, 901 87 Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Johan Normark
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87 Umeå, Sweden; Sartorius Stedim Data Analytics, Tvistevägen 48, 907 36 Umeå, Sweden
| |
Collapse
|
16
|
Casas C, Manzano R, Vaz R, Osta R, Brites D. Synaptic Failure: Focus in an Integrative View of ALS. Brain Plast 2016; 1:159-175. [PMID: 29765840 PMCID: PMC5928542 DOI: 10.3233/bpl-140001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From early description by Charcot, the classification of the Amyotrophic Lateral Sclerosis (ALS) is evolving from a subtype of Motor Neuron (MN) Disease to be considered rather a multi-systemic, non-cell autonomous and complex neurodegenerative disease. In the last decade, the huge amount of knowledge acquired has shed new insights on the pathological mechanisms underlying ALS from different perspectives. However, a whole vision on the multiple dysfunctional pathways is needed with the inclusion of information often excluded in other published revisions. We propose an integrative view of ALS pathology, although centered on the synaptic failure as a converging and crucial player to the etiology of the disease. Homeostasis of input and output synaptic activity of MNs has been proved to be severely and early disrupted and to definitively contribute to microcircuitry alterations at the spinal cord. Several cells play roles in synaptic communication across the MNs network system such as interneurons, astrocytes, microglia, Schwann and skeletal muscle cells. Microglia are described as highly dynamic surveying cells of the nervous system but also as determinant contributors to the synaptic plasticity linked to neuronal activity. Several signaling axis such as TNFα/TNFR1 and CX3CR1/CX3CL1 that characterize MN-microglia cross talk contribute to synaptic scaling and maintenance, have been found altered in ALS. The presence of dystrophic and atypical microglia in late stages of ALS, with a decline in their dynamic motility and phagocytic ability, together with less synaptic and neuronal contacts disrupts the MN-microglia dialogue, decreases homeostatic regulation of neuronal activity, perturbs “on/off” signals and accelerates disease progression associated to impaired synaptic function and regeneration. Other hotspot in the ALS affected network system is the unstable neuromuscular junction (NMJ) leading to distal axonal degeneration. Reduced neuromuscular spontaneous synaptic activity in ALS mice models was also suggested to account for the selective vulnerability of MNs and decreased regenerative capability. Synaptic destabilization may as well derive from increased release of molecules by muscle cells (e.g. NogoA) and by terminal Schwann cells (e.g. semaphorin 3A) conceivably causing nerve terminal retraction and denervation, as well as inhibition of re-connection to muscle fibers. Indeed, we have overviewed the alterations on the metabolic pathways and self-regenerative capacity presented in skeletal muscle cells that contribute to muscle wasting in ALS. Finally, a detailed footpath of pathologic changes on MNs and associated dysfunctional and synaptic alterations is provided. The oriented motivation in future ALS studies as outlined in the present article will help in fruitful novel achievements on the mechanisms involved and in developing more target-driven therapies that will bring new hope in halting or delaying disease progression in ALS patients.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Raquel Manzano
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
17
|
Blasco H, Vourc'h P, Pradat PF, Gordon PH, Andres CR, Corcia P. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn 2016; 16:853-68. [PMID: 27275785 DOI: 10.1080/14737159.2016.1199277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. AREAS COVERED In this review, we specifically focus on biology and imaging markers. We detail the innovative field of 'omics' approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and 'omics' methods is necessary and a systematic independent validation of findings may add robustness to future studies.
Collapse
Affiliation(s)
- H Blasco
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Vourc'h
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P F Pradat
- c Département des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris , Hôpital de la Salpêtrière , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM , Laboratoire d'Imagerie Biomédicale , Paris , France
| | - P H Gordon
- e Neurology Unit, Northern Navajo Medical Center , Shiprock , NM , USA
| | - C R Andres
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Corcia
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France.,f Centre SLA , Service de Neurologie et Neurophysiologie Clinique, CHRU de Tours , Tours , France
| |
Collapse
|
18
|
Wuolikainen A, Jonsson P, Ahnlund M, Antti H, Marklund SL, Moritz T, Forsgren L, Andersen PM, Trupp M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. MOLECULAR BIOSYSTEMS 2016; 12:1287-98. [PMID: 26883206 DOI: 10.1039/c5mb00711a] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are protein-aggregation diseases that lack clear molecular etiologies. Biomarkers could aid in diagnosis, prognosis, planning of care, drug target identification and stratification of patients into clinical trials. We sought to characterize shared and unique metabolite perturbations between ALS and PD and matched controls selected from patients with other diagnoses, including differential diagnoses to ALS or PD that visited our clinic for a lumbar puncture. Cerebrospinal fluid (CSF) and plasma from rigorously age-, sex- and sampling-date matched patients were analyzed on multiple platforms using gas chromatography (GC) and liquid chromatography (LC)-mass spectrometry (MS). We applied constrained randomization of run orders and orthogonal partial least squares projection to latent structure-effect projections (OPLS-EP) to capitalize upon the study design. The combined platforms identified 144 CSF and 196 plasma metabolites with diverse molecular properties. Creatine was found to be increased and creatinine decreased in CSF of ALS patients compared to matched controls. Glucose was increased in CSF of ALS patients and α-hydroxybutyrate was increased in CSF and plasma of ALS patients compared to matched controls. Leucine, isoleucine and ketoleucine were increased in CSF of both ALS and PD. Together, these studies, in conjunction with earlier studies, suggest alterations in energy utilization pathways and have identified and further validated perturbed metabolites to be used in panels of biomarkers for the diagnosis of ALS and PD.
