1
|
Montaño AM, Różdżyńska-Świątkowska A, Jurecka A, Ramirez AN, Zhang L, Marsden D, Wang RY, Harmatz P. Growth patterns in patients with mucopolysaccharidosis VII. Mol Genet Metab Rep 2023; 36:100987. [PMID: 37415957 PMCID: PMC10320588 DOI: 10.1016/j.ymgmr.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Objective This study assessed growth patterns in patients with mucopolysaccharidosis (MPS) VII before enzyme replacement therapy. Methods Height, weight, and body mass index (BMI) measurements and Z-scores from patients from three clinical studies were compared with those from CDC healthy population growth charts. Relationships with age/sex and history of non-immune hydrops fetalis (NIHF) were assessed by linear regression and ANOVA, respectively. Results Among 20 enrolled patients with MPS VII, height Z-scores were near normal until 1 year of age but declined thereafter, particularly among males. There was no consistent pattern in weight Z-score. BMI Z-scores were above normal and increased slightly with age among males and were slightly below normal among females. Male patients with a history of NIHF had greater declines in height and weight Z-scores over time versus males without history of NIHF. There was no clear effect of NIHF history on height and weight Z-scores in female patients. Conclusions In patients with MPS VII, declines in height Z-score began early in life, particularly among males, while changes in BMI varied by sex. Patients with MPS VII and a history of NIHF had greater declines in height Z-score with age than did patients without a history of NIHF.Clinical trial registration: This retrospective analysis included patients enrolled in an open-label phase 2 study (UX003-CL203; ClinicalTrials.gov, NCT02418455), a randomized, placebo-controlled, blind-start phase 3 study (UX003-CL301; ClinicalTrials.gov, NCT02230566), or its open-label, long-term extension (UX003-CL202; ClinicalTrials.gov, NCT02432144). Requests for individual de-identified participant data and the clinical study report from this study are available to researchers providing a methodologically sound proposal that is in accordance with the Ultragenyx data sharing commitment. To gain access, data requestors will need to sign a data access and use agreement. Data will be shared via secured portal. The study protocol and statistical analysis plan for this study are available on the relevant clinical trial registry websites with the tabulated results.
Collapse
Affiliation(s)
- Adriana M. Montaño
- Department of Pediatrics, and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | | | | | | | - Lin Zhang
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | | - Raymond Y. Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, USA
- Division of Pediatrics, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Paul Harmatz
- UCSF Benioff Children's Hospital, Oakland, CA, USA
| |
Collapse
|
2
|
Gawri R, Lau YK, Lin G, Shetye SS, Zhang C, Jiang Z, Abdoun K, Scanzello CR, Jo SY, Mai W, Dodge GR, Casal ML, Smith LJ. Dose-dependent effects of enzyme replacement therapy on skeletal disease progression in mucopolysaccharidosis VII dogs. Mol Ther Methods Clin Dev 2023; 28:12-26. [PMID: 36570425 PMCID: PMC9747356 DOI: 10.1016/j.omtm.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is an inherited lysosomal storage disorder characterized by deficient activity of the enzyme β-glucuronidase. Skeletal abnormalities are common in patients and result in diminished quality of life. Enzyme replacement therapy (ERT) for MPS VII using recombinant human β-glucuronidase (vestronidase alfa) was recently approved for use in patients; however, to date there have been no studies evaluating therapeutic efficacy in a large animal model of MPS VII. The objective of this study was to establish the effects of intravenous ERT, administered at either the standard clinical dose (4 mg/kg) or a high dose (20 mg/kg), on skeletal disease progression in MPS VII using the naturally occurring canine model. Untreated MPS VII animals exhibited progressive synovial joint and vertebral bone disease and were no longer ambulatory by age 6 months. Standard-dose ERT-treated animals exhibited modest attenuation of joint disease, but by age 6 months were no longer ambulatory. High-dose ERT-treated animals exhibited marked attenuation of joint disease, and all were still ambulatory by age 6 months. Vertebral bone disease was recalcitrant to ERT irrespective of dose. Overall, our findings indicate that ERT administered at higher doses results in significantly improved skeletal disease outcomes in MPS VII dogs.
