1
|
Stern S, Wang J, Li RJ, Hon YY, Weis SL, Wang YMC, Schuck R, Pacanowski M. Clinical pharmacology considerations for first-in-human clinical trials for enzyme replacement therapy. J Inherit Metab Dis 2024. [PMID: 38740427 DOI: 10.1002/jimd.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Inborn errors of metabolism (IEM) such as lysosomal storage disorders (LSDs) are conditions caused by deficiency of one or more key enzymes, cofactors, or transporters involved in a specific metabolic pathway. Enzyme replacement therapy (ERT) provides an exogenous source of the affected enzyme and is one of the most effective treatment options for IEMs. In this paper, we review the first-in-human (FIH) protocols for ERT drug development programs supporting 20 Biologic License Applications (BLA) approved by the Center for Drug Evaluation and Research (CDER) at the US Food and Drug Administration (FDA) in the period of May 1994 to September 2023. We surveyed study design elements across these FIH protocols including study population, dosage form, dose selection, treatment duration, immunogenicity, biomarkers, and study follow-up. A total of 18 FIH trials from 20 BLAs were identified and of those, 72% (13/18) used single ascending dose (SAD) and/or multiple ascending dose (MAD) study design, 83% (15/18) had a primary objective of assessing the safety and tolerability, 72% (13/18) included clinical endpoint assessments, and 94% (17/18) included biomarker assessments as secondary or exploratory endpoints. Notably, the majority of ERT products tested the approved route of administration and the approved dose was tested in 83% (15/18) of FIH trials. At last, we offer considerations for the design of FIH studies.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ruo-Jing Li
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yuen Yi Hon
- Office of Rare Disease, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shawna L Weis
- Office of Rare Disease, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yow-Ming C Wang
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Chen HA, Hsu RH, Fang CY, Desai AK, Lee NC, Hwu WL, Tsai FJ, Kishnani PS, Chien YH. Optimizing treatment outcomes: immune tolerance induction in Pompe disease patients undergoing enzyme replacement therapy. Front Immunol 2024; 15:1336599. [PMID: 38715621 PMCID: PMC11074348 DOI: 10.3389/fimmu.2024.1336599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Pompe disease, a lysosomal storage disorder, is characterized by acid α-glucosidase (GAA) deficiency and categorized into two main subtypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The primary treatment, enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), faces challenges due to immunogenic responses, including the production of anti-drug antibody (ADA), which can diminish therapeutic efficacy. This study aims to assess the effectiveness of immune tolerance induction (ITI) therapy in cross-reactive immunologic material (CRIM)-positive Pompe disease patients with established high ADA levels. Method In a single-center, open-label prospective study, we assessed ITI therapy's efficacy in Pompe disease patients, both IOPD and LOPD, with persistently elevated ADA titers (≥1:12,800) and clinical decline. The ITI regimen comprised bortezomib, rituximab, methotrexate, and intravenous immunoglobulin. Biochemical data, biomarkers, ADA titers, immune status, and respiratory and motor function were monitored over six months before and after ITI. Results This study enrolled eight patients (5 IOPD and 3 LOPD). After a 6-month ITI course, median ADA titers significantly decreased from 1:12,800 (range 1:12,800-1:51,200) to 1:1,600 (range 1:400-1:12,800), with sustained immune tolerance persisting up to 4.5 years in some cases. Serum CK levels were mostly stable or decreased, stable urinary glucose tetrasaccharide levels were maintained in four patients, and no notable deterioration in respiratory or ambulatory status was noted. Adverse events included two treatable infection episodes and transient symptoms like numbness and diarrhea. Conclusion ITI therapy effectively reduces ADA levels in CRIM-positive Pompe disease patients with established high ADA titers, underscoring the importance of ADA monitoring and timely ITI initiation. The findings advocate for personalized immunogenicity risk assessments to enhance clinical outcomes. In some cases, prolonged immune suppression may be necessary, highlighting the need for further studies to optimize ITI strategies for Pompe disease treatment. ClinicalTrials.gov NCT02525172; https://clinicaltrials.gov/study/NCT02525172.
Collapse
Affiliation(s)
- Hui-An Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rai-Hseng Hsu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ya Fang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
3
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
4
|
Ditters IAM, van Kooten HA, van der Beek NAME, van der Ploeg AT, Huidekoper HH, van den Hout JMP. Are Anti-rhGAA Antibodies a Determinant of Treatment Outcome in Adults with Late-Onset Pompe Disease? A Systematic Review. Biomolecules 2023; 13:1414. [PMID: 37759814 PMCID: PMC10526476 DOI: 10.3390/biom13091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pompe disease is a lysosomal storage disease characterised by skeletal and respiratory muscle weakness. Since 2006, enzyme replacement therapy (ERT) with alglucosidase alfa has been available. ERT significantly improves the prognosis of patients with Pompe disease. The effect of high antibody titres on treatment response in adults with late-onset Pompe disease (LOPD) remains unclear but may contribute to interpatient variation. We therefore conducted a systematic review on this subject. METHODS A systematic search was performed in Embase, Medline Ovid, Web of Science, Psych Info Ovid, Cochrane (Clinical Trials only), and Google Scholar (random top-200). Articles were included if they involved adults with LOPD treated with alglucosidase alfa and mentioned anti-rhGAA antibodies or antibody titres. In addition, articles mentioning dosages different from the standard recommended dosage were included. RESULTS Our literature search retrieved 2562 publications, and 17 fulfilled our selection criteria, describing 443 cases. Seven publications reported on anti-rhGAA antibody titres on a group level, with the percentage of patients with a high titre as defined in the included articles ranging from 0-33%. Six publications reported on the effect of anti-rhGAA antibody titre on clinical course, and four found no correlation. Two studies reported a negative effect on treatment. The first study found a greater improvement in Medical Research Council (MRC) score in patients with no detectable antibody titre. In the second study, a patient discontinued ERT due to a declining neuromuscular state as a result of high anti-rhGAA antibody titres. Seven publications reported on 17 individual patients with a high antibody titre (range 1:12,800-1:3,906,250). In only two cases were high-sustained neutralising antibodies reported to interfere with treatment efficacy. CONCLUSIONS No clear effect of anti-rhGAA IgG antibodies on treatment response could be established for the majority of LOPD patients with a high antibody titre. In a minority of patients, a clinical decline related to (possible) interference of anti-rhGAA antibodies was described.
Collapse
Affiliation(s)
- Imke A. M. Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Harmke A. van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Nadine A. M. E. van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Hidde H. Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Johanna M. P. van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| |
Collapse
|
5
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Kim KH, Desai AK, Vucko ER, Boggs T, Kishnani PS, Burton BK. Development of high sustained anti-drug antibody titers and corresponding clinical decline in a late-onset Pompe disease patient after 11+ years on enzyme replacement therapy. Mol Genet Metab Rep 2023; 36:100981. [PMID: 37342670 PMCID: PMC10277605 DOI: 10.1016/j.ymgmr.2023.100981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
A late-onset Pompe disease patient developed high sustained antibody titers (HSAT) of ≥51,200 after 11+ years on alglucosidase alfa and previous tolerance. There was a corresponding worsening of motor function and rise in urinary glucose tetrasaccharide (Glc4). Following immunomodulation therapy, HSAT were eliminated with improved clinical outcomes and biomarker trends. This report highlights the importance of continued surveillance of antibody titers and biomarkers, the negative impact of HSAT, and improved outcomes with immunomodulation therapy.
Collapse
Affiliation(s)
- Katherine H. Kim
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Genomics and Metabolism, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave Box 59, Chicago, IL 60611, USA
| | - Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Box 103856 DUM, Durham, NC 27710, USA
| | - Erika R. Vucko
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Genomics and Metabolism, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave Box 59, Chicago, IL 60611, USA
| | - Tracy Boggs
- Department of Rehabilitation Services, Duke University Health System, 234 Crooked Creek Pkwy, Suite 310, Durham, NC 27713, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Box 103856 DUM, Durham, NC 27710, USA
| | - Barbara K. Burton
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Genetics, Genomics and Metabolism, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave Box 59, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Smith EC, Hopkins S, Case LE, Xu M, Walters C, Dearmey S, Han SO, Spears TG, Chichester JA, Bossen EH, Hornik CP, Cohen JL, Bali D, Kishnani PS, Koeberl DD. Phase I study of liver depot gene therapy in late-onset Pompe disease. Mol Ther 2023; 31:1994-2004. [PMID: 36805083 PMCID: PMC10362382 DOI: 10.1016/j.ymthe.2023.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.
Collapse
Affiliation(s)
- Edward C Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sam Hopkins
- Asklepios Biopharmaceutical, Inc. (Askbio), Durham, NC, USA
| | - Laura E Case
- Department of Orthopedics, Duke University School of Medicine, Durham, NC, USA
| | - Ming Xu
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Crista Walters
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Dearmey
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sang-Oh Han
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Tracy G Spears
- Clinical Trials Statistics, Duke Clinical Research Institute, Durham, NC, USA
| | - Jessica A Chichester
- Immunology Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward H Bossen
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Domínguez-González C, Díaz-Marín C, Juntas-Morales R, Nascimiento-Osorio A, Rivera-Gallego A, Díaz-Manera J. Survey on the management of Pompe disease in routine clinical practice in Spain. Orphanet J Rare Dis 2022; 17:426. [PMID: 36471448 PMCID: PMC9724265 DOI: 10.1186/s13023-022-02574-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the availability of several clinical guidelines, not all health professionals use their recommendations to manage patients with Pompe disease, a rare genetic disorder involving high-impact therapy. Through several discussion meetings and a survey, the present study aimed to learn about the management of Pompe disease in routine clinical practice in Spain, to improve clinical care in a real-life situation. RESULTS The survey was sent to 42 healthcare professionals who manage patients with Pompe disease in their clinical practice. Although most respondents followed the clinical guidelines, clinical practice differed from the expert recommendations in many cases. Approximately 7% did not request a genetic study to confirm the diagnosis before starting treatment, and 21% considered that only two dried blood spot determinations suffice to establish the diagnosis. About 76% requested anti-GAA antibodies when there is a suspicion of lack of treatment efficacy, though a significant percentage of respondents have never requested such antibodies. According to 31% of the respondents, significant impairment of motor function and/or respiratory insufficiency is a requirement for authorizing medication at their hospital. Up to 26% waited for improvements over the clinical follow-up to maintain treatment and withdrew it in the absence of improvement since they did not consider disease stabilization to be a satisfactory outcome. CONCLUSIONS The results highlight the lack of experience and/or knowledge of some professionals caring for patients with Pompe disease. It is necessary to develop and disseminate simple guidelines that help to apply the expert recommendations better or centralize patient follow-up in highly specialized centers.
Collapse
Affiliation(s)
- Cristina Domínguez-González
- grid.413448.e0000 0000 9314 1427Neuromuscular Unit, Neurology Department, Hospital Universitario 12 de Octubre, imas12 Research Institute, Biomedical Network Research Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Carmina Díaz-Marín
- grid.513062.30000 0004 8516 8274Neurology Department, Hospital General Universitario de Alicante Doctor Balmis, Instituto de Investigación Biosanitaria de Alicante (ISABIAL), Alicante, Spain
| | - Raúl Juntas-Morales
- grid.430994.30000 0004 1763 0287Neuromuscular Unit, Neurology Department, Hospital Universitario Vall d’Hebron. Peripheral Nervous System Group, Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Andrés Nascimiento-Osorio
- grid.413448.e0000 0000 9314 1427Neuromuscular Unit, Neurology Department, Hospital Sant Joan de Déu, Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Center for Biomedical Research Network On Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Alberto Rivera-Gallego
- grid.411855.c0000 0004 1757 0405Systemic Rare Diseases Unit, Department of Internal Medicine, Hospital Universitario Alvaro Cunqueiro, Vigo, Spain
| | - Jordi Díaz-Manera
- grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK ,grid.413396.a0000 0004 1768 8905Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
9
|
van Kooten HA, Ditters IAM, Hoogeveen-Westerveld M, Jacobs EH, van den Hout JMP, van Doorn PA, Pijnappel WWMP, van der Ploeg AT, van der Beek NAME. Antibodies against recombinant human alpha-glucosidase do not seem to affect clinical outcome in childhood onset Pompe disease. Orphanet J Rare Dis 2022; 17:31. [PMID: 35109913 PMCID: PMC8812154 DOI: 10.1186/s13023-022-02175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/16/2022] [Indexed: 01/16/2023] Open
Abstract
Background Enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA, alglucosidase alfa) has improved survival, motor outcomes, daily life activity and quality of life in Pompe patients. However, ERT in Pompe disease often induces formation of antibodies, which may reduce the efficacy of treatment and can lead to adverse events. In this study antibody formation and their effect on clinical outcome in patients with childhood onset Pompe disease treated with enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) are analyzed. Methods Enzyme-linked immunosorbent assay (ELISA) was used to determine anti-rhGAA antibody titers at predefined time points. The effect of antibodies on rhGAA activity (neutralizing effects) was measured in vitro. Clinical effects were evaluated by assessing muscle strength (MRC score) and function (QMFT-score), pulmonary function and infusion associated reactions (IARs). Results Twenty-two patients were included (age at start ERT 1.1–16.4 years, median treatment duration 12.4 years). Peak antibody titers were low (< 1:1250) in 9%, intermediate (1:1250–1:31,250) in 68% and high (≥ 1:31250) in 23% of patients; three patients (14%) had more than one titer of ≥ 1:31,250. Four patients (18%) experienced IARs; two patients from the high titer group had 86% of all IARs. Inhibition of intracellular GAA activity (58%) in vitro was found in one sample. The clinical course did not appear to be influenced by antibody titers. Conclusions Ninety-one percent of childhood onset Pompe patients developed anti-rhGAA antibodies (above background level), a minority of whom had high antibody titers at repeated time points, which do not seem to interfere with clinical outcome. High antibody titers may be associated with the occurrence of IARs. Although the majority of patients does not develop high titers; antibody titers should be determined in case of clinical deterioration. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02175-2.
Collapse
Affiliation(s)
- Harmke A van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Imke A M Ditters
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Pediatrics, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Pediatrics, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Neurology, Erasmus University Medical Center, Mailbox 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Han S, Gheorghiu DB, Li S, Kang HR, Koeberl D. Minimum Effective Dose to Achieve Biochemical Correction With AAV Vector-Mediated Gene Therapy in Mice With Pompe Disease. Hum Gene Ther 2022; 33:492-498. [PMID: 35102744 DOI: 10.1089/hum.2021.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA), resulting in skeletal muscle weakness and cardiomyopathy. Muscle weakness progresses despite currently available therapy, which has prompted the development of gene therapy with adeno-associated virus (AAV) type 2 vectors cross-packaged as AAV8 (2/8). Preclinical studies of gene therapy demonstrated that the minimum effective dose for biochemical correction with AAV2/8-LSPhGAA was approximately 2 x 1011 vector genomes (vg)/kg body weight. The current study examined the transduction of AAV2/8-LSPeGFP vector in adult GAA-KO mice with Pompe disease, and correlated that degree of transduction with the biochemical correction achieved by the same dose of AAV2/8-LSPhGAA. The minimum effective dose was found to be approximately 2 x 1011 vg/kg, with all hepatocytes variably transducing at this dose. At this dose, liver GAA significantly increased, while liver glycogen significantly decreased. The 2 x 1011 vg/kg dose was sufficient to significantly decrease diaphragm glycogen. However, the heart, diaphragm, and quadriceps all required a four-fold higher dose to achieve correction of GAA deficiency in association with significant clearance of stored glycogen, which correlated with increased serum GAA activity. These data indicate that AAV2/8-LSPeGFP transduced all hepatocytes when the 2 x 1011 vg/kg dose was administered, which correlated with partial biochemical correction from the equivalent dose of AAV2/8-LSPhGAA. Together these data support the conclusion that substantial transduction of the liver is required to achieve biochemical correction from AAV2/8-LSPhGAA.
Collapse
Affiliation(s)
- Sangoh Han
- Duke University Department of Pediatrics, 200759, Pediatrics, 905 LaSalle St., GSRBI RM 4048, Durham, North Carolina, United States, 27710;
| | - Dorothy Brooke Gheorghiu
- Duke University Medical Center, 22957, Pediatric Medical Genetics, 905 S Lasalle St, Durham, North Carolina, United States, 27710-4699;
| | - Songtao Li
- Duke University School of Medicine, 12277, Pediatrics, Durham, North Carolina, United States;
| | - Hye Ri Kang
- UT Southwestern, 12334, Pediatrics, Dallas, Texas, United States;
| | - Dwight Koeberl
- Duke University School of Medicine, 12277, Pediatrics, DUMC 103856, Durham, North Carolina, United States, 27710;
| |
Collapse
|
11
|
Sarah B, Giovanna B, Emanuela K, Nadi N, Josè V, Alberto P. Clinical efficacy of the enzyme replacement therapy in patients with late-onset Pompe disease: a systematic review and a meta-analysis. J Neurol 2021; 269:733-741. [PMID: 33851281 PMCID: PMC8782782 DOI: 10.1007/s00415-021-10526-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023]
Abstract
In patients with late-onset Pompe disease (LOPD), the efficacy of the enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) is difficult to evaluate, due to the clinical heterogeneity and the small sample sizes in published studies. Therefore, we conduct a systematic literature review and meta-analysis of the literature to evaluate the efficacy of ERT in LOPD patients considering the walking distance, respiratory function and muscle strength. Particularly, six-minute walk test (6MWT), forced vital capacity (FVC), medical research council (MRC) grading, quantitative muscle testing (QMT), and quick motor function test (QMFT) were outcomes of interest. Overall, 619 studies were identified in PubMed, EMBASE and by manual search on July 18th, 2020. After an initial assessment, 16 studies were included in the meta-analysis, containing clinical data from 589 patients with LOPD. For the 6MWT, 419 patients were analyzed. Walking distance improved on average, 32.2 m greater during the observed period (p = 0.0003), compared to the distance at the baseline. The meta-analysis did not show any improvement in FVC and only a tendency towards better muscle strength after treatment with ERT, but the difference was not statistically significant. In conclusion, the available data showed that ERT has a significant beneficial efficacy in the improvement of walking distance in LOPD patients and a non-significant improvement of muscle strength. No improvement in respiratory capacity was found. More prospective and controlled trials are needed to demonstrate a clear clinical benefit of ERT.
Collapse
Affiliation(s)
- Berli Sarah
- Institute for Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Brandi Giovanna
- Institute for Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Keller Emanuela
- Institute for Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,Department of Neurosurgery and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Najia Nadi
- Institute for Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Vitale Josè
- Intensive Care Unit, Regional Hospital Mendrisio, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Centro Medico, Mendrisio, Switzerland
| | - Pagnamenta Alberto
- Intensive Care Unit, Regional Hospital Mendrisio, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Unit of Biostatistics, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Division of Pneumology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Hahn A, Lampe C, Boentert M, Hundsberger T, Löscher W, Wenninger S, Ziegler A, Lagler F, Ballhausen D, Schlegel T, Schoser B. [Home infusion therapy for Pompe disease: Recommendations for German-speaking countries]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2021; 89:630-636. [PMID: 33561874 DOI: 10.1055/a-1365-8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Pompe disease is a lysosomal multisystem disorder with predominant proximal myopathy. Treatment with enzyme replacement therapy (ERT) is available requiring life-long biweekly infusions of recombinant α-glucosidase. To minimize the burden of ERT patients ask for home infusion therapy. AIMS AND METHODS Pompe disease experts from Germany, Austria, and Switzerland discussed in two consensus meetings in 2019 and 2020 requirements for home infusion therapy, adequate execution of treatment, and the legal situation for delegating physicians. RESULTS AND DISCUSSION Home infusion therapy is principally feasible for patients with Pompe disease if certain preconditions are fulfilled, but the decision to implement has to be made on an individual basis. The treating physician delegates the execution of ERT ad personam to nursing staff but retains full legal responsibility. Home infusion therapy has to be carried out by specially trained and qualified staff. Infusion-related risks comprise mainly allergic reactions, and adequate medical treatment must be warranted. In German-speaking countries, clear rules for conducting home infusion therapy are needed to reduce psychosocial stress for patients with Pompe disease, and providing legal certainty for delegating physicians.
Collapse
Affiliation(s)
- Andreas Hahn
- Abteilung Kinderneurologie, Sozialpädiatrie und Epileptologie, Universitätsklinikum Gießen und Marburg GmbH Standort Gießen, Deutschland
| | - Christina Lampe
- Abteilung Kinderneurologie, Sozialpädiatrie und Epileptologie, Universitätsklinikum Gießen und Marburg GmbH Standort Gießen, Deutschland
| | - Matthias Boentert
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster; Klinik für Innere Medizin, Bereich Neurologie, UKM-Marienhospital Steinfurt
| | | | - Wolfgang Löscher
- Department Neurologie, Medizinische Universität Innsbruck, Österreich
| | - Stephan Wenninger
- Friedrich-Baur- Institut der Neurologischen Klinik , Klinikum der Universität München, Deutschland
| | - Andreas Ziegler
- Sektion für Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg
| | - Florian Lagler
- Universitätsklinik für Kinder- und Jugendheilkunde Paracelsus Medizinische Privatuniversität Salzburg
| | - Diana Ballhausen
- Unité pédiatrique des maladies métaboliques, Département Femme-Mère-Enfant, Centre Hospitalier Universitaire Vaudois (CHUV)
| | - Thomas Schlegel
- Kanzlei für Medizinrecht (Prof. Schlegel, Hohmann & Partner)
| | - Benedikt Schoser
- Friedrich-Baur- Institut der Neurologischen Klinik , Klinikum der Universität München, Deutschland
| |
Collapse
|
13
|
Nagura H, Hokugo J, Ueda K. Long-Term Observation of the Safety and Effectiveness of Enzyme Replacement Therapy in Japanese Patients with Pompe Disease: Results From the Post-marketing Surveillance. Neurol Ther 2019; 8:397-409. [PMID: 31559584 PMCID: PMC6858897 DOI: 10.1007/s40120-019-00157-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Alglucosidase alfa received marketing approval for the treatment of Pompe disease in Japan in 2007. We conducted a post-marketing surveillance study to monitor the long-term safety and efficacy of alglucosidase alfa therapy among Japanese patients with Pompe disease. METHODS The safety and efficacy outcomes were collected as real-world data for up to 9 years following the initiation of treatment with alglucosidase alfa, without any intervention to treatment strategies. The safety of the drug was assessed in 73 patients in terms of the rate of drug-related adverse events, infusion-associated reactions, and antibody titers. The efficacy was evaluated in 72 patients on the basis of subjective evaluation of their general condition after treatment, pulmonary function, 6-min walk test, and survival rate. RESULTS Drug-related adverse events were observed in 29 of 73 (39.7%) cases, and the cumulative adverse event rate during the 9 years of the study was 45.7%. Immunoglobulin G antibodies against alglucosidase alfa were positive in 59 of 61 cases in which the titers were not correlated with drug-related adverse events or infusion-associated reactions. After the final dosing, the treating physicians determined that the disease was at least stabilized in 62 of 72 cases (86.1%), while the results of the physical function tests suggested that disease progression was actually not stopped completely. Survival of infantile-onset cases was sustained for 9 years. CONCLUSION The drug was generally well tolerated, and treatment with alglucosidase alfa was able to suppress disease progression in the majority of Japanese patients with Pompe disease included in this study. FUNDING Sanofi.
Collapse
Affiliation(s)
- Hitoshi Nagura
- Sanofi Genzyme Medical Operations, Sanofi K.K., Tokyo, Japan.
| | | | - Kazuo Ueda
- Sanofi Genzyme Medical Operations, Sanofi K.K., Tokyo, Japan
| |
Collapse
|
14
|
Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases. Hum Mol Genet 2019; 28:R31-R41. [PMID: 31227835 PMCID: PMC6796997 DOI: 10.1093/hmg/ddz133] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/02/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The focus of this review is the development of gene therapy for glycogen storage diseases (GSDs). GSD results from the deficiency of specific enzymes involved in the storage and retrieval of glucose in the body. Broadly, GSDs can be divided into types that affect liver or muscle or both tissues. For example, glucose-6-phosphatase (G6Pase) deficiency in GSD type Ia (GSD Ia) affects primarily the liver and kidney, while acid α-glucosidase (GAA) deficiency in GSD II causes primarily muscle disease. The lack of specific therapy for the GSDs has driven efforts to develop new therapies for these conditions. Gene therapy needs to replace deficient enzymes in target tissues, which has guided the planning of gene therapy experiments. Gene therapy with adeno-associated virus (AAV) vectors has demonstrated appropriate tropism for target tissues, including the liver, heart and skeletal muscle in animal models for GSD. AAV vectors transduced liver and kidney in GSD Ia and striated muscle in GSD II mice to replace the deficient enzyme in each disease. Gene therapy has been advanced to early phase clinical trials for the replacement of G6Pase in GSD Ia and GAA in GSD II (Pompe disease). Other GSDs have been treated in proof-of-concept studies, including GSD III, IV and V. The future of gene therapy appears promising for the GSDs, promising to provide more efficacious therapy for these disorders in the foreseeable future.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
15
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Fernández-Simón E, Carrasco-Rozas A, Gallardo E, González-Quereda L, Alonso-Pérez J, Belmonte I, Pedrosa-Hernández I, Montiel E, Segovia S, Suárez-Calvet X, Llauger J, Mayos M, Illa I, Barba-Romero MA, Barcena J, Paradas C, Carzorla MR, Creus C, Coll-Cantí J, Díaz M, Domínguez C, Fernández-Torrón R, García-Antelo MJ, Grau JM, López de Munáin A, Martínez-García FA, Morgado Y, Moreno A, Morís G, Muñoz-Blanco MA, Nascimento A, Parajuá-Pozo JL, Querol L, Rojas R, Robledo-Strauss A, Rojas-Marcos Í, Salazar JA, Usón M, Díaz-Manera J. Study of the effect of anti-rhGAA antibodies at low and intermediate titers in late onset Pompe patients treated with ERT. Mol Genet Metab 2019; 128:129-136. [PMID: 31378569 DOI: 10.1016/j.ymgme.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/21/2019] [Accepted: 07/20/2019] [Indexed: 11/16/2022]
Abstract
Late onset Pompe disease (LOPD) is a genetic disorder characterized by slowly progressive skeletal and respiratory muscle weakness. Symptomatic patients are treated with enzyme replacement therapy (ERT) with alglucosidase alpha (rhGAA). Although most of ERT treated patients develop antibodies against rhGAA, their influence on clinical progression is not completely known. We studied the impact of anti-rhGAA antibodies on clinical progression of 25 ERT treated patients. We evaluated patients at visit 0 and, after 1 year, at visit 1. We performed several muscle function tests, conventional spirometry and quantitative muscle MRI (qMRI) using 3-point Dixon analysis of thigh muscles at both visits. We also obtained serum samples at both visits and anti-rhGAA antibodies were quantified using ELISA. Antibody titers higher than 1:200 were identified in 18 patients (72%) of our cohort. Seven patients (28%) did not develop antibodies (0 to <1:200), 17 patients (68%) developed low to intermediate titers (1:200 to <1:31,200) and 1 patient (4%) developed high titers (>1:31,200). We analyzed the effect of low and intermediate antibody titers in clinical and radiological progression. There were no differences between the results of muscle function tests, spirometry or fat fraction analyzed using qMRI between patients with and without antibodies groups at baseline. Moreover, antibody titers did not influence muscle function test, spirometry results or qMRI results at year 1 visit. Most of the LOPD patients developed antibodies against ERT that persisted over time at low or intermediate levels. However, antibodies at these low and intermediate titers might not influence clinical response to the drug.
Collapse
Affiliation(s)
- Esther Fernández-Simón
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro de Investigación en Red en Enfermedades Raras (CIBERER), Spain
| | - Lidia González-Quereda
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Jorge Alonso-Pérez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Izaskun Belmonte
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Irene Pedrosa-Hernández
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Elena Montiel
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Sonia Segovia
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro de Investigación en Red en Enfermedades Raras (CIBERER), Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Jaume Llauger
- Radiology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Mercedes Mayos
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro de Investigación en Red en Enfermedades Raras (CIBERER), Spain
| | | | | | | | | | | | | | | | - Cristina Domínguez
- Hospital 12 de Octubre, Madrid, Spain; Insituto de Investigación i+12, Madrid, Spain
| | | | | | | | | | | | | | | | - Germán Morís
- Hospital Universitario de Asturias, Oviedo, Spain
| | | | | | | | - Luis Querol
- Hospital de la Santa Creu i Sant Pau, Barcelona
| | | | | | | | | | | | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain; Centro de Investigación en Red en Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
17
|
Desai AK, Li C, Rosenberg AS, Kishnani PS. Immunological challenges and approaches to immunomodulation in Pompe disease: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:285. [PMID: 31392197 PMCID: PMC6642943 DOI: 10.21037/atm.2019.05.27] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of acid alpha-glucosidase resulting in intralysosomal glycogen accumulation in multiple tissue types, especially cardiac, skeletal, and smooth muscle. Enzyme replacement therapy (ERT) with alglucosidase alfa has led to improved clinical outcomes and prolonged survival in patients with Pompe disease. While ERT has changed the natural course of Pompe disease, with many long-term survivors, several factors affect the response to ERT. Previous studies in Pompe disease have shown that IgG antibodies to ERT can lead to a decline in muscle strength, pulmonary function, and overall and ventilator-free survival. Additionally, antibody responses to ERT can also cause hypersensitivity reactions. Various strategies to prevent or eliminate the IgG antibody response have been attempted in patients with Pompe disease. A detailed literature search was performed to compile data regarding the consequences of IgG antibodies, clinical approaches to prevent or eliminate IgG antibodies in patients with Pompe disease, and to expand our understanding of new modalities being developed in non-clinical settings. All qualifying articles describing the impact of IgG antibodies on the response to ERT, immunomodulation in patients with Pompe disease, and non-clinical settings identified via a PubMed database search were included in the review. Here, we provide a comprehensive review of combination- and single-agent therapies that have been investigated in the context of immune tolerance induction to ERT in Pompe disease to date. Immunomodulation strategies that successfully induce immune tolerance to ERT have improved overall survival, especially reflected in the decreased number of ventilator-dependent or deceased cross-reactive immunologic material (CRIM)-negative infantile Pompe disease (IPD) patients due to development of IgG antibodies when treated with ERT alone. Immunomodulation in CRIM-positive patients at the time they receive ERT also results in a decrease in the development of IgG antibodies compared to cases treated with ERT alone. Lessons learned from current approaches, alongside results from trials of novel immunomodulation strategies, may provide important insights into the development of next-generation therapies.
Collapse
Affiliation(s)
- Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Cindy Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Amy S. Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| |
Collapse
|
18
|
Do HV, Khanna R, Gotschall R. Challenges in treating Pompe disease: an industry perspective. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:291. [PMID: 31392203 DOI: 10.21037/atm.2019.04.15] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease is a rare inherited metabolic disorder of defective lysosomal glycogen catabolism due to a deficiency in acid alpha-glucosidase (GAA). Alglucosidase alfa enzyme replacement therapy (ERT) using recombinant human GAA (rhGAA ERT) is the only approved treatment for Pompe disease. Alglucosidase alfa has provided irrefutable clinical benefits, but has not been an optimal treatment primarily due to poor drug targeting of ERT to skeletal muscles. Several critical factors contribute to this inefficiency. Some are inherent to the anatomy of the body that cannot be altered, while others may be addressed with better drug design and engineering. The knowledge gained from alglucosidase alfa ERT over the past 2 decades has allowed us to better understand the challenges that hinder its effectiveness. In this review, we detail the problems which must be overcome for improving drug targeting and clinical efficacy. These same issues may also impact therapeutic enzymes derived from gene therapies, and thus, have important implications for the development of next generation therapies for Pompe.
Collapse
Affiliation(s)
- Hung V Do
- Amicus Therapeutics, Inc., Cranbury, NJ, USA
| | | | | |
Collapse
|
19
|
Berger KI, Kanters S, Jansen JP, Stewart A, Sparks S, Haack KA, Bolzani A, Siliman G, Hamed A. Forced vital capacity and cross-domain late-onset Pompe disease outcomes: an individual patient-level data meta-analysis. J Neurol 2019; 266:2312-2321. [PMID: 31187190 PMCID: PMC6687674 DOI: 10.1007/s00415-019-09401-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022]
Abstract
Background Late-onset Pompe disease (LOPD) is a rare, metabolic disease primarily affecting the musculoskeletal and respiratory systems. Forced vital capacity (FVC) is commonly used to measure pulmonary function; however, associations between FVC and other LOPD outcomes remain unclear. Methods A systematic literature review was conducted on November 2015, updated September 2016 and supplemented with clinical trial data from the sponsor. Outcomes included: 6-min walk test distance (6MWT), FVC, maximal inspiratory/expiratory pressure (MIP/MEP), Medical Research Council-skeletal muscle strength score (MRC), 36-item short-form survey-physical component score (SF-36), Rotterdam Handicap Scale (RHS), Fatigue Severity Scale (FSS) and survival. Individual patient data meta-analysis was used for cross-sectional analyses and longitudinal analyses to determine associations between percent of predicted FVC and LOPD measures and outcomes. Results Fifteen studies were selected. From cross-sectional analyses, FVC and MRC were most strongly associated. Specifically, patients with 10% higher FVC (a round number for illustrative purposes only) were associated with a 4.72% (95% confidence interval [CI]: 3.37, 6.07) higher MRC score, indicating a positive association. Similarly, slopes for the 6MWT and SF-36 relative to a 10% higher FVC were estimated at 33.2 meters (95% CI 24.0, 42.4) and 1.2% (95% CI 0.24, 2.16%), respectively. From longitudinal analyses, a 10% incremental increase in predicted FVC was associated with an average increase of 4.12% in MRC score (95% CI 1.29, 6.95), 35.6 m in the 6MWT (95% CI 19.9, 51.6), and 1.34% in SF-36 (95% CI 0.08, 2.60). There was insufficient data to conduct analyses for RHS, FSS and survival. Conclusions FVC is positively associated with LOPD measures and outcomes across multiple domains. Additionally, longitudinal changes in FVC are positively associated with changes in the 6MWT, MRC and SF-36. Electronic supplementary material The online version of this article (10.1007/s00415-019-09401-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenneth I Berger
- André Cournand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, NY, USA. .,Division of Pulmonary, Critical Care and Sleep Medicine, New York University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Assessing the Role of Anti rh-GAA in Modulating Response to ERT in a Late-Onset Pompe Disease Cohort from the Italian GSDII Study Group. Adv Ther 2019; 36:1177-1189. [PMID: 30879255 DOI: 10.1007/s12325-019-00926-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Patients with late-onset Pompe disease (LOPD) receiving enzyme replacement therapy (ERT) may develop IgG antibodies against alglucosidase alpha (anti-rhGAA) in the first 3 months of treatment. The exact role of these antibodies in modulating efficacy of ERT in this group of patients is still not fully understood. To assess whether anti rh-GAA antibodies interfere with ERT efficacy, we studied a large Italian cohort of LOPD patients. METHODS We analyzed clinical findings and performed serial measurements of IgG anti rh-GAA antibody titers from 64 LOPD patients treated with ERT. The first examination (T0) was completed on average at 17.56 months after starting ERT, while the follow-up (T1) was collected on average at 38.5 months. Differences in T0-T1 delta of the six-minute walking test (6MWT), MRC sum score (MRC), gait, stairs and chair performance (GSGC) and forced vital capacity (FVC) were considered and then related to the antibody titers. RESULTS Almost 22% of the patients never developed antibodies against GAA, while 78.1% had a positive titer (31.2% patients developed a low titer, 43.8% a medium titer and 3.1% a high titer). No statistical significance was found in relating the T0-T1 delta differences and antibody titers, except for MRC sum score values in a subgroup of patients treated < 36 months, in which those with a null antibody titer showed a greater clinical improvement than patients with a positive titer. CONCLUSION Our results confirm that in a large cohort of LOPD patients, anti rh-GAA antibody generation did not significantly affect either clinical outcome or ERT efficacy. However, in the first 36 months of treatment, a possible interference of low-medium antibody titers with the clinical status could be present. Therefore, a careful and regular evaluation of antibody titers, especially in cases with evidence of clinical decline despite ERT, should be performed.
Collapse
|
21
|
Xu S, Lun Y, Frascella M, Garcia A, Soska R, Nair A, Ponery AS, Schilling A, Feng J, Tuske S, Valle MCD, Martina JA, Ralston E, Gotschall R, Valenzano KJ, Puertollano R, Do HV, Raben N, Khanna R. Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight 2019; 4:125358. [PMID: 30843882 DOI: 10.1172/jci.insight.125358] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/17/2019] [Indexed: 01/14/2023] Open
Abstract
Pompe disease is a rare inherited disorder of lysosomal glycogen metabolism due to acid α-glucosidase (GAA) deficiency. Enzyme replacement therapy (ERT) using alglucosidase alfa, a recombinant human GAA (rhGAA), is the only approved treatment for Pompe disease. Although alglucosidase alfa has provided clinical benefits, its poor targeting to key disease-relevant skeletal muscles results in suboptimal efficacy. We are developing an rhGAA, ATB200 (Amicus proprietary rhGAA), with high levels of mannose-6-phosphate that are required for efficient cellular uptake and lysosomal trafficking. When administered in combination with the pharmacological chaperone AT2221 (miglustat), which stabilizes the enzyme and improves its pharmacokinetic properties, ATB200/AT2221 was substantially more potent than alglucosidase alfa in a mouse model of Pompe disease. The new investigational therapy is more effective at reversing the primary abnormality - intralysosomal glycogen accumulation - in multiple muscles. Furthermore, unlike the current standard of care, ATB200/AT2221 dramatically reduces autophagic buildup, a major secondary defect in the diseased muscles. The reversal of lysosomal and autophagic pathologies leads to improved muscle function. These data demonstrate the superiority of ATB200/AT2221 over the currently approved ERT in the murine model.
Collapse
Affiliation(s)
- Su Xu
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | - Yi Lun
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | | | - Anju Nair
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | - Jessie Feng
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | - José A Martina
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Evelyn Ralston
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Rosa Puertollano
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Hung V Do
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | - Nina Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
22
|
De Groot AS, Kazi ZB, Martin RF, Terry FE, Desai AK, Martin WD, Kishnani PS. HLA- and genotype-based risk assessment model to identify infantile onset pompe disease patients at high-risk of developing significant anti-drug antibodies (ADA). Clin Immunol 2019; 200:66-70. [PMID: 30711607 PMCID: PMC6554735 DOI: 10.1016/j.clim.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/26/2018] [Accepted: 01/31/2019] [Indexed: 11/23/2022]
Abstract
In Pompe disease, anti-drug antibodies (ADA) to acid alpha-glucosidase (GAA) enzyme replacement therapy contribute to early mortality. Assessing individual risk for ADA development is notoriously difficult in (CRIM-positive) patients expressing endogenous GAA. The individualized T cell epitope measure (iTEM) scoring method predicts patient-specific risk of developing ADA against therapeutic recombinant human GAA (rhGAA) using individualized HLA-binding predictions and GAA genotype. CRIM-negative patients were six times more likely to develop high ADA titers than CRIM-positive patients in this retrospective study, whereas patients with high GAA-iTEM scores were 50 times more likely to develop high ADA titers than patients with low GAA-iTEM scores. This approach identifies high-risk IOPD patients requiring immune tolerance induction therapy to prevent significant ADA response to rhGAA leading to a poor clinical outcome and can assess ADA risk in patients receiving replacement therapy for other enzyme or blood factor deficiency disorders.
Collapse
Affiliation(s)
| | - Z B Kazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | | | - A K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - P S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
23
|
Pena LD, Barohn RJ, Byrne BJ, Desnuelle C, Goker-Alpan O, Ladha S, Laforêt P, Mengel KE, Pestronk A, Pouget J, Schoser B, Straub V, Trivedi J, Van Damme P, Vissing J, Young P, Kacena K, Shafi R, Thurberg BL, Culm-Merdek K, van der Ploeg AT. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul Disord 2019; 29:167-186. [DOI: 10.1016/j.nmd.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023]
|
24
|
Abstract
Pompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure. However, both sides would agree that many findings in basic science-such as the Nobel prize-winning discoveries of glycogen metabolism, the lysosome, and autophagy-have become the foundation of our understanding of Pompe disease. The disease is a glycogen storage disorder, a lysosomal disorder, and an autophagic myopathy. In this review, we will discuss how these past discoveries have guided Pompe research and impacted recent therapeutic developments.
Collapse
Affiliation(s)
- Lara Kohler
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Menzella F, Codeluppi L, Lusuardi M, Galeone C, Valzania F, Facciolongo N. Acute respiratory failure as presentation of late-onset Pompe disease complicating the diagnostic process as a labyrinth: a case report. Multidiscip Respir Med 2018; 13:32. [PMID: 30186604 PMCID: PMC6119261 DOI: 10.1186/s40248-018-0145-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Background Acute respiratory failure can be triggered by several causes, either of pulmonary or extra-pulmonary origin. Pompe disease, or type II glycogen storage disease, is a serious and often fatal disorder, due to a pathological accumulation of glycogen caused by a defective activiy of acid α-glucosidase (acid maltase), a lysosomal enzyme involved in glycogen degradation. The prevalence of the disease is estimated between 1 in 40,000 to 1 in 300,000 subjects. Case presentation This case report describes a difficult diagnosis of late-onset Pompe disease (LOPD) in a 52 year old Caucasian woman with acute respiratory failure requiring orotracheal intubation and subsequent tracheostomy for long-term mechanical ventilation 24 h/day. Despite a complex diagnostic process including several blood tests, bronchoscopy with BAL, chest CT, brain NMR, electromyographies, only a muscle biopsy allowed to reach the correct diagnosis. Discussion The most frequent presentation of myopathies, including LOPD, is proximal limb muscle weakness. Respiratory related symptoms (dyspnea on effort, reduced physical capacity, recurrent infections, etc.) and respiratory failure are often evident in the later stages of the diseases, but they have been rarely described as the onset symptoms in LOPD. In our case, a third stage LOPD, the cooperation between pulmonologists and neurologists was crucial in reaching a correct diagnosis despite a very complex clinical scenario due to different confounding co-morbidities as potential causes of respiratory failure and an atypical presentation. In this patient, enzyme replacement therapy with infusion of alglucosidase alfa was associated with progressive reduction of ventilatory support to night hours, and recovery of autonomous walking.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Luca Codeluppi
- Neuromotor & Rehabilitation Department, Neurology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Mirco Lusuardi
- Unit of Respiratory Rehabilitation, Azienda USL di Reggio Emilia, S. Sebastiano Hospital, Correggio, Italy
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franco Valzania
- Neuromotor & Rehabilitation Department, Neurology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
26
|
Corti M, Liberati C, Smith BK, Lawson LA, Tuna IS, Conlon TJ, Coleman KE, Islam S, Herzog RW, Fuller DD, Collins SW, Byrne BJ. Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV-hGAA) Gene Therapy in Children Affected by Pompe Disease. HUM GENE THER CL DEV 2018; 28:208-218. [PMID: 29160099 DOI: 10.1089/humc.2017.146] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A first-in-human trial of diaphragmatic gene therapy (AAV1-CMV-GAA) to treat respiratory and neural dysfunction in early-onset Pompe disease was conducted. The primary objective of this study was to assess the safety of rAAV1-CMV-hGAA vector delivered to the diaphragm muscle of Pompe disease subjects with ventilatory insufficiency. Safety was assessed by measurement of change in serum chemistries and hematology, urinalysis, and immune response to GAA and AAV, as well as change in level of health. The data demonstrate that the AAV treatment was safe and there were no adverse events related to the study agent. Adverse events related to the study procedure were observed in subjects with lower baseline neuromuscular function. All adverse events were resolved before the end of the study, except for one severe adverse event determined not to be related to either the study agent or the study procedure. In addition, an anti-capsid and anti-transgene antibody response was observed in all subjects who received rAAV1-CMV-hGAA, except for subjects who received concomitant immunomodulation to manage reaction to enzyme replacement therapy, as per their standard of care. This observation is significant for future gene therapy studies and serves to establish a clinically relevant approach to blocking immune responses to both the AAV capsid protein and transgene product.
Collapse
Affiliation(s)
- Manuela Corti
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Cristina Liberati
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Barbara K Smith
- 2 Department of Physical Therapy, College of Public Health and Health Profession, University of Florida , Gainesville, Florida
| | - Lee Ann Lawson
- 3 Department of Endocrinology, College of Medicine, University of Florida , Gainesville, Florida
| | - Ibrahim S Tuna
- 4 Department of Radiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Thomas J Conlon
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Kirsten E Coleman
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Saleem Islam
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Roland W Herzog
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - David D Fuller
- 2 Department of Physical Therapy, College of Public Health and Health Profession, University of Florida , Gainesville, Florida
| | - Shelley W Collins
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Barry J Byrne
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
27
|
Efficacy, safety profile, and immunogenicity of alglucosidase alfa produced at the 4,000-liter scale in US children and adolescents with Pompe disease: ADVANCE, a phase IV, open-label, prospective study. Genet Med 2018; 20:1284-1294. [PMID: 29565424 DOI: 10.1038/gim.2018.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Pompe disease results from lysosomal acid α-glucosidase (GAA) deficiency and its associated glycogen accumulation and muscle damage. Alglucosidase alfa (recombinant human GAA (rhGAA)) received approval in 2006 as a treatment for Pompe disease at the 160 L production scale. In 2010, larger-scale rhGAA was approved for patients up to 8 years old without cardiomyopathy. NCT01526785 evaluated 4,000 L rhGAA efficacy/safety in US infantile- or late-onset Pompe disease (IOPD, LOPD) patients up to 1 year old transitioned from 160 L rhGAA. METHODS A total of 113 patients (87 with IOPD; 26 with LOPD) received 4,000 L rhGAA for 52 weeks dosed the same as previous 160 L rhGAA. Efficacy was calculated as the percentage of patients stable/improved at week 52 (without death, new requirement for invasive ventilation, left ventricular mass z-score increase >1 if baseline was >2, upright forced vital capacity decrease ≥15% predicted, or Gross Motor Function Measure-88 decrease ≥8 percentage points). Safety evaluation included an extension ≤20 months. RESULTS Week 52 data was available for 104 patients, 100 of whom entered the extension. At week 52, 87/104 (83.7%) were stable/improved. Overall survival was 98.1% overall, 97.6% IOPD, 100% LOPD; 92.4% remained invasive ventilator-free (93.4% IOPD, 88.7% LOPD). Thirty-five patients had infusion-associated reactions. Eight IOPD patients died of drug-unrelated causes. CONCLUSIONS Most Pompe disease patients were clinically stable/improved after transitioning to 4,000 L rhGAA. Safety profiles of both rhGAA forms were consistent.
Collapse
|
28
|
Bond JE, Kishnani PS, Koeberl DD. Immunomodulatory, liver depot gene therapy for Pompe disease. Cell Immunol 2017; 342:103737. [PMID: 29295737 DOI: 10.1016/j.cellimm.2017.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 01/09/2023]
Abstract
Pompe disease is caused by mutations in acid alpha glucosidase (GAA) that causes accumulation of lysosomal glycogen affecting the heart and skeletal muscles, and can be fatal. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) improves muscle function by reducing glycogen accumulation. Limitations of ERT include a short half-life and the formation of antibodies that result in reduced efficacy. By harnessing the immune tolerance induction properties of the liver, liver-targeted gene delivery (with an adeno-associated virus vector containing a liver specific promoter), suppresses immunity against the GAA introduced by gene therapy. This induces immune tolerance to rhGAA by activating regulatory T cells and simultaneously, corrects GAA deficiency. Potentially, liver-targeted gene therapy can be performed once with lasting effects, by administering a relatively low dose of an adeno-associated virus type 8 vector to replace and induce immune tolerance to GAA.
Collapse
Affiliation(s)
- J E Bond
- Clinical and Translational Science Institute, Duke University, Durham, NC, USA
| | - P S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA
| | - D D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA; Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| |
Collapse
|
29
|
Schoser B, Bilder DA, Dimmock D, Gupta D, James ES, Prasad S. The humanistic burden of Pompe disease: are there still unmet needs? A systematic review. BMC Neurol 2017; 17:202. [PMID: 29166883 PMCID: PMC5700516 DOI: 10.1186/s12883-017-0983-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Humanistic burden considers the impact of an illness on a patient's health-related quality of life (HRQoL), activities of daily living (ADL), caregiver health, and caregiver QoL. Humanistic burden also considers treatment satisfaction and adherence to treatment regimens. Pompe disease is an autosomal recessive, progressive, multisystemic neuromuscular disease. Approval of enzyme-replacement therapy (ERT) markedly improved prognosis for patients, but considerable morbidity and a substantial humanistic burden remain. This article characterizes the humanistic burden of Pompe disease through a systematic literature review. METHODS A systematic search of MEDLINE® and Embase® with back-referencing and supplementary literature searches was performed to retrieve data from interventional and non-interventional studies on the humanistic burden of Pompe disease. Publications were screened according to predefined criteria, extracted, and assessed for quality. Extracted data were narratively synthesized. RESULTS No publications on the humanistic burden of infantile-onset Pompe disease (IOPD) were identified. As such, of 17 publications included here, all are in patients with late-onset Pompe disease (LOPD). Thirteen publications were initiated after approval of ERT, two were initiated before, and two overlapped the approval of ERT. The review shows that LOPD patients have a significantly lower HRQoL than the general population, even if treated with ERT. On transitioning to ERT, treatment was associated with improvement in the physical component score of the SF-36 and fatigue, although the SF-36 mental component score remained stable. Physical HRQoL remained below population norms after 4 years of ERT. Significantly more ERT-treated patients reported pain than controls, and bodily pain worsened in later years following ERT initiation. Treatment-naïve LOPD patients had significantly poorer ADL functioning compared with the general population, although ERT stabilized deteriorating functioning impairment. ERT studies showed caregivers provide 17.7 h/week informal care on average. Fifty percent, 40% and <20% of caregivers reported mental health, physical health, and financial/relational problems, respectively. In ERT-naïve patients, wheelchair use and home ventilatory support was associated with lower physical HRQoL and ADL functioning. In ERT-treated patients, key factors predicting worse HRQoL and ADL functioning were higher respiratory distress, poorer sleep quality, greater pain, and more fatigue. CONCLUSIONS Pompe disease has a substantial humanistic burden, with strong inter-relationships among and between humanistic burden parameters and clinical progression.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institut, Neurologische Klinik und Poliklinik, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Ziemssenstr, D-80336 Munich, Germany
| | - Deborah A. Bilder
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - David Dimmock
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123 USA
| | - Digant Gupta
- Bridge Medical Consulting Ltd, Gainsborough House, 2 Sheen Road, Richmond, London, TW9 1AE UK
| | - Emma S. James
- Audentes Therapeutics, 600 California Street, Floor 17, San Francisco, CA 94104 USA
| | - Suyash Prasad
- Audentes Therapeutics, 600 California Street, Floor 17, San Francisco, CA 94104 USA
| |
Collapse
|
30
|
Kronn DF, Day-Salvatore D, Hwu WL, Jones SA, Nakamura K, Okuyama T, Swoboda KJ, Kishnani PS. Management of Confirmed Newborn-Screened Patients With Pompe Disease Across the Disease Spectrum. Pediatrics 2017; 140:S24-S45. [PMID: 29162675 DOI: 10.1542/peds.2016-0280e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
After a Pompe disease diagnosis is confirmed in infants identified through newborn screening (NBS), when and if to start treatment with enzyme replacement therapy (ERT) with alglucosidase alfa must be determined. In classic infantile-onset Pompe disease, ERT should start as soon as possible. Once started, regular, routine follow-up is necessary to monitor for treatment effects, disease progression, and adverse effects. Decision-making for when or if to start ERT in late-onset Pompe disease (LOPD) is more challenging because patients typically have no measurable signs or symptoms or predictable time of symptom onset at NBS. With LOPD, adequate, ongoing follow-up and assessments for onset or progression of signs and symptoms are important to track disease state and monitor and adjust care before and after treatment is started. Because numerous tests are used to monitor patients at variable frequencies, a standardized approach across centers is lacking. Significant variability in patient assessments may result in missed opportunities for early intervention. Management of Pompe disease requires a comprehensive, multidisciplinary approach with timely disease-specific interventions that target the underlying disease process and symptom-specific manifestations. Regardless of how identified, all patients who have signs or symptoms of the disease require coordinated medical care and follow-up tailored to individual needs throughout their lives. The Pompe Disease Newborn Screening Working Group identifies key considerations before starting and during ERT; summarizes what comprises an indication to start ERT; and provides guidance on how to determine appropriate patient management and monitoring and guide the frequency and type of follow-up assessments for all patients identified through NBS.
Collapse
Affiliation(s)
- David F Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, New York
| | | | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kathryn J Swoboda
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
31
|
van der Ploeg AT, Kruijshaar ME, Toscano A, Laforêt P, Angelini C, Lachmann RH, Pascual Pascual SI, Roberts M, Rösler K, Stulnig T, van Doorn PA, Van den Bergh PYK, Vissing J, Schoser B. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: a 10-year experience. Eur J Neurol 2017; 24:768-e31. [PMID: 28477382 DOI: 10.1111/ene.13285] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/21/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Pompe disease is a rare inheritable muscle disorder for which enzyme replacement therapy (ERT) has been available since 2006. Uniform criteria for starting and stopping ERT in adult patients were developed and reported here. METHODS Three consensus meetings were organized through the European Pompe Consortium, a network of experts from 11 European countries in the field of Pompe disease. A systematic review of the literature was undertaken to determine the effectiveness of ERT in adult patients on a range of clinical outcome measures and quality of life. A narrative synthesis is presented. RESULTS Consensus was reached on how the diagnosis of Pompe disease should be confirmed, when treatment should be started, reasons for stopping treatment and the use of ERT during pregnancy. This was based on expert opinion and supported by the literature. One clinical trial and 43 observational studies, covering a total of 586 individual adult patients, provided evidence of a beneficial effect of ERT at group level. At individual patient level, the response to treatment varied, but factors associated with a patient's response to ERT were not described in many studies. Eleven observational studies focused on more severely affected patients, suggesting that ERT can also be beneficial in these patients. There are no studies on the effects of ERT in pre-symptomatic patients. CONCLUSIONS This is the first European consensus recommendation for starting and stopping ERT in adult patients with Pompe disease, based on the extensive experience of experts from different countries.
Collapse
Affiliation(s)
- A T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M E Kruijshaar
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - P Laforêt
- Paris-Est, Referral Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - C Angelini
- Fondazione S. Camillo Hospital, IRCCS, Venice, Italy
| | - R H Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - S I Pascual Pascual
- Servicio de Neuropediatria, Hospital Universitario, La Paz, Madrid.,Department of Paediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Roberts
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - K Rösler
- Neuromuscular Centre, University Department of Neurology, Inselspital, Bern, Switzerland
| | - T Stulnig
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - P A van Doorn
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - P Y K Van den Bergh
- Department of Neurology, Neuromuscular Reference Centre, University Hospitals St-Luc, Brussels, Belgium
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - B Schoser
- Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
32
|
A comparison study of bioanalytical methods for detection and characterization of anti-velaglucerase alfa antibodies. Bioanalysis 2017; 9:775-786. [PMID: 28453301 DOI: 10.4155/bio-2016-0274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To provide more efficient and timely immunogenicity testing service to support routine patient care, the original complex testing algorithm for evaluation of anti-velaglucerase alfa antibodies has been simplified and individual methods (screen, confirm, titer, neutralizing antibody [NAb] and IgE) have been redeveloped/optimized and validated. RESULTS To compare the performance of different methods, 50 velaglucerase alfa-treated patient samples were analyzed using both old and new methods for the presence of antidrug antibodies (ADAs) and 31 ADA-positive samples were analyzed for neutralizing capacity. The ADA and NAb statuses are almost identical from both methods and both ADA and NAb titer results are highly correlated with a Spearman's correlation of 0.96 and 0.86, respectively. CONCLUSION The original and new testing methods can be considered interchangeable for the measurement of total and neutralizing anti-velaglucerase alfa antibodies.
Collapse
|
33
|
Han SO, Ronzitti G, Arnson B, Leborgne C, Li S, Mingozzi F, Koeberl D. Low-Dose Liver-Targeted Gene Therapy for Pompe Disease Enhances Therapeutic Efficacy of ERT via Immune Tolerance Induction. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:126-136. [PMID: 28344998 PMCID: PMC5363303 DOI: 10.1016/j.omtm.2016.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022]
Abstract
Pompe disease results from acid α-glucosidase (GAA) deficiency, and enzyme replacement therapy (ERT) with recombinant human (rh) GAA has clinical benefits, although its limitations include the short half-life of GAA and the formation of antibody responses. The present study compared the efficacy of ERT against gene transfer with an adeno-associated viral (AAV) vector containing a liver-specific promoter. GAA knockout (KO) mice were administered either a weekly injection of rhGAA (20 mg/kg) or a single injection of AAV2/8-LSPhGAA (8 × 1011 vector genomes [vg]/kg). Both treatments significantly reduced glycogen content of the heart and diaphragm. Although ERT triggered anti-GAA antibody formation, there was no detectable antibody response following AAV vector administration. The efficacy of three lower dosages of AAV2/8-LSPhGAA was evaluated in GAA-KO mice, either alone or in combination with ERT. The minimum effective dose (MED) identified was 8 × 1010 vg/kg to reduce glycogen content in the heart and diaphragm of GAA-KO mice. A 3-fold higher dose was required to suppress antibody responses to ERT. Efficacy from liver gene therapy was slightly greater in male mice than in female mice. Vector dose correlated inversely with anti-GAA antibody formation, whereas higher vector doses suppressed previously formed anti-GAA antibodies as late as 25 weeks after the start of ERT and achieved biochemical correction of glycogen accumulation. In conclusion, we identified the MED for effective AAV2/8-LSPhGAA-mediated tolerogenic gene therapy in Pompe disease mice.
Collapse
Affiliation(s)
- Sang-oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Benjamin Arnson
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Songtao Li
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Federico Mingozzi
- Genethon and INSERM U951, 91002 Evry, France
- University Pierre and Marie Curie – Paris 6, 75005 Paris, France
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Corresponding author: Dwight Koeberl, Duke University Medical Center, Box 103856, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Masat E, Laforêt P, De Antonio M, Corre G, Perniconi B, Taouagh N, Mariampillai K, Amelin D, Mauhin W, Hogrel JY, Caillaud C, Ronzitti G, Puzzo F, Kuranda K, Colella P, Mallone R, Benveniste O, Mingozzi F. Long-term exposure to Myozyme results in a decrease of anti-drug antibodies in late-onset Pompe disease patients. Sci Rep 2016; 6:36182. [PMID: 27812025 PMCID: PMC5096052 DOI: 10.1038/srep36182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Immunogenicity of recombinant human acid-alpha glucosidase (rhGAA) in enzyme replacement therapy (ERT) is a safety and efficacy concern in the management of late-onset Pompe disease (LOPD). However, long-term effects of ERT on humoral and cellular responses to rhGAA are still poorly understood. To better understand the impact of immunogenicity of rhGAA on the efficacy of ERT, clinical data and blood samples from LOPD patients undergoing ERT for >4 years (n = 28) or untreated (n = 10) were collected and analyzed. In treated LOPD patients, anti-rhGAA antibodies peaked within the first 1000 days of ERT, while long-term exposure to rhGAA resulted in clearance of antibodies with residual production of non-neutralizing IgG. Analysis of T cell responses to rhGAA showed detectable T cell reactivity only after in vitro restimulation. Upregulation of several cytokines and chemokines was detectable in both treated and untreated LOPD subjects, while IL2 secretion was detectable only in subjects who received ERT. These results indicate that long-term ERT in LOPD patients results in a decrease in antibody titers and residual production of non-inhibitory IgGs. Immune responses to GAA following long-term ERT do not seem to affect efficacy of ERT and are consistent with an immunomodulatory effect possibly mediated by regulatory T cells.
Collapse
Affiliation(s)
- Elisa Masat
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Pascal Laforêt
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Barbara Perniconi
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Nadjib Taouagh
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Kuberaka Mariampillai
- Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Damien Amelin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Wladimir Mauhin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France
| | | | | | | | - Klaudia Kuranda
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | | | - Roberto Mallone
- Institute Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,Department of diabetology, Cochin Hospital, AP-HP, Paris, France
| | - Olivier Benveniste
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Federico Mingozzi
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Genethon, INSERM, UMR951, Evry, France
| | | |
Collapse
|
35
|
Schoser B, Stewart A, Kanters S, Hamed A, Jansen J, Chan K, Karamouzian M, Toscano A. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and meta-analysis. J Neurol 2016; 264:621-630. [PMID: 27372449 DOI: 10.1007/s00415-016-8219-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/27/2022]
Abstract
A number of studies have assessed the efficacy of alglucosidase alfa as an enzyme replacement therapy (ERT) on motor and respiratory endpoints in patients with late-onset Pompe disease (LOPD). A previous review evaluated the clinical efficacy and safety of alglucosidase alfa; however, it is difficult to draw inferences from individual studies due to small patient populations, particularly in evaluating the benefit on survival. To evaluate the current evidence on the long-term efficacy of alglucosidase alfa with regard to survival, motor, and respiratory function in patients with LOPD in relation to the natural progression of the disease, a new systematic literature review was performed identifying studies that assessed either mortality, percent predicted forced vital capacity (% FVC), or the 6-min walk test (6MWT) among treated and untreated LOPD patients. Patient overlap was avoided by removing smaller studies or ensuring the use of only one conflicting study per outcome. Mortality was modeled using Poisson models for each treatment group. Outcomes were modeled using first- and second-order fractional polynomial meta-analysis with fixed- and random-effects. Meta-regression was used to explore sources of heterogeneity. Twenty-two publications pertaining to 19 studies/trials were selected, including 438 patients when accounting for overlaps, with the average study duration being 45.7 months. Patients treated with alglucosidase alfa in these studies had a nearly five-fold lower mortality rate than untreated patients (rate ratio: 0.21; 95 % credible interval: 0.11, 0.41). On average, % FVC declined consistently among untreated patients, including a 2.3 % decline after 12 months follow-up and 6.2 % decline after 48 months. This is in contrast to alglucosidase alfa-treated patients, who, on average, improved rapidly, with an increase of 1.4 % FVC after 2 months, followed by a slow regression back to baseline over a three-year period. Nonetheless, the relative difference between those treated and not grew over time, from 4.5 % FVC after 12 months to 6 % FVC after 48 months. In the 6MWT, alglucosidase alfa-treated patients on average had the largest improvement over the first 20 months of treatment of approximately 50 meters increase over baseline, with its substantial stabilization in the following years. By comparison, untreated patients do not show 6MWT improvement over time. Alglucosidase alfa has a beneficial effect in LOPD patients as demonstrated by improvements in survival and ambulation maintained over time, as well as prevention of deterioration in respiratory function.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institut, Neurologische Klinik, Klinikum der Universität München, Munich, Germany.
| | - Andrew Stewart
- Sanofi Genzyme, Patient Outcomes and Medical Economics, Cambridge, MA, USA
| | - Steve Kanters
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- Redwood Outcomes, Vancouver, Canada
| | - Alaa Hamed
- Sanofi Genzyme, Patient Outcomes and Medical Economics, Cambridge, MA, USA
| | | | | | - Mohammad Karamouzian
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- Redwood Outcomes, Vancouver, Canada
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, Reference Center for Rare Neuromuscular Disorders, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Pompe disease in adulthood: effects of antibody formation on enzyme replacement therapy. Genet Med 2016; 19:90-97. [PMID: 27362911 DOI: 10.1038/gim.2016.70] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the effect of antibodies against recombinant human acid α-glucosidase (rhGAA) on treatment efficacy and safety, and to test whether the GAA genotype is involved in antibody formation. METHODS We used enzyme-linked immunosorbent assay (ELISA) to determine anti-rhGAA antibody titers at baseline and at 6, 12, and 36 months of rhGAA treatment. We measured the capacity of antibodies to neutralize rhGAA enzymatic activity or cellular uptake and the effects on infusion-associated reactions (IARs), muscle strength, and pulmonary function. RESULTS Of 73 patients, 45 developed antibodies. Maximal titers were high (≥1:31,250) in 22% of patients, intermediate (1:1,250-1:31,250) in 40%, and none or low (0-1:1,250) in 38%. The common IVS1/delex18 GAA genotype was absent only in the high-titer group. The height of the titer positively correlated with the occurrence and number of IARs (P ≤ 0.001). On the group level, antibody titers did not correlate with treatment efficacy. Eight patients (11%) developed very high maximal titers (≥156,250), but only one patient showed high sustained neutralizing antibodies that probably interfered with treatment efficacy. CONCLUSIONS In adults with Pompe disease, antibody formation does not interfere with rhGAA efficacy in the majority of patients, is associated with IARs, and may be attenuated by the IVS1/delex18 GAA genotype.Genet Med 19 1, 90-97.
Collapse
|
37
|
Sun T, Yi H, Yang C, Kishnani PS, Sun B. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver. J Biol Chem 2016; 291:16479-84. [PMID: 27358407 DOI: 10.1074/jbc.c116.741397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function.
Collapse
Affiliation(s)
- Tao Sun
- From the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - Haiqing Yi
- From the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - Chunyu Yang
- From the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - Priya S Kishnani
- From the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - Baodong Sun
- From the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
38
|
Pompe Disease: Diagnosis and Management. Evidence-Based Guidelines from a Canadian Expert Panel. Can J Neurol Sci 2016; 43:472-85. [DOI: 10.1017/cjn.2016.37] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPompe disease is a lysosomal storage disorder caused by a deficiency of the enzyme acid alpha-glucosidase. Patients have skeletal muscle and respiratory weakness with or without cardiomyopathy. The objective of our review was to systematically evaluate the quality of evidence from the literature to formulate evidence-based guidelines for the diagnosis and management of patients with Pompe disease. The literature review was conducted using published literature, clinical trials, cohort studies and systematic reviews. Cardinal treatment decisions produced seven management guidelines and were assigned a GRADE classification based on the quality of evidence in the published literature. In addition, six recommendations were made based on best clinical practices but with insufficient data to form a guideline. Studying outcomes in rare diseases is challenging due to the small number of patients, but this is in particular the reason why we believe that informed treatment decisions need to consider the quality of the evidence.
Collapse
|
39
|
Yang CF, Yang CC, Liao HC, Huang LY, Chiang CC, Ho HC, Lai CJ, Chu TH, Yang TF, Hsu TR, Soong WJ, Niu DM. Very Early Treatment for Infantile-Onset Pompe Disease Contributes to Better Outcomes. J Pediatr 2016; 169:174-80.e1. [PMID: 26685070 DOI: 10.1016/j.jpeds.2015.10.078] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/18/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate whether very early treatment in our patients would result in better clinical outcomes and to compare these data with other infantile-onset Pompe disease (IOPD) cohort studies. METHODS In this nationwide program, 669,797 newborns were screened for Pompe disease. We diagnosed IOPD in 14 of these newborns, and all were treated and followed in our hospital. RESULTS After 2010, the mean age at first enzyme-replacement therapy (ERT) was 11.92 days. Our patients had better biological, physical, and developmental outcomes and lower anti-rh acid α-glucosidase antibodies after 2 years of treatment, even compared with one group that began ERT just 10 days later than our cohort. No patient had a hearing disorder or abnormal vision. The mean age for independent walking was 11.6 ± 1.3 months, the same age as normal children. CONCLUSIONS ERT for patients with IOPD should be initiated as early as possible before irreversible damage occurs. Our results indicate that early identification of patients with IOPD allows for the very early initiation of ERT. Starting ERT even a few days earlier may lead to better patient outcomes.
Collapse
Affiliation(s)
- Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chen Chang Yang
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan; Division of Clinical Toxicology & Occupational Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsuan-Chieh Liao
- The Chinese Foundation of Health Neonatal Screening Center, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Yi Huang
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital-Heping Fuyou Branch, Taipei, Taiwan
| | - Chuan-Chi Chiang
- The Chinese Foundation of Health Neonatal Screening Center, Taipei, Taiwan
| | - Hui-Chen Ho
- Taipei Institute of Pathology, Taipei, Taiwan
| | - Chih-Jou Lai
- Physical Medicine and Rehabilitation Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Hung Chu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsui-Feng Yang
- Physical Medicine and Rehabilitation Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Jue Soong
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
40
|
Kishnani PS, Dickson PI, Muldowney L, Lee JJ, Rosenberg A, Abichandani R, Bluestone JA, Burton BK, Dewey M, Freitas A, Gavin D, Griebel D, Hogan M, Holland S, Tanpaiboon P, Turka LA, Utz JJ, Wang YM, Whitley CB, Kazi ZB, Pariser AR. Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction. Mol Genet Metab 2016; 117:66-83. [PMID: 26597321 DOI: 10.1016/j.ymgme.2015.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
The US Food and Drug Administration (FDA) and National Organization for Rare Disease (NORD) convened a public workshop titled "Immune Responses to Enzyme Replacement Therapies: Role of Immune Tolerance Induction" to discuss the impact of anti-drug antibodies (ADAs) on efficacy and safety of enzyme replacement therapies (ERTs) intended to treat patients with lysosomal storage diseases (LSDs). Participants in the workshop included FDA staff, clinicians, scientists, patients, industry, and advocacy group representatives. The risks and benefits of implementing prophylactic immune tolerance induction (ITI) to reduce the potential clinical impact of antibody development were considered. Complications due to immune responses to ERT are being recognized with increasing experience and lengths of exposure to ERTs to treat several LSDs. Strategies to mitigate immune responses and to optimize therapies are needed. Discussions during the workshop resulted in the identification of knowledge gaps and future areas of research, as well as the following proposals from the participants: (1) systematic collection of longitudinal data on immunogenicity to better understand the impact of ADAs on long-term clinical outcomes; (2) development of disease-specific biomarkers and outcome measures to assess the effect of ADAs and ITI on efficacy and safety; (3) development of consistent approaches to ADA assays to allow comparisons of immunogenicity data across different products and disease groups, and to expedite reporting of results; (4) establishment of a system to widely share data on antibody titers following treatment with ERTs; (5) identification of components of the protein that are immunogenic so that triggers and components of the immune responses can be targeted in ITI; and (6) consideration of early ITI in patients who are at risk of developing clinically relevant ADA that have been demonstrated to worsen treatment outcomes.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Patricia I Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90505-2006, USA.
| | - Laurie Muldowney
- Division of Gastroenterology and Inborn Errors of Metabolism Products, Office of New Drugs, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD 20993-0002, USA.
| | - Jessica J Lee
- Division of Gastroenterology and Inborn Errors of Metabolism Products, Office of New Drugs, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD 20993-0002, USA.
| | - Amy Rosenberg
- Division of Therapeutic Proteins, Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993-0002, USA.
| | | | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0540, USA.
| | - Barbara K Burton
- Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital, Chicago, IL 60611, USA.
| | - Maureen Dewey
- Division of Gastroenterology and Inborn Errors of Metabolism Products, Office of New Drugs, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD 20993-0002, USA.
| | - Alexandra Freitas
- National Organization for Rare Disorders, Washington, DC 20036, USA.
| | - Derek Gavin
- National Organization for Rare Disorders, Washington, DC 20036, USA.
| | - Donna Griebel
- Division of Gastroenterology and Inborn Errors of Metabolism Products, Office of New Drugs, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD 20993-0002, USA.
| | - Melissa Hogan
- Saving Case & Friends, Inc., a Hunter Syndrome Research Foundation, Thompson's Station, TN 37179, USA.
| | | | | | - Laurence A Turka
- Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Jeanine J Utz
- University of Minnesota, Masonic Children's Hospital, Minneapolis, MN 55455, USA.
| | - Yow-Ming Wang
- Division of Clinical Pharmacology III, Office of Clinical Pharmacology, Office of Translational Sciences (OTS), CDER, FDA, Silver Spring, MD 20993-0002, USA.
| | - Chester B Whitley
- University of Minnesota, Masonic Children's Hospital, Minneapolis, MN 55455, USA.
| | - Zoheb B Kazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
41
|
Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15053. [PMID: 26858964 PMCID: PMC4729315 DOI: 10.1038/mtm.2015.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute , Stockholm, Sweden
| | - Manuela Corti
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
42
|
Doerfler PA, Todd AG, Clément N, Falk DJ, Nayak S, Herzog RW, Byrne BJ. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease. Hum Gene Ther 2016; 27:43-59. [PMID: 26603344 PMCID: PMC4741206 DOI: 10.1089/hum.2015.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa(-/-) mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders.
Collapse
Affiliation(s)
- Phillip A. Doerfler
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Adrian G. Todd
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Darin J. Falk
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Sushrusha Nayak
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Roland W. Herzog
- Division of Cellular & Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|
43
|
Llerena Junior JC, Nascimento OJM, Oliveira ASB, Dourado Junior MET, Marrone CD, Siqueira HH, Sobreira CFR, Dias-Tosta E, Werneck LC. Guidelines for the diagnosis, treatment and clinical monitoring of patients with juvenile and adult Pompe disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 74:166-76. [DOI: 10.1590/0004-282x20150194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/25/2015] [Indexed: 01/30/2023]
Abstract
ABSTRACT Pompe disease (PD) is a potentially lethal illness involving irreversible muscle damage resulting from glycogen storage in muscle fiber and activation of autophagic pathways. A promising therapeutic perspective for PD is enzyme replacement therapy (ERT) with the human recombinant enzyme acid alpha-glucosidase (Myozyme®). The need to organize a diagnostic flowchart, systematize clinical follow-up, and establish new therapeutic recommendations has become vital, as ERT ensures greater patient longevity. A task force of experienced clinicians outlined a protocol for diagnosis, monitoring, treatment, genetic counseling, and rehabilitation for PD patients. The study was conducted under the coordination of REBREPOM, the Brazilian Network for Studies of PD. The meeting of these experts took place in October 2013, at L’Hotel Port Bay in São Paulo, Brazil. In August 2014, the text was reassessed and updated. Given the rarity of PD and limited high-impact publications, experts submitted their views.