Collapse
|
19
|
Blasco H, Patin F, Madji Hounoum B, Gordon PH, Vourc'h P, Andres CR, Corcia P. Metabolomics in amyotrophic lateral sclerosis: how far can it take us? Eur J Neurol 2016; 23:447-54. [PMID: 26822316 DOI: 10.1111/ene.12956] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. Alongside identification of aetiologies, development of biomarkers is a foremost research priority. Metabolomics is one promising approach that is being utilized in the search for diagnosis and prognosis markers. Our aim is to provide an overview of the principal research in metabolomics applied to ALS. References were identified using PubMed with the terms 'metabolomics' or 'metabolomic' and 'ALS' or 'amyotrophic lateral sclerosis' or 'MND' or 'motor neuron disorders'. To date, nine articles have reported metabolomics research in patients and a few additional studies examined disease physiology and drug effects in patients or models. Metabolomics contribute to a better understanding of ALS pathophysiology but, to date, no biomarker has been validated for diagnosis, principally due to the heterogeneity of the disease and the absence of applied standardized methodology for biomarker discovery. A consensus on best metabolomics methodology as well as systematic independent validation will be an important accomplishment on the path to identifying the long-awaited biomarkers for ALS and to improve clinical trial designs.
Collapse
Affiliation(s)
- H Blasco
- Inserm U930, Tours, France
- Université François-Rabelais, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| | - F Patin
- Inserm U930, Tours, France
- Université François-Rabelais, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| | - B Madji Hounoum
- Inserm U930, Tours, France
- Université François-Rabelais, Tours, France
| | - P H Gordon
- Northern Navajo Medical Center, Shiprock, NM, USA
| | - P Vourc'h
- Inserm U930, Tours, France
- Université François-Rabelais, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| | - C R Andres
- Inserm U930, Tours, France
- Université François-Rabelais, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours, Tours, France
| | - P Corcia
- Inserm U930, Tours, France
- Université François-Rabelais, Tours, France
- Centre SLA, Service de Neurologie, CHRU Bretonneau, Tours, France
| |
Collapse
|
20
|
Costa J, de Carvalho M. Emerging molecular biomarker targets for amyotrophic lateral sclerosis. Clin Chim Acta 2016; 455:7-14. [PMID: 26774696 DOI: 10.1016/j.cca.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disease that affects upper (UMN) and lower motor (LMN) neurons. It is associated with a short survival and there is no effective treatment, in spite of a large number of clinical trials. Strong efforts have been made to identify novel disease biomarkers to support diagnosis, provide information on prognosis, to measure disease progression in trials and increase our knowledge on disease pathogenesis. Electromyography by testing the function of the LMN can be used as a biomarker of its dysfunction. A number of electrophysiological and neuroimaging methods have been explored to identify a reliable marker of UMN degeneration. Recently, strong evidence from independent groups, large cohorts of patients and multicenter studies indicate that neurofilaments are very promising diagnostic biomarkers, in particular cerebrospinal fluid and blood levels of phosphoneurofilament heavy chain and neurofilament light chain. Furthermore, their increased levels are associated with poor prognosis. Additional studies have been performed aiming to identify other biomarkers, which alone or in combination with neurofilaments could increase the sensitivity and the specificity of the assays. Emerging molecular marker targets are being discovered, but more studies with standardized methods are required in larger cohorts of ALS patients.
Collapse
Affiliation(s)
- Júlia Costa
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal.
| | - Mamede de Carvalho
- Institute of Physiology-Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal; Department Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal
| |
Collapse
|
21
|
Cheng ML, Chang KH, Wu YR, Chen CM. Metabolic disturbances in plasma as biomarkers for Huntington's disease. J Nutr Biochem 2016; 31:38-44. [PMID: 27133422 DOI: 10.1016/j.jnutbio.2015.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 01/13/2023]
Abstract
Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin protein, presents with a predominant degeneration of neurons in the striatum and cortex. Although a few studies have identified substantial metabolite alterations in plasma, the picture of plasma metabolomics of HD has not been clearly depicted yet. Using a global metabolomics screening for plasma from 15 HD patients and 17 controls, HD patient group was separated from the control group by a panel of metabolites belonging to carnitine, amino acid and phosphatidylcholine species. The quantification of 184 related metabolites (including carnitine, amino acid and phosphatidylcholine species) in 29 HD patients, 9 presymptomatic HD carriers and 44 controls further showed one up-regulated (glycine) and 9 down-regulated metabolites (taurine, serotonin, valine, isoleucine, phosphatidylcholine acyl-alkyl C36:0 and C34:0 and lysophosphatidylcholine acyl C20:3). To understand the biosynthetic alterations of phosphatidylcholine in HD, we examined the expression levels and activities of a panel of key enzymes responsible for phosphatidylcholine metabolism. The results showed down-regulation of PCYT1A and increased activity of phospholipase A2 in HD leukocytes. These metabolic profiles strongly indicate that disturbed metabolism is involved in pathogenesis of HD and provide clue for the development of novel treatment strategies for HD.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan; Metabolomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
22
|
Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M, Garcia-Martin ML, Lopez S, Franco JM, Quintana FJ, Roodveldt C, Pozo D. The ‘Omics’ of Amyotrophic Lateral Sclerosis. Trends Mol Med 2016; 22:53-67. [DOI: 10.1016/j.molmed.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
23
|
Veyrat-Durebex C, Corcia P, Piver E, Devos D, Dangoumau A, Gouel F, Vourc'h P, Emond P, Laumonnier F, Nadal-Desbarats L, Gordon PH, Andres CR, Blasco H. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2015; 53:6910-6924. [PMID: 26666663 DOI: 10.1007/s12035-015-9567-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France. .,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France.
| | - Philippe Corcia
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Service de Neurologie, 37044, Tours, France
| | | | - David Devos
- Département de Pharmacologie médicale, INSERM U1171, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Audrey Dangoumau
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France
| | - Flore Gouel
- Département de Pharmacologie médicale, INSERM U1171, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - Patrick Vourc'h
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France
| | - Patrick Emond
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,PPF-ASB, Université François Rabelais de Tours, Tours, France
| | - Frédéric Laumonnier
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France
| | - Lydie Nadal-Desbarats
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,PPF-ASB, Université François Rabelais de Tours, Tours, France
| | | | - Christian R Andres
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France
| | - Hélène Blasco
- UMR INSERM U930, Université François-Rabelais de Tours, Equipe « Neurogénétique et neurométabolomique », 37032, Tours, France.,CHRU de Tours, Laboratoire de Biochimie et de biologie moléculaire, 37044, Tours, France
| |
Collapse
|
24
|
Vergouts M, Marinangeli C, Ingelbrecht C, Genard G, Schakman O, Sternotte A, Calas AG, Hermans E. Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease. Metab Brain Dis 2015; 30:1369-77. [PMID: 26152932 DOI: 10.1007/s11011-015-9706-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5'-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1(G93A). Using an automated gait analysis system (CatWalk), we here show that hSOD1(G93A) mice and age-matched mice lacking the neuronal and skeletal muscle predominant α2 catalytic subunit of AMPK showed an altered gait, clearly different from wild type control mice. Double mutant mice lacking AMPK α2 and carrying hSOD1(G93A) showed the same early gait abnormalities as hSOD1(G93A) mice over an age span of 8 to 16 weeks. Taken together, these data support the concept that altered AMPK function and associated bioenergetic abnormalities could constitute an important component in the early pathogenesis of ALS. Therapeutic interventions acting on metabolic pathways could prove beneficial on early locomotor deficits, which are sensitively detectable in rodent models using the CatWalk system.
Collapse
Affiliation(s)
- Maxime Vergouts
- Group of Neuropharmacology, Université catholique de Louvain, B1.54.10, Av. Hippocrate 54, 1200, Brussels, Belgium
| | - Claudia Marinangeli
- Alzheimer Dementia Group, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Ingelbrecht
- Group of Neuropharmacology, Université catholique de Louvain, B1.54.10, Av. Hippocrate 54, 1200, Brussels, Belgium
| | - Geraldine Genard
- Group of Neuropharmacology, Université catholique de Louvain, B1.54.10, Av. Hippocrate 54, 1200, Brussels, Belgium
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Anthony Sternotte
- Group of Neuropharmacology, Université catholique de Louvain, B1.54.10, Av. Hippocrate 54, 1200, Brussels, Belgium
| | - André-Guilhem Calas
- Group of Neuropharmacology, Université catholique de Louvain, B1.54.10, Av. Hippocrate 54, 1200, Brussels, Belgium
| | - Emmanuel Hermans
- Group of Neuropharmacology, Université catholique de Louvain, B1.54.10, Av. Hippocrate 54, 1200, Brussels, Belgium.
| |
Collapse
|
25
|
Blasco H, Nadal-Desbarats L, Pradat PF, Gordon PH, Madji Hounoum B, Patin F, Veyrat-Durebex C, Mavel S, Beltran S, Emond P, Andres CR, Corcia P. Biomarkers in amyotrophic lateral sclerosis: combining metabolomic and clinical parameters to define disease progression. Eur J Neurol 2015; 23:346-53. [DOI: 10.1111/ene.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Affiliation(s)
- H. Blasco
- Université François-Rabelais; Inserm U930; Tours France
- Laboratoire de Biochimie; CHRU de Tours; Tours France
| | | | - P.-F. Pradat
- Centre Référent Maladie Rare SLA; Hôpital de la Pitié-Salpétrière; Paris France
| | | | | | - F. Patin
- Université François-Rabelais; Inserm U930; Tours France
| | | | - S. Mavel
- Université François-Rabelais; Inserm U930; Tours France
| | | | - P. Emond
- Université François-Rabelais; Inserm U930; Tours France
| | - C. R. Andres
- Université François-Rabelais; Inserm U930; Tours France
- Laboratoire de Biochimie; CHRU de Tours; Tours France
| | - P. Corcia
- Université François-Rabelais; Inserm U930; Tours France
- Centre SLA; CHRU de Tours; Tours France
| |
Collapse
|
26
|
Henriques A, Croixmarie V, Priestman DA, Rosenbohm A, Dirrig-Grosch S, D'Ambra E, Huebecker M, Hussain G, Boursier-Neyret C, Echaniz-Laguna A, Ludolph AC, Platt FM, Walther B, Spedding M, Loeffler JP, Gonzalez De Aguilar JL. Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase. Hum Mol Genet 2015; 24:7390-405. [PMID: 26483191 PMCID: PMC4664174 DOI: 10.1093/hmg/ddv439] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. Growing evidence suggests a link between changes in lipid metabolism and ALS. Here, we used UPLC/TOF-MS to survey the lipidome in SOD1(G86R) mice, a model of ALS. Significant changes in lipid expression were evident in spinal cord and skeletal muscle before overt neuropathology. In silico analysis also revealed appreciable changes in sphingolipids including ceramides and glucosylceramides (GlcCer). HPLC analysis showed increased amounts of GlcCer and downstream glycosphingolipids (GSLs) in SOD1(G86R) muscle compared with wild-type littermates. Glucosylceramide synthase (GCS), the enzyme responsible for GlcCer biosynthesis, was up-regulated in muscle of SOD1(G86R) mice and ALS patients, and in muscle of wild-type mice after surgically induced denervation. Conversely, inhibition of GCS in wild-type mice, following transient peripheral nerve injury, reversed the overexpression of genes in muscle involved in oxidative metabolism and delayed motor recovery. GCS inhibition in SOD1(G86R) mice also affected the expression of metabolic genes and induced a loss of muscle strength and morphological deterioration of the motor endplates. These findings suggest that GSLs may play a critical role in ALS muscle pathology and could lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | | | | | | | - Sylvie Dirrig-Grosch
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | - Eleonora D'Ambra
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | | | - Ghulam Hussain
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Department of Physiology, GC University, Faisalabad, Pakistan
| | | | - Andoni Echaniz-Laguna
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Hôpitaux Universitaires, Département de Neurologie, Strasbourg, France
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Michael Spedding
- Les Laboratoires Servier, Suresnes, France and Spedding Research Solutions SARL, Le Vesinet, France
| | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | - Jose-Luis Gonzalez De Aguilar
- Université de Strasbourg, UMR_S 1118, Strasbourg, France, INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France,
| |
Collapse
|
27
|
Gray E, Larkin JR, Claridge TDW, Talbot K, Sibson NR, Turner MR. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:456-63. [PMID: 26121274 PMCID: PMC4720042 DOI: 10.3109/21678421.2015.1053490] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/19/2015] [Indexed: 11/25/2022]
Abstract
Neurochemical biomarkers are urgently sought in ALS. Metabolomic analysis of cerebrospinal fluid (CSF) using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy is a highly sensitive method capable of revealing nervous system cellular pathology. The (1)H-NMR CSF metabolomic signature of ALS was sought in a longitudinal cohort. Six-monthly serial collection was performed in ALS patients across a range of clinical sub-types (n = 41) for up to two years, and in healthy controls at a single time-point (n = 14). A multivariate statistical approach, partial least squares discriminant analysis, was used to determine differences between the NMR spectra from patients and controls. Significantly predictive models were found using those patients with at least one year's interval between recruitment and the second sample. Glucose, lactate, citric acid and, unexpectedly, ethanol were the discriminating metabolites elevated in ALS. It is concluded that (1)H-NMR captured the CSF metabolomic signature associated with derangements in cellular energy utilization connected with ALS, and was most prominent in comparisons using patients with longer disease duration. The specific metabolites identified support the concept of a hypercatabolic state, possibly involving mitochondrial dysfunction specifically. Endogenous ethanol in the CSF may be an unrecognized novel marker of neuronal tissue injury in ALS.
Collapse
Affiliation(s)
- Elizabeth Gray
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - James R. Larkin
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Nicola R. Sibson
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Martin R. Turner
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Valbuena GN, Rizzardini M, Cimini S, Siskos AP, Bendotti C, Cantoni L, Keun HC. Metabolomic Analysis Reveals Increased Aerobic Glycolysis and Amino Acid Deficit in a Cellular Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2015; 53:2222-40. [PMID: 25963727 PMCID: PMC4823370 DOI: 10.1007/s12035-015-9165-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Defects in energy metabolism are potential pathogenic mechanisms in amyotrophic lateral sclerosis (ALS), a rapidly fatal disease with no cure. The mechanisms through which this occurs remain elusive and their understanding may prove therapeutically useful. We used metabolomics and stable isotope tracers to examine metabolic changes in a well-characterized cell model of familial ALS, the motor neuronal NSC-34 line stably expressing human wild-type Cu/Zn superoxide dismutase (wtSOD1) or mutant G93A (G93ASOD1). Our findings indicate that wt and G93ASOD1 expression both enhanced glucose metabolism under serum deprivation. However, in wtSOD1 cells, this phenotype increased supply of amino acids for protein and glutathione synthesis, while in G93ASOD1 cells it was associated with death, aerobic glycolysis, and a broad dysregulation of amino acid homeostasis. Aerobic glycolysis was mainly due to induction of pyruvate dehydrogenase kinase 1. Our study thus provides novel insight into the role of deranged energy metabolism as a cause of poor adaptation to stress and a promoter of neural cell damage in the presence of mutant SOD1. Furthermore, the metabolic alterations we report may help explain why mitochondrial dysfunction and impairment of the endoplasmic reticulum stress response are frequently seen in ALS.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Milena Rizzardini
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Sara Cimini
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy.
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
29
|
Recent Advances and Applications of Metabolomics to Investigate Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:95-132. [DOI: 10.1016/bs.irn.2015.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Cloutier F, Marrero A, O'Connell C, Morin P. MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J Mol Neurosci 2014; 56:102-12. [PMID: 25433762 DOI: 10.1007/s12031-014-0471-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a condition primarily characterized by the selective loss of upper and lower motor neurons. Motor neuron loss gives rise to muscle tissue malfunctions, including weakness, spasticity, atrophy, and ultimately paralysis, with death typically due to respiratory failure within 2 to 5 years of symptoms' onset. The mean delay in time from presentation to diagnosis remains at over 1 year. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis as well as to act as indicators of therapeutic response in clinical trials. MicroRNAs (miRNAs) are small molecules that can influence posttranscriptional gene expression of a variety of transcript targets. Interestingly, miRNAs can be released into the circulation by pathologically affected tissues. This review presents therapeutic and diagnostic challenges associated with ALS, highlights the potential role of miRNAs in ALS, and discusses the diagnostic potential of these molecules in identifying ALS-specific miRNAs or in distinguishing between the various genotypic and phenotypic forms of ALS.
Collapse
Affiliation(s)
- Frank Cloutier
- Institut de l'Atlantique en Neurosciences Atlantic Institute, Vitalité Health Network, Centre Hospitalier Universitaire Dr Georges-L.-Dumont/Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada,
| | | | | | | |
Collapse
|
31
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Nunes de Paiva MJ, Menezes HC, de Lourdes Cardeal Z. Sampling and analysis of metabolomes in biological fluids. Analyst 2014; 139:3683-94. [DOI: 10.1039/c4an00583j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metabolome analysis involves the study of small molecules that are involved in the metabolic responses that occur through patho-physiological changes caused by genetic stimuli or chemical agents.
Collapse
Affiliation(s)
- Maria José Nunes de Paiva
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- 6627-31270901 Belo Horizonte, Brazil
- Universidade Federal de São João Del Rei
| | - Helvécio Costa Menezes
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- 6627-31270901 Belo Horizonte, Brazil
| | | |
Collapse
|
33
|
Bame M, Grier RE, Needleman R, Brusilow WSA. Amino acids as biomarkers in the SOD1(G93A) mouse model of ALS. Biochim Biophys Acta Mol Basis Dis 2013; 1842:79-87. [PMID: 24129262 DOI: 10.1016/j.bbadis.2013.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/26/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
The development of therapies for Amyotrophic Lateral Sclerosis (ALS) has been hindered by the lack of biomarkers for both identifying early disease and for monitoring the effectiveness of drugs. The identification of ALS biomarkers in presymptomatic individuals might also provide clues to the earliest biochemical correlates of the disease. Previous attempts to use plasma metabolites as biomarkers have led to contradictory results, presumably because of heterogeneity in both the underlying genetics and the disease stage in the clinical population. To eliminate these two sources of heterogeneity we have characterized plasma amino acids and other metabolites in the SOD1(G93A) transgenic mouse model for ALS. Presymptomatic SOD1(G93A) mice have significant differences in concentrations of several plasma metabolites compared to wild type animals, most notably in the concentrations of aspartate, cystine/cysteine, and phosphoethanolamine, and in changes indicative of methylation defects. There are significant changes in amino acid compositions between 50 and 70days of age in both the SOD1(G93A) and wild type mice, and several of the age-related and disease-related differences in metabolite concentration were also gender-specific. Many of the SOD1(G93A)-related differences could be altered by treatment of mice with methionine sulfoximine, which extends the lifespan of this mouse, inhibits glutamine synthetase, and modifies brain methylation reactions. These studies show that assaying plasma metabolites can effectively distinguish transgenic mice from wild type, suggesting that one or more plasma metabolites might be useful biomarkers for the disease in humans, especially if genetic and longitudinal analysis is used to reduce population heterogeneity.
Collapse
Affiliation(s)
- Monica Bame
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Street, Detroit, MI 48230, USA
| | | | | | | |
Collapse
|
34
|
Blasco H, Corcia P, Gordon PH, Pradat PF. Biological and neuroimaging biomarkers for amyotrophic lateral sclerosis: 2013 and beyond. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SUMMARY Amyotrophic lateral sclerosis is an idiopathic, incurable neurodegenerative disease that is fatal for most patients in less than 3 years from the time weakness first appears. Alongside identification of etiologies and stronger neuroprotective agents, the development of biomarkers is a main research priority. Since the original description, diagnosis and progression measurement in amyotrophic lateral sclerosis has been clinical. The time from symptom onset to diagnosis is usually more than a year, and clinical research studies utilize clinical end points that have low sensitivity. Few eligible patients and inefficient trials mean that just one or a few new therapies can be tested each year. Biological markers are needed not only to improve the sensitivity of clinical assessments, but also to better examine disease pathophysiology in vivo.
Collapse
Affiliation(s)
- Hélène Blasco
- UMR INSERM U930, Université François-Rabelais de Tours, Tours, France
- Laboratoire de Biochimie & de Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, France
| | - Philippe Corcia
- Centre SLA, Service de Neurologie & Neurophysiologie Clinique, CHRU de Tours, France
| | - Paul H Gordon
- Départment des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris, Hôpital de la Salpêtrière, 75013, Paris, France
| | - Pierre-François Pradat
- Départment des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris, Hôpital de la Salpêtrière, 75013, Paris, France
- UMR-678, INSERM-UPMC, Hôpital de la Salpêtrière, 75013, Paris, France
| |
Collapse
|
35
|
Cristóvão JS, Leal SS, Cardoso I, Gomes CM. Small molecules present in the cerebrospinal fluid metabolome influence superoxide dismutase 1 aggregation. Int J Mol Sci 2013; 14:19128-45. [PMID: 24048249 PMCID: PMC3794824 DOI: 10.3390/ijms140919128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) aggregation is one of the pathological markers of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The underlying molecular grounds of SOD1 pathologic aggregation remains obscure as mutations alone are not exclusively the cause for the formation of protein inclusions. Thus, other components in the cell environment likely play a key role in triggering SOD1 toxic aggregation in ALS. Recently, it was found that ALS patients present a specific altered metabolomic profile in the cerebrospinal fluid (CSF) where SOD1 is also present and potentially interacts with metabolites. Here we have investigated how some of these small molecules affect apoSOD1 structure and aggregation propensity. Our results show that as co-solvents, the tested small molecules do not affect apoSOD1 thermal stability but do influence its tertiary interactions and dynamics, as evidenced by combined biophysical analysis and proteolytic susceptibility. Moreover, these compounds influence apoSOD1 aggregation, decreasing nucleation time and promoting the formation of larger and less soluble aggregates, and in some cases polymeric assemblies apparently composed by spherical species resembling the soluble native protein. We conclude that some components of the ALS metabolome that shape the chemical environment in the CSF may influence apoSOD1 conformers and aggregation.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal; E-Mails: (J.S.C.); (S.S.L.)
| | - Sónia S. Leal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal; E-Mails: (J.S.C.); (S.S.L.)
| | - Isabel Cardoso
- Molecular Neurobiology Unit, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, Porto 4150-180, Portugal; E-Mail:
- Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Rua Valente Perfeito, 322, Vila Nova de Gaia 4400-330, Portugal
| | - Cláudio M. Gomes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal; E-Mails: (J.S.C.); (S.S.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-21-446-9332; Fax: +351-21-441-1277
| |
Collapse
|
36
|
Blasco H, Corcia P, Pradat PF, Bocca C, Gordon PH, Veyrat-Durebex C, Mavel S, Nadal-Desbarats L, Moreau C, Devos D, Andres CR, Emond P. Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 2013; 12:3746-54. [PMID: 23859630 DOI: 10.1021/pr400376e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the absence of reliable diagnostic biomarkers. The aim of the study was to (i) devise an untargeted metabolomics methodology that reliably compares cerebrospinal fluid (CSF) from ALS patients and controls by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS); (ii) ascertain a metabolic signature of ALS by use of the LC-HRMS platform; (iii) identify metabolites for use as diagnostic or pathophysiologic markers. We developed a method to analyze CSF components by UPLC coupled with a Q-Exactive mass spectrometer that uses electrospray ionization. Metabolomic profiles were created from the CSF obtained at diagnosis from ALS patients and patients with other neurological conditions. We performed multivariate analyses (OPLS-DA) and univariate analyses to assess the contribution of individual metabolites as well as compounds identified in other studies. Sixty-six CSF samples from ALS patients and 128 from controls were analyzed. Metabolome analysis correctly predicted the diagnosis of ALS in more than 80% of cases. OPLS-DA identified four features that discriminated diagnostic group (p < 0.004). Our data demonstrate that untargeted metabolomics with LC-HRMS is a robust procedure to generate a specific metabolic profile for ALS from CSF and could be an important aid to the development of biomarkers for the disease.
Collapse
Affiliation(s)
- Hélène Blasco
- Unité 930, Institut National de la Santé et de la Recherche Médicale, 37044 Tours, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Recent advances in metabolomics in neurological disease, and future perspectives. Anal Bioanal Chem 2013; 405:8143-50. [DOI: 10.1007/s00216-013-7061-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 12/14/2022]
|
38
|
Hartonen M, Mattila I, Ruskeepää AL, Orešič M, Hyötyläinen T. Characterization of cerebrospinal fluid by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 2013; 1293:142-9. [PMID: 23642768 DOI: 10.1016/j.chroma.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 11/15/2022]
Abstract
Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) was applied in the quantification and identification of organic compounds in patient-matched human cerebrospinal fluid (CSF) and serum samples. Concentrations of 21 amino and hydroxyl acids varied from 0.04 to 77ng/μl in CSF and from 0.1 to 84ng/μl in serum. In total, 91 metabolites out of over 1200 detected were identified based on mass spectra and retention indices. The other metabolites were identified at the functional group level. The main metabolites detected in CSF were sugar and amino acid derivatives. The CSF and serum had clearly distinct metabolic profiles, with larger biological variation in the serum than in CSF. The GC×GC-TOFMS allowed detection and identification of several metabolites that have not been previously detected in CSF.
Collapse
Affiliation(s)
- Minna Hartonen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
| | | | | | | | | |
Collapse
|
39
|
Kumar A, Ghosh D, Singh RL. Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach. J Biomark 2013; 2013:538765. [PMID: 26317018 PMCID: PMC4437352 DOI: 10.1155/2013/538765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/02/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3-5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients.