Collapse
Affiliation(s)
- Rahul Gawri
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gloria Lin
- Department of Clinical Sciences and Advanced Medicine, Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Snehal S. Shetye
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhirui Jiang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Khaled Abdoun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carla R. Scanzello
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Stephanie Y. Jo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wilfried Mai
- Department of Clinical Sciences and Advanced Medicine, Section of Radiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George R. Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margret L. Casal
- Department of Clinical Sciences and Advanced Medicine, Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J. Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
The Interplay of Glycosaminoglycans and Cysteine Cathepsins in Mucopolysaccharidosis. Biomedicines 2023; 11:biomedicines11030810. [PMID: 36979788 PMCID: PMC10045161 DOI: 10.3390/biomedicines11030810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during childhood, contributing to premature death. As the current therapies are limited and inefficient, exploring the molecular mechanisms of the pathology is thus required to address the unmet needs of MPS patients to improve their quality of life. Lysosomal cysteine cathepsins are a family of proteases that play key roles in numerous physiological processes. Dysregulation of cysteine cathepsins expression and activity can be frequently observed in many human diseases, including MPS. This review summarizes the basic knowledge on MPS disorders and their current management and focuses on GAGs and cysteine cathepsins expression in MPS, as well their interplay, which may lead to the development of MPS-associated disorders.
Collapse
|
4
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
5
|
Nakamura-Utsunomiya A. Bone Biomarkers in Mucopolysaccharidoses. Int J Mol Sci 2021; 22:ijms222312651. [PMID: 34884458 PMCID: PMC8658023 DOI: 10.3390/ijms222312651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
The accumulation of glycosaminoglycans (GAGs) in bone and cartilage leads to progressive damage in cartilage that, in turn, reduces bone growth by the destruction of the growth plate, incomplete ossification, and growth imbalance. The mechanisms of pathophysiology related to bone metabolism in mucopolysaccharidoses (MPS) include impaired chondrocyte function and the failure of endochondral ossification, which leads to the release of inflammatory cytokines via the activation of Toll-like receptors by GAGs. Although improvements in the daily living of patients with MPS have been achieved with enzyme replacement, treatment for the bone disorder is limited. There is an increasing need to identify biomarkers related to bone and cartilage to evaluate the progressive status and to monitor the treatment of MPS. Recently, new analysis methods, such as proteomic analysis, have identified new biomarkers in MPS. This review summarizes advances in clinical bone metabolism and bone biomarkers.
Collapse
Affiliation(s)
- Akari Nakamura-Utsunomiya
- Department of Pediatrics, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-254-1818; Fax: +81-82-253-8274
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
6
|
Corrêa T, Feltes BC, Giugliani R, Matte U. Disruption of morphogenic and growth pathways in lysosomal storage diseases. WIREs Mech Dis 2021; 13:e1521. [PMID: 34730292 DOI: 10.1002/wsbm.1521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
The lysosome achieved a new protagonism that highlights its multiple cellular functions, such as in the catabolism of complex substrates, nutrient sensing, and signaling pathways implicated in cell metabolism and growth. Lysosomal storage diseases (LSDs) cause lysosomal accumulation of substrates and deficiency in trafficking of macromolecules. The substrate accumulation can impact one or several pathways which contribute to cell damage. Autophagy impairment and immune response are widely studied, but less attention is paid to morphogenic and growth pathways and its impact on the pathophysiology of LSDs. Hedgehog pathway is affected with abnormal expression and changes in distribution of protein levels, and a reduced number and length of primary cilia. Moreover, growth pathways are identified with delay in reactivation of mTOR that deregulate termination of autophagy and reformation of lysosomes. Insulin resistance caused by changes in lipids rafts has been described in different LSDs. While the genetic and biochemical bases of deficient proteins in LSDs are well understood, the secondary molecular mechanisms that disrupt wider biological processes associated with LSDs are only now becoming clearer. Therefore, we explored how specific signaling pathways can be related to specific LSDs, showing that a system medicine approach could be a valuable tool for the better understanding of LSD pathogenesis. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruno C Feltes
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ursula Matte
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
7
|
Peck SH, Lau YK, Kang JL, Lin M, Arginteanu T, Matalon DR, Bendigo JR, O'Donnell P, Haskins ME, Casal ML, Smith LJ. Progression of vertebral bone disease in mucopolysaccharidosis VII dogs from birth to skeletal maturity. Mol Genet Metab 2021; 133:378-385. [PMID: 34154922 PMCID: PMC8289741 DOI: 10.1016/j.ymgme.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/16/2023]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient β-glucuronidase activity, leading to accumulation of incompletely degraded heparan, dermatan and chondroitin sulfate glycosaminoglycans. Patients with MPS VII exhibit progressive spinal deformity, which decreases quality of life. Previously, we demonstrated that MPS VII dogs exhibit impaired initiation of secondary ossification in the vertebrae and long bones. The objective of this study was to build on these findings and comprehensively characterize how vertebral bone disease manifests progressively in MPS VII dogs throughout postnatal growth. Vertebrae were collected postmortem from MPS VII and healthy control dogs at seven ages ranging from 9 to 365 days. Microcomputed tomography and histology were used to characterize bone properties in primary and secondary ossification centers. Serum was analyzed for bone turnover biomarkers. Results demonstrated that not only was secondary ossification delayed in MPS VII vertebrae, but that it progressed aberrantly and was markedly diminished even at 365 days-of-age. Within primary ossification centers, bone volume fraction and bone mineral density were significantly lower in MPS VII at 180 and 365 days-of-age. MPS VII growth plates exhibited significantly lower proliferative and hypertrophic zone cellularity at 90 days-of-age, while serum bone-specific alkaline phosphatase (BAP) was significantly lower in MPS VII dogs at 180 days-of-age. Overall, these findings establish that vertebral bone formation is significantly diminished in MPS VII dogs in both primary and secondary ossification centers during postnatal growth.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Yian Khai Lau
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Jennifer L Kang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Megan Lin
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Toren Arginteanu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Dena R Matalon
- Division of Human Genetics/Metabolism, Lysosomal Storage Diseases Program, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, USA
| | - Justin R Bendigo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Patricia O'Donnell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Jiang Z, Lau YK, Wu M, Casal ML, Smith LJ. Ultrastructural analysis of different skeletal cell types in mucopolysaccharidosis dogs at the onset of postnatal growth. J Anat 2021; 238:416-425. [PMID: 32895948 PMCID: PMC7812126 DOI: 10.1111/joa.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Abnormal development of the vertebrae and long bones is a hallmark of skeletal disease in several MPS subtypes; however, the underlying cellular mechanisms remain poorly understood. The objective of this study was to conduct an ultrastructural examination of how lysosomal storage differentially affects major skeletal cell types in MPS I and VII using naturally occurring canine disease models. We showed that both bone and cartilage cells from MPS I and VII dog vertebrae exhibit significantly elevated storage from early in postnatal life, with storage generally greater in MPS VII than MPS I. Storage was most striking for vertebral osteocytes, occupying more than forty percent of cell area. Secondary to storage, dilation of the rough endoplasmic reticulum (ER), a marker of ER stress, was observed most markedly in MPS I epiphyseal chondrocytes. Significantly elevated immunostaining of light chain 3B (LC3B) in MPS VII epiphyseal chondrocytes suggested impaired autophagy, while significantly elevated apoptotic cell death in both MPS I and VII chondrocytes was also evident. The results of this study provide insights into how lysosomal storage differentially effects major skeletal cell types in MPS I and VII, and suggests a potential relationship between storage, ER stress, autophagy, and cell death in the pathogenesis of MPS skeletal defects.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yian Khai Lau
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Meilun Wu
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Margret L. Casal
- Department of Clinical Sciences and Advanced MedicineSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lachlan J. Smith
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
9
|
Madhu V, Guntur AR, Risbud MV. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol 2020; 100-101:207-220. [PMID: 33301899 DOI: 10.1016/j.matbio.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
The intervertebral disc and cartilage are specialized, extracellular matrix-rich tissues critical for absorbing mechanical loads, providing flexibility to the joints, and longitudinal growth in the case of growth plate cartilage. Specialized niche conditions in these tissues, such as hypoxia, are critical in regulating cellular activities including autophagy, a lysosomal degradation pathway that promotes cell survival. Mounting evidence suggests that dysregulation of autophagic pathways underscores many skeletal pathologies affecting the spinal column, articular and growth plate cartilages. Many lysosomal storage disorders characterized by the accumulation of partially degraded glycosaminoglycans (GAGs) due to the lysosomal dysfunction thus affect skeletal tissues and result in altered ECM structure. Likewise, pathologies that arise from mutations in genes encoding ECM proteins and ECM processing, folding, and post-translational modifications, result in accumulation of misfolded proteins in the ER, ER stress and autophagy dysregulation. These conditions evidence reduced secretion of ECM proteins and/or increased secretion of mutant proteins, thereby impairing matrix quality and the integrity of affected skeletal tissues and causing a lack of growth and degeneration. In this review, we discuss the role of autophagy and mechanisms of its regulation in the intervertebral disc and cartilages, as well as how dysregulation of autophagic pathways affects these skeletal tissues.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Peck SH, Tobias JW, Shore EM, Malhotra NR, Haskins ME, Casal ML, Smith LJ. Molecular profiling of failed endochondral ossification in mucopolysaccharidosis VII. Bone 2019; 128:115042. [PMID: 31442675 PMCID: PMC6813906 DOI: 10.1016/j.bone.2019.115042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient activity of β-glucuronidase, leading to progressive accumulation of incompletely degraded heparan, dermatan, and chondroitin sulfate glycosaminoglycans (GAGs). Patients with MPS VII exhibit progressive skeletal deformity including kyphoscoliosis and joint dysplasia, which decrease quality of life and increase mortality. Previously, using the naturally-occurring canine model, we demonstrated that one of the earliest skeletal abnormalities to manifest in MPS VII is failed initiation of secondary ossification in vertebrae and long bones at the requisite postnatal developmental stage. The objective of this study was to obtain global insights into the molecular mechanisms underlying this failed initiation of secondary ossification. Epiphyseal tissue was isolated postmortem from the vertebrae of control and MPS VII-affected dogs at 9 and 14 days-of-age (n = 5 for each group). Differences in global gene expression across this developmental window for both cohorts were measured using whole-transcriptome sequencing (RNA-Seq). Principal Component Analysis revealed clustering of samples within each group, indicating clear effects of both age and disease state. At 9 days-of-age, 1375 genes were significantly differentially expressed between MPS VII and control, and by 14 days-of-age, this increased to 4719 genes. A targeted analysis focused on signaling pathways important in the regulation of endochondral ossification was performed, and a subset of gene expression differences were validated using qPCR. Osteoactivin (GPNMB) was the top upregulated gene in MPS VII at both ages. In control samples, temporal changes in gene expression from 9 to 14 days-of-age were consistent with chondrocyte maturation, cartilage resorption, and osteogenesis. In MPS VII samples, however, elements of key osteogenic pathways such as Wnt/β-catenin and BMP signaling were not upregulated during this same developmental window suggesting that important bone formation pathways are not activated. In conclusion, this study represents an important step towards identifying therapeutic targets and biomarkers for bone disease in MPS VII patients during postnatal growth.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, USA
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Nicolas-Jilwan M, AlSayed M. Mucopolysaccharidoses: overview of neuroimaging manifestations. Pediatr Radiol 2018; 48:1503-1520. [PMID: 29752520 DOI: 10.1007/s00247-018-4139-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023]
Abstract
The mucopolysaccharidoses are a heterogeneous group of inherited lysosomal storage disorders, characterized by the accumulation of undegraded glycosaminoglycans in various organs, leading to tissue damage. Mucopolysaccharidoses include eight individual disorders (IS [Scheie syndrome], IH [Hurler syndrome], II, III, IV, VI, VII and IX). They have autosomal-recessive transmission with the exception of mucopolysaccharidosis II, which is X-linked. Each individual disorder has a wide spectrum of phenotypic variation, depending on the specific mutation, from very mild to very severe. The skeletal and central nervous systems are particularly affected. The typical clinical presentation includes organomegaly, dysostosis multiplex with short trunk dwarfism, mental retardation and developmental delay. In this article, we review the neuroimaging manifestations of the different types of mucopolysaccharidoses including the dysostosis multiplex of the skull and spine as well as the various central nervous system complications. These include white matter injury, enlargement of the perivascular spaces, hydrocephalus, brain atrophy, characteristic enlargement of the subarachnoid spaces as well as compressive myelopathy. The correlation between several of the neuroimaging features and disease severity remains controversial, without well-established imaging biomarkers at this time. Imaging has, however, a crucial role in monitoring disease progression, in particular craniocervical junction stenosis, cord compression and hydrocephalus, because this allows for timely intervention before permanent damage occurs.
Collapse
Affiliation(s)
- Manal Nicolas-Jilwan
- Department of Radiology (MBC-28), Division of Neuroradiology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Moeenaldeen AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Bulut E, Pektas E, Sivri HS, Bilginer B, Umaroglu MM, Ozgen B. Evaluation of spinal involvement in children with mucopolysaccharidosis VI: the role of MRI. Br J Radiol 2018; 91:20170744. [PMID: 29376740 DOI: 10.1259/bjr.20170744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate spinal MRI features of mucopolysaccharidosis (MPS) VI and to assess the correlation with clinical findings. METHODS We retrospectively evaluated spinal MRI scans and clinical findings at the time of imaging in 14 patients (8 male, 6 female) with MPS VI. Craniometric measurements were performed and the images were assessed for bony anomalies, spinal stenosis and spinal cord compression. The degree of cervical cord compression was scored and correlated with neurological examination findings at the time of imaging. Vertebral alignment, structural changes in spinal ligaments and intervertebral discs were also assessed. RESULTS All patients had cervical stenosis due to bony stenosis and thickened retrodental tissue (median: 6.05 mm, range 3.3-8 mm). Retrodental tissue thickness was found to increase with age (p = 0.042). Compressive myelopathy was detected at upper cervical level in 11 (79%) and lower thoracic level in 2 patients (14%). Significant inverse correlation was found between cervical myelopathy scores and neurological strength scores. The most common bony changes were hypo/dysplastic odontoid; cervical platyspondyly with anterior inferior beaking; thoracic posterior end plate depressions and lumbar posterior scalloping. Kyphosis due to retrolisthesis of the beaked lumbar vertebrae and acute sacrococcygeal angulations were other remarkable findings. CONCLUSION MRI is an essential component in evaluation of spinal involvement in MPS VI, and scanning of the entire spine is recommended to rule out thoracic cord compression. Advances in knowledge: This study provides a detailed description of spinal MRI findings in MPS VI and underlines the role of MRI in management of cord compression.
Collapse
Affiliation(s)
- Elif Bulut
- 1 Department of Radiology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Emine Pektas
- 2 Department of Pediatric Metabolism, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Hatice S Sivri
- 2 Department of Pediatric Metabolism, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Burcak Bilginer
- 3 Department of Neurosurgery, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Mumtaz M Umaroglu
- 4 Department of Biostatistics, Hacettepe University , Ankara , Turkey
| | - Burce Ozgen
- 1 Department of Radiology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| |
Collapse
|
15
|
Gurda BL, Bradbury AM, Vite CH. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:417-431. [PMID: 28955181 PMCID: PMC5612185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.
Collapse
Affiliation(s)
| | | | - Charles H. Vite
- To whom all correspondence should be addressed: Dr. Charles H. Vite, 209 Rosenthal Building, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, Tel: 215-898-9473, .
| |
Collapse
|
16
|
Peck SH, Casal ML, Malhotra NR, Ficicioglu C, Smith LJ. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab 2016; 118:232-43. [PMID: 27296532 PMCID: PMC4970936 DOI: 10.1016/j.ymgme.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Skeletal disease is common in MPS patients, with the severity varying both within and between subtypes. Within the spectrum of skeletal disease, spinal manifestations are particularly prevalent. Developmental and degenerative abnormalities affecting the substructures of the spine can result in compression of the spinal cord and associated neural elements. Resulting neurological complications, including pain and paralysis, significantly reduce patient quality of life and life expectancy. Systemic therapies for MPS, such as hematopoietic stem cell transplantation and enzyme replacement therapy, have shown limited efficacy for improving spinal manifestations in patients and animal models. Therefore, there is a pressing need for new therapeutic approaches that specifically target this debilitating aspect of the disease. In this review, we examine how pathological abnormalities affecting the key substructures of the spine - the discs, vertebrae, odontoid process and dura - contribute to the progression of spinal deformity and symptomatic compression of neural elements. Specifically, we review current understanding of the underlying pathophysiology of spine disease in MPS, how the tissues of the spine respond to current clinical and experimental treatments, and discuss future strategies for improving the efficacy of these treatments.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Margret L Casal
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, United States
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Can Ficicioglu
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, United States
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
17
|
Parini R, Jones SA, Harmatz PR, Giugliani R, Mendelsohn NJ. The natural history of growth in patients with Hunter syndrome: Data from the Hunter Outcome Survey (HOS). Mol Genet Metab 2016; 117:438-46. [PMID: 26846156 DOI: 10.1016/j.ymgme.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Hunter syndrome (mucopolysaccharidosis type II) affects growth but the overall impact is poorly understood. This study investigated the natural history of growth and related parameters and their relationship with disease severity (as indicated by cognitive impairment). Natural history data from males followed prospectively in the Hunter Outcome Survey registry and not receiving growth hormone or enzyme replacement therapy, or before treatment start, were analysed (N=676; January 2014). Analysis of first-reported measurements showed short stature by 8years of age; median age-corrected standardized height score (z-score) in patients aged 8-12years was -3.1 (1st, 3rd quartile: -4.3, -1.7; n=68). Analysis of growth velocity using consecutive values found no pubertal growth spurt. Patients had large head circumference at all ages, and above average body weight and body mass index (BMI) during early childhood (median z-score in patients aged 2-4years, weight [n=271]: 1.7 [0.9, 2.4]; BMI [n=249]: 2.0 [1.1, 2.7]). Analysis of repeated measurements over time found greater BMI in those with cognitive impairment than those without, but no difference in height, weight or head circumference. Logistic regression modelling (data from all time points) found that increased BMI was associated with the presence of cognitive impairment (odds ratio [95% CI], 3.329 [2.313-4.791]), as were increased weight (2.365 [1.630-3.433]) and head circumference (1.749 [1.195-2.562]), but not reduced height. Unlike some other MPS disorders, there is no evidence at present for predicting disease severity in patients with Hunter syndrome based on changes in growth characteristics.
Collapse
Affiliation(s)
- Rossella Parini
- Rare Metabolic Disease Unit, Pediatric Department, University Milano Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy.
| | - Simon A Jones
- Willink Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Paul R Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA.
| | - Roberto Giugliani
- Medical Genetics Service/HCPA, Department of Genetics/UFRGS and INAGEMP, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil.
| | - Nancy J Mendelsohn
- Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, 2525 Chicago Ave South, CSC 560, Minneapolis, MN 55404, USA; Department of Pediatrics, Division of Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Peck SH, O'Donnell PJM, Kang JL, Malhotra NR, Dodge GR, Pacifici M, Shore EM, Haskins ME, Smith LJ. Delayed hypertrophic differentiation of epiphyseal chondrocytes contributes to failed secondary ossification in mucopolysaccharidosis VII dogs. Mol Genet Metab 2015; 116:195-203. [PMID: 26422116 PMCID: PMC4641049 DOI: 10.1016/j.ymgme.2015.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient β-glucuronidase activity, which leads to the accumulation of incompletely degraded glycosaminoglycans (GAGs). MPS VII patients present with severe skeletal abnormalities, which are particularly prevalent in the spine. Incomplete cartilage-to-bone conversion in MPS VII vertebrae during postnatal development is associated with progressive spinal deformity and spinal cord compression. The objectives of this study were to determine the earliest postnatal developmental stage at which vertebral bone disease manifests in MPS VII and to identify the underlying cellular basis of impaired cartilage-to-bone conversion, using the naturally-occurring canine model. Control and MPS VII dogs were euthanized at 9 and 14 days-of-age, and vertebral secondary ossification centers analyzed using micro-computed tomography, histology, qPCR, and protein immunoblotting. Imaging studies and mRNA analysis of bone formation markers established that secondary ossification commences between 9 and 14 days in control animals, but not in MPS VII animals. mRNA analysis of differentiation markers revealed that MPS VII epiphyseal chondrocytes are unable to successfully transition from proliferation to hypertrophy during this critical developmental window. Immunoblotting demonstrated abnormal persistence of Sox9 protein in MPS VII cells between 9 and 14 days-of-age, and biochemical assays revealed abnormally high intra and extracellular GAG content in MPS VII epiphyseal cartilage at as early as 9 days-of-age. In contrast, assessment of vertebral growth plates and primary ossification centers revealed no significant abnormalities at either age. The results of this study establish that failed vertebral bone formation in MPS VII can be traced to the failure of epiphyseal chondrocytes to undergo hypertrophic differentiation at the appropriate developmental stage, and suggest that aberrant processing of Sox9 protein may contribute to this cellular dysfunction. These results also highlight the importance of early diagnosis and therapeutic intervention to prevent the progression of debilitating skeletal disease in MPS patients.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip J M O'Donnell
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer L Kang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Division of Orthopedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Clarke LA, Hollak CEM. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders. Best Pract Res Clin Endocrinol Metab 2015; 29:219-35. [PMID: 25987175 DOI: 10.1016/j.beem.2014.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lysosomal storage disorders affect multiple organs including the skeleton. Disorders with prominent skeletal symptoms are type 1 and 3 Gaucher disease, the mucopolysaccharidoses, the glycoproteinoses and pycnodysostosis. Clinical manifestations range from asymptomatic radiographical evidence of bone pathology to overt bone crises (Gaucher), short stature with typical imaging features known as dysostosis multiplex (MPS), with spine and joint deformities (mucopolysaccharidoses, mucolipidosis), or osteopetrosis with pathological fractures (pynodysostosis). The pathophysiology of skeletal disease is only partially understood and involves direct substrate storage, inflammation and other complex alterations of cartilage and bone metabolism. Current treatments are enzyme replacement therapy, substrate reduction therapy and hematopoietic stem cell transplantation. However, effects of these interventions on skeletal disease manifestations are less well established and outcomes are highly dependent on disease burden at treatment initiation. It is now clear that adjunctive treatments that target skeletal disease are needed and should be part of future research agenda.
Collapse
Affiliation(s)
- Lorne A Clarke
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Carla E M Hollak
- Department of Internal Medicine/Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Xing EM, Wu S, Ponder KP. The effect of Tlr4 and/or C3 deficiency and of neonatal gene therapy on skeletal disease in mucopolysaccharidosis VII mice. Mol Genet Metab 2015; 114:209-16. [PMID: 25559179 PMCID: PMC4381425 DOI: 10.1016/j.ymgme.2014.12.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder caused by the deficiency of the enzyme β-glucuronidase (Gusb(-/-)) and results in glycosaminoglycan (GAG) accumulation. Skeletal abnormalities include stunted long bones and bone degeneration. GAGs have been hypothesized to activate toll-like receptor 4 (Tlr4) signaling and the complement pathway, resulting in upregulation of inflammatory cytokines that suppress growth and cause degeneration of the bone. Gusb(-/-) mice were bred with Tlr4- and complement component 3 (C3)-deficient mice, and the skeletal manifestations of the doubly- and triply-deficient mice were compared to those of purebred Gusb(-/-) mice. Radiographs showed that purebred Gusb(-/-) mice had shorter tibias and femurs, and wider femurs, compared to normal mice. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice. The glenoid cavity and humerus were scored on a scale from 0 (normal) to +3 (severely abnormal) for dysplasia and bone irregularities, and the joint space was measured. No improvement was seen in Tlr4, C3, or Tlr4/C3-deficient Gusb(-/-) mice, and their joint space remained abnormally wide. Gusb(-/-) mice treated neonatally with an intravenous retroviral vector (RV) had thinner femurs, longer legs, and a narrowed joint space compared with untreated purebred Gusb(-/-) mice, but no improvement in glenohumeral degeneration. We conclude that Tlr4- and/or C3-deficiency fail to ameliorate skeletal abnormalities, and other pathways may be involved. RV treatment improves some but not all aspects of bone disease. Radiographs may be an efficient method for future evaluation, as they readily show glenohumeral joint abnormalities.
Collapse
Affiliation(s)
- Elizabeth M Xing
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan Wu
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Katherine P Ponder
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Chiaro JA, O'Donnell P, Shore EM, Malhotra NR, Ponder KP, Haskins ME, Smith LJ. Effects of neonatal enzyme replacement therapy and simvastatin treatment on cervical spine disease in mucopolysaccharidosis I dogs. J Bone Miner Res 2014; 29:2610-7. [PMID: 24898323 PMCID: PMC4256138 DOI: 10.1002/jbmr.2290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease characterized by deficient α-L-iduronidase activity, leading to the accumulation of poorly degraded glycosaminoglycans (GAGs). Children with MPS I exhibit high incidence of spine disease, including accelerated disc degeneration and vertebral dysplasia, which in turn lead to spinal cord compression and kyphoscoliosis. In this study we investigated the efficacy of neonatal enzyme replacement therapy (ERT), alone or in combination with oral simvastatin (ERT + SIM) for attenuating cervical spine disease progression in MPS I, using a canine model. Four groups were studied: normal controls; MPS I untreated; MPS I ERT-treated; and MPS I ERT + SIM-treated. Animals were euthanized at age 1 year. Intervertebral disc condition and spinal cord compression were evaluated from magnetic resonance imaging (MRI) images and plain radiographs, vertebral bone condition and odontoid hypoplasia were evaluated using micro-computed tomography (µCT), and epiphyseal cartilage to bone conversion was evaluated histologically. Untreated MPS I animals exhibited more advanced disc degeneration and more severe spinal cord compression than normal animals. Both treatment groups resulted in partial preservation of disc condition and cord compression, with ERT + SIM not significantly better than ERT alone. Untreated MPS I animals had significantly lower vertebral trabecular bone volume and mineral density, whereas ERT treatment resulted in partial preservation of these properties. ERT + SIM treatment demonstrated similar, but not greater, efficacy. Both treatment groups partially normalized endochondral ossification in the vertebral epiphyses (as indicated by absence of persistent growth plate cartilage), and odontoid process size and morphology. These results indicate that ERT begun from a very early age attenuates the severity of cervical spine disease in MPS I, particularly for the vertebral bone and odontoid process, and that additional treatment with simvastatin does not provide a significant additional benefit over ERT alone.
Collapse
Affiliation(s)
- Joseph A Chiaro
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Alroy J, Garganta C, Wiederschain G. Secondary biochemical and morphological consequences in lysosomal storage diseases. BIOCHEMISTRY (MOSCOW) 2014; 79:619-36. [DOI: 10.1134/s0006297914070049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Chiaro JA, Baron MD, del Alcazar C, O’Donnell P, Shore EM, Elliott DM, Ponder KP, Haskins ME, Smith LJ. Postnatal progression of bone disease in the cervical spines of mucopolysaccharidosis I dogs. Bone 2013; 55:78-83. [PMID: 23563357 PMCID: PMC3668665 DOI: 10.1016/j.bone.2013.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 03/04/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Mucopolysaccharidosis I (MPS I) is a lysosomal storage disorder characterized by deficient α-l-iduronidase activity leading to accumulation of poorly degraded dermatan and heparan sulfate glycosaminoglycans (GAGs). MPS I is associated with significant cervical spine disease, including vertebral dysplasia, odontoid hypoplasia, and accelerated disk degeneration, leading to spinal cord compression and kypho-scoliosis. The objective of this study was to establish the nature and rate of progression of cervical vertebral bone disease in MPS I using a canine model. METHODS C2 vertebrae were obtained post-mortem from normal and MPS I dogs at 3, 6 and 12 months-of-age. Morphometric parameters and mineral density for the vertebral trabecular bone and odontoid process were determined using micro-computed tomography. Vertebrae were then processed for paraffin histology, and cartilage area in both the vertebral epiphyses and odontoid process were quantified. RESULTS Vertebral bodies of MPS I dogs had lower trabecular bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and bone mineral density (BMD) than normals at all ages. For MPS I dogs, BV/TV, Tb.Th and BMD plateaued after 6 months-of-age. The odontoid process appeared morphologically abnormal for MPS I dogs at 6 and 12 months-of-age, although BV/TV and BMD were not significantly different from normals. MPS I dogs had significantly more cartilage in the vertebral epiphyses at both 3 and 6 months-of-age. At 12 months-of-age, epiphyseal growth plates in normal dogs were absent, but in MPS I dogs they persisted. CONCLUSIONS In this study we report reduced trabecular bone content and mineralization, and delayed cartilage to bone conversion in MPS I dogs from 3 months-of-age, which may increase vertebral fracture risk and contribute to progressive deformity. The abnormalities of the odontoid process we describe likely contribute to increased incidence of atlanto-axial subluxation observed clinically. Therapeutic strategies that enhance bone formation may decrease incidence of spine disease in MPS I patients.
Collapse
Affiliation(s)
- Joseph A Chiaro
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Matthew D Baron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Chelsea del Alcazar
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Patricia O’Donnell
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 4020 Ryan Veterinary Hospital, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, College of Engineering, University of Delaware, 125 E Delaware Avenue, Newark, DE, 19716, USA
| | - Katherine P Ponder
- Department of Internal Medicine, Washington University, Campus Box 8125 660 South Euclid Avenue, Saint Louis, MO, 63110, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 4020 Ryan Veterinary Hospital, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
- Correspondence: Lachlan J Smith, Ph.D. Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104 USA, Ph. +1 215-898-8653, Fax. +1 215-573-2133,
| |
Collapse
|
24
|
Xing EM, Knox VW, O'Donnell PA, Sikura T, Liu Y, Wu S, Casal ML, Haskins ME, Ponder KP. The effect of neonatal gene therapy on skeletal manifestations in mucopolysaccharidosis VII dogs after a decade. Mol Genet Metab 2013; 109:183-93. [PMID: 23628461 PMCID: PMC3690974 DOI: 10.1016/j.ymgme.2013.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term.
Collapse
Affiliation(s)
- Elizabeth M Xing
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|