1
|
Belanger AJ, Gefteas E, Przybylska M, Geller S, Anarat-Cappillino G, Kloss A, Yew NS. Excretion of excess nitrogen and increased survival by loss of SLC6A19 in a mouse model of ornithine transcarbamylase deficiency. J Inherit Metab Dis 2023; 46:55-65. [PMID: 36220785 DOI: 10.1002/jimd.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
Protein catabolism ultimately yields toxic ammonia, which must be converted to urea by the liver for renal excretion. In extrahepatic tissues, ammonia is temporarily converted primarily to glutamine for subsequent hepatic extraction. Urea cycle disorders (UCDs) are inborn errors of metabolism causing impaired ureagenesis, leading to neurotoxic accumulation of ammonia and brain glutamine. Treatment includes dietary protein restriction and oral "ammonia scavengers." These scavengers chemically combine with glutamine and glycine to yield excretable products, creating an alternate pathway of waste nitrogen disposal. The amino acid transporter SLC6A19 is responsible for >95% of absorption and reabsorption of free neutral amino acids in the small intestine and kidney, respectively. Genetic SLC6A19 deficiency causes massive neutral aminoaciduria but is typically benign. We hypothesized that inhibiting SLC6A19 would open a novel and effective alternate pathway of waste nitrogen disposal. To test this, we crossed SLC6A19 knockout (KO) mice with spfash mice, a model of ornithine transcarbamylase (OTC) deficiency. Loss of SLC6A19 in spfash mice normalized plasma ammonia and brain glutamine and increased median survival in response to a high protein diet from 7 to 97 days. While induced excretion of amino acid nitrogen is likely the primary therapeutic mechanism, reduced intestinal absorption of dietary free amino acids, and decreased muscle protein turnover due to loss of SLC6A19 may also play a role. In summary, the results suggest that SLC6A19 inhibition represents a promising approach to treating UCDs and related aminoacidopathies.
Collapse
Affiliation(s)
| | | | | | - Sarah Geller
- Rare & Neurologic Diseases, Sanofi, Cambridge, USA
| | | | - Alla Kloss
- Rare & Neurologic Diseases, Sanofi, Cambridge, USA
| | - Nelson S Yew
- Rare & