1
|
Alharbi H, Daniel EJP, Thies J, Chang I, Goldner DL, Ng BG, Witters P, Aqul A, Velez-Bartolomei F, Enns GM, Hsu E, Kichula E, Lee E, Lourenco C, Poskanzer SA, Rasmussen S, Saarela K, Wang YM, Raymond KM, Schultz MJ, Freeze HH, Lam C, Edmondson AC, He M. Fractionated plasma N-glycan profiling of novel cohort of ATP6AP1-CDG subjects identifies phenotypic association. J Inherit Metab Dis 2023; 46:300-312. [PMID: 36651831 PMCID: PMC10047170 DOI: 10.1002/jimd.12589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
ATP6AP1-CDG is an X-linked disorder typically characterized by hepatopathy, immunodeficiency, and an abnormal type II transferrin glycosylation pattern. Here, we present 11 new patients and clinical updates with biochemical characterization on one previously reported patient. We also document intrafamilial phenotypic variability and atypical presentations, expanding the symptomatology of ATP6AP1-CDG to include dystonia, hepatocellular carcinoma, and lysosomal abnormalities on hepatic histology. Three of our subjects received successful liver transplantation. We performed N-glycan profiling of total and fractionated plasma proteins for six patients and show associations with varying phenotypes, demonstrating potential diagnostic and prognostic value of fractionated N-glycan profiles. The aberrant N-linked glycosylation in purified transferrin and remaining plasma glycoprotein fractions normalized in one patient post hepatic transplant, while the increases of Man4GlcNAc2 and Man5GlcNAc2 in purified immunoglobulins persisted. Interestingly, in the single patient with isolated immune deficiency phenotype, elevated high-mannose glycans were detected on purified immunoglobulins without glycosylation abnormalities on transferrin or the remaining plasma glycoprotein fractions. Given the diverse and often tissue specific clinical presentations and the need of clinical management post hepatic transplant in ATP6AP1-CDG patients, these results demonstrate that fractionated plasma N-glycan profiling could be a valuable tool in diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hana Alharbi
- Department of Pediatrics, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Irene Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dana L Goldner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Peter Witters
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Center for Metabolic Diseases, University Hospital Leuven, Leuven, Belgium
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Amal Aqul
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Texas Southwestern/Children's Medical Center, Dallas, Texas, USA
| | - Frances Velez-Bartolomei
- Genetics Section, San Jorge Children and Women's Hospital in San Juan, San Juan, Puerto Rico, USA
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital and Stanford University, Stanford, California, USA
| | - Gregory M Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital and Stanford University, Stanford, California, USA
| | - Evelyn Hsu
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Esther Lee
- Genetic Services, Kaiser Permanente of Washington, Seattle, Washington, USA
| | - Charles Lourenco
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São Jose do Rio Preto - São Paulo, Brazil
- Personalized Medicine area, Special Education Sector at DLE/Grupo Pardini, Belo Horizonte - MG, Brazil
| | - Sheri A Poskanzer
- St. Luke's Health System, Boise, Idaho, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Sara Rasmussen
- Transplant Center, Department of Surgery, Seattle Children's Hospital University of Washington School of Medicine Seattle, Seattle, Washington, USA
| | - Katelyn Saarela
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - YunZu M Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kimiyo M Raymond
- Department of Laboratory Medicine and Pathology, Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Alsharhan H, Ng BG, Daniel EJP, Friedman J, Pivnick EK, Al-Hashem A, Faqeih EA, Liu P, Engelhardt NM, Keller KN, Chen J, Mazzeo PA, Rosenfeld JA, Bamshad MJ, Nickerson DA, Raymond KM, Freeze HH, He M, Edmondson AC, Lam C. Expanding the phenotype, genotype and biochemical knowledge of ALG3-CDG. J Inherit Metab Dis 2021; 44:987-1000. [PMID: 33583022 PMCID: PMC8282734 DOI: 10.1002/jimd.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Congenital disorders of glycosylation (CDGs) are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid biosynthesis that cause multisystem diseases. Individuals with ALG3-CDG frequently exhibit severe neurological involvement (epilepsy, microcephaly, and hypotonia), ocular anomalies, dysmorphic features, skeletal anomalies, and feeding difficulties. We present 10 unreported individuals diagnosed with ALG3-CDG based on molecular and biochemical testing with 11 novel variants in ALG3, bringing the total to 40 reported individuals. In addition to the typical multisystem disease seen in ALG3-CDG, we expand the symptomatology of ALG3-CDG to now include endocrine abnormalities, neural tube defects, mild aortic root dilatation, immunodeficiency, and renal anomalies. N-glycan analyses of these individuals showed combined deficiencies of hybrid glycans and glycan extension beyond Man5 GlcNAc2 consistent with their truncated lipid-linked precursor oligosaccharides. This spectrum of N-glycan changes is unique to ALG3-CDG. These expanded features of ALG3-CDG facilitate diagnosis and suggest that optimal management should include baseline endocrine, renal, cardiac, and immunological evaluation at the time of diagnosis and with ongoing monitoring.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Faculty of Medicine, Kuwait
University, Kuwait City, Kuwait
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of
California San Diego and Rady Children’s Hospital, San Diego,
California
| | - Eniko K. Pivnick
- Department of Pediatrics, Division of Medical Genetics,
University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Amal Al-Hashem
- Department of Pediatrics, Prince Sultan Military Medical
City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi
Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children’s Specialist
Hospital King Fahad Medical City, Riyadh, Saudi Arabia
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Nicole M. Engelhardt
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Kierstin N. Keller
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Jie Chen
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pamela A. Mazzeo
- Department of Pediatrics, The Children’s Hospital
of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Kimiyo M. Raymond
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Miao He
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C. Edmondson
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Center of Integrated Brain Research, Seattle
Children’s Research Institute, Seattle, Washington
| |
Collapse
|
3
|
ALG3-CDG: a patient with novel variants and review of the genetic and ophthalmic findings. BMC Ophthalmol 2021; 21:249. [PMID: 34090370 PMCID: PMC8180164 DOI: 10.1186/s12886-021-02013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background ALG3-CDG is a rare autosomal recessive disease. It is characterized by deficiency of alpha-1,3-mannosyltransferase caused by pathogenic variants in the ALG3 gene. Patients manifest with severe neurologic, cardiac, musculoskeletal and ophthalmic phenotype in combination with dysmorphic features, and almost half of them die before or during the neonatal period. Case presentation A 23 months-old girl presented with severe developmental delay, epilepsy, cortical atrophy, cerebellar vermis hypoplasia and ocular impairment. Facial dysmorphism, clubfeet and multiple joint contractures were observed already at birth. Transferrin isoelectric focusing revealed a type 1 pattern. Funduscopy showed hypopigmentation and optic disc pallor. Profound retinal ganglion cell loss and inner retinal layer thinning was documented on spectral-domain optical coherence tomography imaging. The presence of optic nerve hypoplasia was also supported by magnetic resonance imaging. A gene panel based next-generation sequencing and subsequent Sanger sequencing identified compound heterozygosity for two novel variants c.116del p.(Pro39Argfs*40) and c.1060 C > T p.(Arg354Cys) in ALG3. Conclusions Our study expands the spectrum of pathogenic variants identified in ALG3. Thirty-three variants in 43 subjects with ALG3-CDG have been reported. Literature review shows that visual impairment in ALG3-CDG is most commonly linked to optic nerve hypoplasia.
Collapse
|
4
|
PAKETCI C, EDEM P, HIZ S, SONMEZLER E, SOYDEMIR D, UZAN GS, OKTAY Y, O’HEIR E, BELTRAN S, LAURIE S, TÖPF A, LOCHMULLER H, HORVATH R, YIS U. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev 2020; 42:539-545. [PMID: 32389449 PMCID: PMC7906126 DOI: 10.1016/j.braindev.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) is a heterogeneous group of congenital metabolic diseases with multisystem clinical involvement. ALG3-CDG is a very rare subtype with only 24 cases reported so far. CASE Here, we report two siblings with dysmorphic features, growth retardation, microcephaly, intractable epilepsy, and hemangioma in the frontal, occipital and lumbosacral regions. RESULTS We studied two siblings by whole exome sequencing. A pathogenic variant in ALG3 (NM_005787.6: c.165C > T; p.Gly55=) that had been previously associated with congenital glycolysis defect type 1d was identified. Their intractable seizures were controlled by ketogenic diet. CONCLUSION Although prominent findings of growth retardation and microcephaly seen in our patients have been extensively reported before, presence of hemangioma is a novel finding that may be used as an indication for ALG3-CDG diagnosis. Our patients are the first reported cases whose intractable seizures were controlled with ketogenic diet. This report adds ketogenic diet as an option for treatment of intractable epilepsy in ALG3-CDG.