Collapse
|
44
|
Al Jasmi F, Al Jumah M, Alqarni F, Al-Sanna'a N, Al-Sharif F, Bohlega S, Cupler EJ, Fathalla W, Hamdan MA, Makhseed N, Nafissi S, Nilipour Y, Selim L, Shembesh N, Sunbul R, Tonekaboni SH. Diagnosis and treatment of late-onset Pompe disease in the Middle East and North Africa region: consensus recommendations from an expert group. BMC Neurol 2015; 15:205. [PMID: 26471939 PMCID: PMC4608291 DOI: 10.1186/s12883-015-0412-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/18/2015] [Indexed: 01/30/2023] Open
Abstract
Background Pompe disease is a rare autosomal recessive disorder caused by a deficiency of the lysosomal enzyme alpha-glucosidase responsible for degrading glycogen. Late-onset Pompe disease has a complex multisystem phenotype characterized by a range of symptoms. Methods An expert panel from the Middle East and North Africa (MENA) region met to create consensus-based guidelines for the diagnosis and treatment of late-onset Pompe disease for the MENA region, where the relative prevalence of Pompe disease is thought to be high but there is a lack of awareness and diagnostic facilities. Results These guidelines set out practical recommendations and include algorithms for the diagnosis and treatment of late-onset Pompe disease. They detail the ideal diagnostic workup, indicate the patients in whom enzyme replacement therapy should be initiated, and provide guidance on appropriate patient monitoring. Conclusions These guidelines will serve to increase awareness of the condition, optimize patient diagnosis and treatment, reduce disease burden, and improve patient outcomes.
Collapse
Affiliation(s)
| | - Fatma Al Jasmi
- Department of Pediatrics, College of Medicine and Health Science, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| | - Mohammed Al Jumah
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, NGHA, Riyadh, Kingdom of Saudi Arabia. .,Prince Mohammed Ben Abdulaziz Hospital, MOH, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| | - Fatimah Alqarni
- Neurology Department, National Neurosciences Institute, King Fahad Medical City, P.O. Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia.
| | - Nouriya Al-Sanna'a
- Johns Hopkins Aramco Healthcare, Pediatrics Services Division, Building 61/Room D-269, Dhahran, Kingdom of Saudi Arabia.
| | - Fawziah Al-Sharif
- Medical Genetics And Metabolic Consultant, MCH, PO Box 55954, Jeddah, 21544, Kingdom of Saudi Arabia.
| | - Saeed Bohlega
- Department of Neurosciences, MBC 76, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| | - Edward J Cupler
- Department of Neuroscience, MBC J-76, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499, Kingdom of Saudi Arabia.
| | - Waseem Fathalla
- Department of Pediatrics, Division of Child Neurology, Mafraq Hospital, P.O. Box: 2951, Abu Dhabi, United Arab Emirates.
| | - Mohamed A Hamdan
- KidsHeart: American Fetal & Children's Heart Center, Dubai Healthcare City, P.O. Box 505193, Dubai, United Arab Emirates.
| | - Nawal Makhseed
- Pediatric Department, Jahra Hospital, Ministry of Health, P.O. Box 16586, Qadisiya, 35856, Kuwait.
| | - Shahriar Nafissi
- Department of Neurology, Tehran University of Medical Sciences, Shariati Hospital, North Karegar Street, Tehran, 14114, Iran.
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Mofid Children Hospital, Shahid Beheshti Medical University (SBMU), Shariati Avenue, Tehran, 15468-155514, Iran.
| | - Laila Selim
- Pediatric Neurology and Neurometabolic Division, Cairo University Children Hospital (Abo el Reesh), 1-Aly Pasha Ibrahim Street, Near Sayeda Zeinab Metro Station, Cairo, Egypt.
| | - Nuri Shembesh
- Pediatrics and Pediatric Neurology, Benghazi University, P.O. Box 1565, Benghazi, Libya.
| | - Rawda Sunbul
- Department of Pediatrics, Qatif Central Hospital, P.O. Box 18476, Dammam, 31911, Eastern Province, Kingdom of Saudi Arabia.
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Mofid Children Hospital, Shahid Beheshti Medical University (SBMU), Shariati Avenue, Tehran, 15468-155514, Iran.
| |
Collapse
|
45
|
Stenger EO, Kazi Z, Lisi E, Gambello MJ, Kishnani P. Immune Tolerance Strategies in Siblings with Infantile Pompe Disease-Advantages for a Preemptive Approach to High-Sustained Antibody Titers. Mol Genet Metab Rep 2015; 4:30-34. [PMID: 26167453 PMCID: PMC4497810 DOI: 10.1016/j.ymgmr.2015.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Enzyme replacement therapy (ERT) has led to a significant improvement in the clinical course of patients with infantile Pompe disease (IPD), an autosomal recessive glycogen storage disorder characterized by the deficiency in lysosomal acid α-glucosidase. A subset of IPD patients mount a substantial immune response to ERT developing high sustained anti-rhGAA IgG antibody titers (HSAT) leading to the ineffectiveness of this treatment. HSAT have been challenging to treat, although preemptive approaches have shown success in high-risk patients (those who are cross-reactive immunological material [CRIM]-negative). More recently, the addition of bortezomib, a proteasome inhibitor known to target plasma cells, to immunotherapy with rituximab, methotrexate, and intravenous immunoglobulin has shown success at significantly reducing the anti-rhGAA antibody titers in three patients with HSAT. In this report, we present the successful use of a bortezomib-based approach in a CRIM-positive IPD patient with HSAT and the use of a preemptive approach to prevent immunologic response in an affected younger sibling. We highlight the significant difference in clinical course between the two patients, particularly that a pre-emptive approach was simple and effective in preventing the development of high antibody titers in the younger sibling, thus supporting the role of immune tolerance induction (ITI) in the ERT-naïve high-risk setting.
Collapse
Affiliation(s)
- Elizabeth O Stenger
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Zoheb Kazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Emily Lisi
- Division of Medical Genetics, Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Michael J Gambello
- Division of Medical Genetics, Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Priya Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
46
|
Chuang HY, Suen CS, Hwang MJ, Roffler SR. Toward reducing immunogenicity of enzyme replacement therapy: altering the specificity of human β-glucuronidase to compensate for α-iduronidase deficiency. Protein Eng Des Sel 2015; 28:519-29. [DOI: 10.1093/protein/gzv041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
|
47
|
Wenninger S, Schoser B. Behandelbare neuromuskuläre Erkrankungen als wichtige Differentialdiagnose der chronisch-progredienten Dyspnoe im höheren Erwachsenenalter. PNEUMOLOGE 2015. [DOI: 10.1007/s10405-015-0922-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Cremel M, Guerin N, Campello G, Barthe Q, Berlier W, Horand F, Godfrin Y. Innovative approach in Pompe disease therapy: Induction of immune tolerance by antigen-encapsulated red blood cells. Int J Pharm 2015; 491:69-77. [PMID: 26056928 DOI: 10.1016/j.ijpharm.2015.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 12/23/2022]
Abstract
Pompe disease is a glycogen storage disease caused by acid α-glucosidase enzyme deficiency. Currently, the unique treatment is lifelong enzyme replacement therapy ERT with frequent intravenous administration of the recombinant analog alglucosidase-α (AGA), which ultimately generates a sustained humoral response resulting in treatment discontinuation. Our aim is to use the tolerogenic properties of antigen-encapsulated red blood cells (RBCs) to abolish the humoral response against AGA and to restore tolerance to replacement therapy. To demonstrate that our approach could prevent the AGA-induced immune response, mice were intravenously injected three times with AGA encapsulated into RBCs before being sensitized to AGA with several adjuvant molecules. Control animals received injections of free AGA instead of the encapsulated molecule. One-week after treatment with AGA-loaded RBCs, a strong decrease in specific humoral response was observed despite three stimulations with AGA and adjuvant molecules. Furthermore, this specific immunomodulation was maintained for at least two months without affecting the overall immune response. AGA-loaded RBCs represent a promising strategy to induce or restore tolerance in Pompe disease patients who develop hypersensitivity reactions following repeated AGA administrations.
Collapse
|
49
|
Dasouki M, Jawdat O, Almadhoun O, Pasnoor M, McVey AL, Abuzinadah A, Herbelin L, Barohn RJ, Dimachkie MM. Pompe disease: literature review and case series. Neurol Clin 2015; 32:751-76, ix. [PMID: 25037089 DOI: 10.1016/j.ncl.2014.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pompe disease is a rare multi-systemic metabolic myopathy caused by autosomal recessive mutations in the acidic alpha glucosidase (GAA) gene. Significant progress had been made in the diagnosis and management of patients with Pompe disease. Here, we describe our experience with 12 patients with various forms of Pompe disease including 4 potentially pathogenic, novel GAA variants. We also review the recent the recent advances in the pathogenesis, diagnosis, and treatment of individuals with Pompe disease.
Collapse
Affiliation(s)
- Majed Dasouki
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Genetics, King Faisal Specialist Hospital & Research Center, MBC-03-30, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | - Omar Jawdat
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Osama Almadhoun
- Department of Pediatrics, University of Kansas Medical Center, Mailstop 4004, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - April L McVey
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ahmad Abuzinadah
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Mailstop 2012, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
50
|
van Gelder CM, Hoogeveen-Westerveld M, Kroos MA, Plug I, van der Ploeg AT, Reuser AJJ. Enzyme therapy and immune response in relation to CRIM status: the Dutch experience in classic infantile Pompe disease. J Inherit Metab Dis 2015; 38:305-14. [PMID: 24715333 PMCID: PMC4341007 DOI: 10.1007/s10545-014-9707-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Enzyme-replacement therapy (ERT) in Pompe disease--an inherited metabolic disorder caused by acid α-glucosidase deficiency and characterized in infants by generalized muscle weakness and cardiomyopathy--can be complicated by immune responses. Infants that do not produce any endogenous acid α-glucosidase, so-called CRIM-negative patients, reportedly develop a strong response. We report the clinical outcome of our Dutch infants in relation to their CRIM status and immune response. METHODS Eleven patients were genotyped and their CRIM status was determined. Antibody formation and clinical outcome were assessed for a minimum of 4 years. RESULTS ERT was commenced between 0.1 and 8.3 months of age, and patients were treated from 0.3 to 13.7 years. All patients developed antibodies. Those with a high antibody titer (above 1:31,250) had a poor response. The antibody titers varied substantially between patients and did not strictly correlate with the patients' CRIM status. Patients who started ERT beyond 2 months of age tended to develop higher titers than those who started earlier. All three CRIM-negative patients in our study succumbed by the age of 4 years seemingly unrelated to the height of their antibody titer. CONCLUSION Antibody formation is a common response to ERT in classic infantile Pompe disease and counteracts the effect of treatment. The counteracting effect seems determined by the antibody:enzyme molecular stoichiometry. The immune response may be minimized by early start of ERT and by immune modulation, as proposed by colleagues. The CRIM-negative status itself seems associated with poor outcome.
Collapse
Affiliation(s)
- Carin M. van Gelder
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Marian A. Kroos
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Iris Plug
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arnold J. J. Reuser
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|