Collapse
Affiliation(s)
- Alok Kumar
- Center for Shock, Trauma and Anesthesiology Research (STAR) and the Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Devlina Ghosh
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - R. L. Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
| |
Collapse
|
40
|
Validated and predictive processing of gas chromatography-mass spectrometry based metabolomics data for large scale screening studies, diagnostics and metabolite pattern verification. Metabolites 2012; 2:796-817. [PMID: 24957763 PMCID: PMC3901241 DOI: 10.3390/metabo2040796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022] Open
Abstract
The suggested approach makes it feasible to screen large metabolomics data, sample sets with retained data quality or to retrieve significant metabolic information from small sample sets that can be verified over multiple studies. Hierarchical multivariate curve resolution (H-MCR), followed by orthogonal partial least squares discriminant analysis (OPLS-DA) was used for processing and classification of gas chromatography/time of flight mass spectrometry (GC/TOFMS) data characterizing human serum samples collected in a study of strenuous physical exercise. The efficiency of predictive H-MCR processing of representative sample subsets, selected by chemometric approaches, for generating high quality data was proven. Extensive model validation by means of cross-validation and external predictions verified the robustness of the extracted metabolite patterns in the data. Comparisons of extracted metabolite patterns between models emphasized the reliability of the methodology in a biological information context. Furthermore, the high predictive power in longitudinal data provided proof for the potential use in clinical diagnosis. Finally, the predictive metabolite pattern was interpreted physiologically, highlighting the biological relevance of the diagnostic pattern.
Collapse
|
41
|
Zachau AC, Landén M, Mobarrez F, Nybom R, Wallén H, Wetterberg L. Leukocyte-derived microparticles and scanning electron microscopic structures in two fractions of fresh cerebrospinal fluid in amyotrophic lateral sclerosis: a case report. J Med Case Rep 2012; 6:274. [PMID: 22943439 PMCID: PMC3492039 DOI: 10.1186/1752-1947-6-274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder characterized by degeneration of motoneuron cells in anterior spinal horns. There is a need for early and accurate diagnosis with this condition. In this case report we used two complementary methods: scanning electron microscopy and fluorescence-activated cell sorting. This is the first report to our knowledge of microparticles in the cerebrospinal fluid of a patient with amyotrophic lateral sclerosis. Case presentation An 80-year-old Swedish man of Caucasian ethnicity presented to our facility with symptoms of amyotrophic lateral sclerosis starting a year before his first hospital examination, such as muscle weakness and twitching in his right hand progressing to arms, body and leg muscles. Electromyography showed classical neurophysiological findings of amyotrophic lateral sclerosis. Routine blood sample results were normal. A lumbar puncture was performed as a routine investigation and his cerebrospinal fluid was normal with regard to cell count and protein levels, and there were no signs of inflammation. However, scanning electron microscopy and fluorescence-activated cell sorting showed pronounced abnormalities compared to healthy controls. Flow cytometry analysis of two fractions of cerebrospinal fluid from our patient with amyotrophic lateral sclerosis was used to measure the specific binding of antibodies to CD42a, CD144 and CD45, and of phosphatidylserine to lactadherin. Our patient displayed over 100 times more phosphatidylserine-positive microparticles and over 400 times more cell-derived microparticles of leukocyte origin in his cerebrospinal fluid compared to healthy control subjects. The first cerebrospinal fluid fraction contained about 50% more microparticles than the second fraction. The scanning electron microscopy filters used with cerebrospinal fluid from our patient were filled with compact aggregates of spherical particles of lipid appearance, sticking together in a viscous batter. The quantitative increase in scanning electron microscopy findings corresponded to the flow cytometry result of an increase in leukocyte-derived microparticles. Conclusions Microparticles represent subcellular arrangements that can influence the pathogenesis of amyotrophic lateral sclerosis and may serve as biomarkers for underlying cellular disturbances. The increased number of leukocyte-derived microparticles with normal cell counts in cerebrospinal fluid may contribute to the amyotrophic lateral sclerosis inflammatory process by formation of immune complexes of prion-like propagation, possibly due to misfolded proteins. The two complementary methods used in this report may be additional tools for revealing the etiology of amyotrophic lateral sclerosis, for early diagnostic purposes and for evaluation of clinical trials, long-term follow-up studies and elucidating the pathophysiology in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Anne C Zachau
- Karolinska Institutet, Department of Clinical Neuroscience at St, Göran, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|