Collapse
Affiliation(s)
- C PAKETCI
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - P EDEM
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - S HIZ
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - E SONMEZLER
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - D SOYDEMIR
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - GS UZAN
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Y OKTAY
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - E O’HEIR
- Center for Mendelian Genomics and Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - S BELTRAN
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S LAURIE
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - A TÖPF
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University and Newcastle Hospitals, Newcastle upon Tyne, UK
| | - H LOCHMULLER
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain,Children’s Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - R HORVATH
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - U YIS
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
5
|
ALG3-CDG: lethal phenotype and novel variants in Chinese siblings. J Hum Genet 2020; 65:1129-1134. [PMID: 32655146 DOI: 10.1038/s10038-020-0798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 11/08/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic, mostly multisystem disorders, which often involve the central nervous system. ALG3-CDG is one the some 130 known CDG. Here we report two siblings with a severe phenotype and intrauterine death. Whole-exome sequencing revealed two novel variants in ALG3: NM_005787.6:c.512G>T (p.Arg171Leu) inherited from the mother and NM_005787.6:c.511C>T (p.Arg171Trp) inherited from the father.
Collapse
|
6
|
Himmelreich N, Dimitrov B, Geiger V, Zielonka M, Hutter AM, Beedgen L, Hüllen A, Breuer M, Peters V, Thiemann KC, Hoffmann GF, Sinning I, Dupré T, Vuillaumier-Barrot S, Barrey C, Denecke J, Kölfen W, Düker G, Ganschow R, Lentze MJ, Moore S, Seta N, Ziegler A, Thiel C. Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. Hum Mutat 2019; 40:938-951. [PMID: 31067009 DOI: 10.1002/humu.23764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Bianca Dimitrov
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Virginia Geiger
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Matthias Zielonka
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Anna-Marlen Hutter
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Lars Beedgen
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Andreas Hüllen
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Maximilian Breuer
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Verena Peters
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Kai-Christian Thiemann
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Thierry Dupré
- Department Biochimie, AP-HP, Hôpital Bichat, Biochimie, Paris, France.,Faculté de Médecine Xavier Bichat, INSERM U1149, Université Paris Diderot, Paris, France
| | - Sandrine Vuillaumier-Barrot
- Department Biochimie, AP-HP, Hôpital Bichat, Biochimie, Paris, France.,Faculté de Médecine Xavier Bichat, INSERM U1149, Université Paris Diderot, Paris, France
| | | | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Kölfen
- Zentrum für Kinder und Jugendmedizin, Städtischen Kliniken Mönchengladbach, Mönchengladbach, Germany
| | - Gesche Düker
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Bonn, Germany
| | - Rainer Ganschow
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Bonn, Germany
| | - Michael J Lentze
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Bonn, Germany
| | - Stuart Moore
- Faculté de Médecine Xavier Bichat, INSERM U1149, Université Paris Diderot, Paris, France
| | - Nathalie Seta
- Department Biochimie, AP-HP, Hôpital Bichat, Biochimie, Paris, France
| | - Andreas Ziegler
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Hacker B, Schultheiß C, Kurzik-Dumke U. Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting in distinct cellular compartments. Hum Mol Genet 2018; 27:4231-4248. [PMID: 30192950 DOI: 10.1093/hmg/ddy315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that the truncated transcripts are not translated. The two main forms hNOT-1/ALG3-1 and -4, distinguishable by alternative exon 1, encode full-length precursors that undergo a complex posttranslational processing. To specifically detect the two full-length hNOT/ALG3 proteins and their distinct derivatives and to examine their expression profiles and cellular location we generated polyclonal antibodies against diverse parts of the putative full-length proteins. We provide experimental evidence for the N-glycosylation of the two precursors. This modification seems to be a prerequisite for their sequential cleavage resulting in derivatives destined to distinct cellular compartments and links them with the N-glycosylation machinery not as its functional component but as molecules functionally dependent on its action. We present the expression profiles and subcellular location of the two full-length proteins, their N-glycosylated forms and distinct cleavage products. Furthermore, using diverse bioinformatics tools, we characterize the properties and predict the 2D and 3D structure of the two proteins and, for comparative purposes, of their Drosophila counterpart.
Collapse
Affiliation(s)
- Benedikt Hacker
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Christoph Schultheiß
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| |
Collapse
|
8
|
Santos-Cortez RLP, Khan V, Khan FS, Mughal ZUN, Chakchouk I, Lee K, Rasheed M, Hamza R, Acharya A, Ullah E, Saqib MAN, Abbe I, Ali G, Hassan MJ, Khan S, Azeem Z, Ullah I, Bamshad MJ, Nickerson DA, Schrauwen I, Ahmad W, Ansar M, Leal SM. Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability. Hum Genet 2018; 137:735-752. [PMID: 30167849 PMCID: PMC6201268 DOI: 10.1007/s00439-018-1928-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/10/2018] [Indexed: 01/30/2023]
Abstract
Identification of Mendelian genes for neurodevelopmental disorders using exome sequencing to study autosomal recessive (AR) consanguineous pedigrees has been highly successful. To identify causal variants for syndromic and non-syndromic intellectual disability (ID), exome sequencing was performed using DNA samples from 22 consanguineous Pakistani families with ARID, of which 21 have additional phenotypes including microcephaly. To aid in variant identification, homozygosity mapping and linkage analysis were performed. DNA samples from affected family member(s) from every pedigree underwent exome sequencing. Identified rare damaging exome variants were tested for co-segregation with ID using Sanger sequencing. For seven ARID families, variants were identified in genes not previously associated with ID, including: EI24, FXR1 and TET3 for which knockout mouse models have brain defects; and CACNG7 and TRAPPC10 where cell studies suggest roles in important neural pathways. For two families, the novel ARID genes CARNMT1 and GARNL3 lie within previously reported ID microdeletion regions. We also observed homozygous variants in two ID candidate genes, GRAMD1B and TBRG1, for which each has been previously reported in a single family. An additional 14 families have homozygous variants in established ID genes, of which 11 variants are novel. All ARID genes have increased expression in specific structures of the developing and adult human brain and 91% of the genes are differentially expressed in utero or during early childhood. The identification of novel ARID candidate genes and variants adds to the knowledge base that is required to further understand human brain function and development.
Collapse
Affiliation(s)
- Regie Lyn P Santos-Cortez
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Valeed Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Falak Sher Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zaib-Un-Nisa Mughal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Imen Chakchouk
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rifat Hamza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Anushree Acharya
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Ehsan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Arif Nadeem Saqib
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Pakistan Health Research Council, Shahrah-e-Jamhuriat, G-5/2, Islamabad, Pakistan
| | - Izoduwa Abbe
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Jawad Hassan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Zahid Azeem
- Department of Biochemistry, Azad Jammu and Kashmir Medical College, Muzaffarabad, Pakistan
| | - Irfan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave. NE, Seattle, WA, 98195, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Isabelle Schrauwen
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
10
|
Kane MS, Davids M, Bond MR, Adams CJ, Grout ME, Phelps IG, O'Day DR, Dempsey JC, Li X, Golas G, Vezina G, Gunay-Aygun M, Hanover JA, Doherty D, He M, Malicdan MCV, Gahl WA, Boerkoel CF. Abnormal glycosylation in Joubert syndrome type 10. Cilia 2017; 6:2. [PMID: 28344780 PMCID: PMC5364566 DOI: 10.1186/s13630-017-0048-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The discovery of disease pathogenesis requires systematic agnostic screening of multiple homeostatic processes that may become deregulated. We illustrate this principle in the evaluation and diagnosis of a 5-year-old boy with Joubert syndrome type 10 (JBTS10). He carried the OFD1 mutation p.Gln886Lysfs*2 (NM_003611.2: c.2656del) and manifested features of Joubert syndrome. METHODS We integrated exome sequencing, MALDI-TOF mass spectrometry analyses of plasma and cultured dermal fibroblasts glycomes, and full clinical evaluation of the proband. Analyses of cilia formation and lectin staining were performed by immunofluorescence. Measurement of cellular nucleotide sugar levels was performed with high-performance anion-exchange chromatography with pulsed amperometric detection. Statistical analyses utilized the Student's and Fisher's exact t tests. RESULTS Glycome analyses of plasma and cultured dermal fibroblasts identified abnormal N- and O-linked glycosylation profiles. These findings replicated in two unrelated males with OFD1 mutations. Cultured fibroblasts from affected individuals had a defect in ciliogenesis. The proband's fibroblasts also had an abnormally elevated nuclear sialylation signature and increased total cellular levels of CMP-sialic acid. Ciliogenesis and each glycosylation anomaly were rescued by expression of wild-type OFD1. CONCLUSIONS The rescue of ciliogenesis and glycosylation upon reintroduction of WT OFD1 suggests that both contribute to the pathogenesis of JBTS10.
Collapse
Affiliation(s)
- Megan S Kane
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA.,Inova Translational Medicine Institute, Inova Health System, Falls Church, VA USA
| | - Mariska Davids
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Michelle R Bond
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Christopher J Adams
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Megan E Grout
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Ian G Phelps
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | | | - Xeuli Li
- The Michael J Palmieri Metabolic Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Gretchen Golas
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA.,Johns Hopkins University School of Medicine, Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD USA
| | - John A Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Miao He
- The Michael J Palmieri Metabolic Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - May Christine V Malicdan
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - William A Gahl
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Disease Program, Common Fund, Office of the Director, and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA.,Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
11
|
Al Teneiji A, Bruun TUJ, Sidky S, Cordeiro D, Cohn RD, Mendoza-Londono R, Moharir M, Raiman J, Siriwardena K, Kyriakopoulou L, Mercimek-Mahmutoglu S. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab 2017; 120:235-242. [PMID: 28122681 DOI: 10.1016/j.ymgme.2016.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II. MATERIAL AND METHODS All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution. RESULTS Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing. CONCLUSION We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
Collapse
Affiliation(s)
- Amal Al Teneiji
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Theodora U J Bruun
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Sidky
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronald D Cohn
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mahendranath Moharir
- Division of Neurology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Lianna Kyriakopoulou
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Electroclinical Features of Early-Onset Epileptic Encephalopathies in Congenital Disorders of Glycosylation (CDGs). JIMD Rep 2015; 27:93-9. [PMID: 26453362 DOI: 10.1007/8904_2015_497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/05/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a constantly growing group of genetic defects of glycoprotein and glycolipid glycan synthesis. CDGs are usually multisystem diseases, and in the majority of patients, there is an important neurological involvement comprising psychomotor disability, hypotonia, ataxia, seizures, stroke-like episodes, and peripheral neuropathy. To assess the incidence, among early-onset epileptic encephalopathies (EOEE), of patients with identified congenital disorders of glycosylation (CDG), we made a review of clinical, electrophysiological, and neuroimaging findings of 27 CDG patients focusing on seizure onset, semiology and frequency, response to antiepileptic drugs (AED), and early epileptic manifestations. Epilepsy was uncommon in PMM2-CDG (11%), while it was a main concern in other rare forms. We describe a series of patients with EOEE and genetically confirmed CDG (ALG3-CDG, ALG6-CDG, DPM2-CDG, ALG1-CDG). Epileptic seizures at onset included myoclonic and clonic fits and focal seizures. With time, patients developed recurrent and intractable seizures principally tonic-clonic seizures, infantile spasms, and myoclonic seizures. Electrophysiological correlates included focal and multifocal epileptic discharges, slowed background rhythm, and generalized epileptic activity including burst suppression pattern and status epilepticus. We propose a diagnostic flowchart for the early diagnosis of CDG in patients presenting with EOEE and suggest to perform serum transferrin IEF (or capillary zone electrophoresis) as a first-line screening in early-onset epilepsy.
Collapse
|
13
|
Lepais L, Cheillan D, Frachon SC, Hays S, Matthijs G, Panagiotakaki E, Abel C, Edery P, Rossi M. ALG3-CDG: Report of two siblings with antenatal features carrying homozygous p.Gly96Arg mutation. Am J Med Genet A 2015; 167A:2748-54. [PMID: 26126960 DOI: 10.1002/ajmg.a.37232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/15/2015] [Indexed: 01/20/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of inborn errors of metabolism presenting with heterogeneous multisystemic clinical manifestations. To date, more than 60 different types of CDG have been reported. ALG3-CDG is very rare, with only nine patients described so far. We report two affected siblings presenting prenatally with skeletal abnormalities associated with dysmorphic features, cerebellar vermis hypoplasia, corpus callosum agenesis, hepatic fibrosis and poor prognosis. This is the first detailed report of an affected fetus including clinical, radiographic and pathological findings. The patients showed some clinical features previously unreported in ALG3-CDG, such as bone dysplasia, cataract, corneal opacities, and pons hypoplasia. Both patients were homozygous for the previously unreported p.Gly96Arg mutation of the ALG3 gene. One patient showed chondrodysplasia punctata (CDP), which has not been previously reported in CDG. An exhaustive genetic and metabolic assessment, performed in order to rule out other possible causes of CDP, showed abnormally raised levels of anti-nuclear antibodies in the mother who, nevertheless, did not show any clinical sign of autoimmune disease during a 7 years follow-up. We speculate that the observed CDP may be explained by the maternal anti-nuclear antibodies; alternatively, a possible link to the underlying metabolic disorder cannot be ruled out. In conclusion, we report the clinical, pathological, biochemical and molecular characterization of two further patients affected by ALG3-CDG, expanding the phenotypic spectrum of this very rare disease.
Collapse
Affiliation(s)
- Laureline Lepais
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - David Cheillan
- Service des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France.,INSERM U1060/Université Lyon-1, Lyon, France
| | - Sophie Collardeau Frachon
- Service d'Anatomie Pathologique, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France.,Université Lyon 1, Lyon, France
| | - Stéphane Hays
- Service de Réanimation Néonatale et Néonatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gert Matthijs
- Center for Human Genetics, UZ Gasthuisberg, Leuven, Belgium
| | - Eleni Panagiotakaki
- Service Epilepsie, Sommeil, Explorations Fonctionnelles Neuropédiatriques (ESEFNP), Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Carine Abel
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Patrick Edery
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Université Lyon 1, Lyon, France.,INSERM U1028, CNRS UMR5292, CRNL TIGER Team, Bron, France
| | - Massimiliano Rossi
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, CRNL TIGER Team, Bron, France
| |
Collapse
|
14
|
Wolthuis DFGJ, Janssen MC, Cassiman D, Lefeber DJ, Morava E, Morava-Kozicz E. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Rev Mol Diagn 2014; 14:217-24. [PMID: 24524732 DOI: 10.1586/14737159.2014.890052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital disorders of N-glycosylation (CDG) form a rapidly growing group of more than 20 inborn errors of metabolism. Most patients are identified at the pediatric age with multisystem disease. There is no systematic review on the long-term outcome and clinical presentation in adult patients. Here, we review the adult phenotype in 78 CDG patients diagnosed with 18 different forms of N-glycosylation defects. Characteristics include intellectual disability, speech disorder and abnormal gait. After puberty, symptoms might remain non-progressive and patients may lead a socially functional life. Thrombosis and progressive symptoms, such as peripheral neuropathy, scoliosis and visual demise are specifically common in PMM2-CDG. Especially in adult patients, diagnostic glycosylation screening can be mildly abnormal or near-normal, hampering diagnosis. Features of adult CDG patients significantly differ from the pediatric phenotype. Non-syndromal intellectual disability, or congenital malformations in different types of CDG and decreasing sensitivity of screening might be responsible for the CDG cases remaining undiagnosed until adulthood.
Collapse
Affiliation(s)
- David F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, New Orleans, LA, 70112, USA
| | | | | | | | | | | |
Collapse
|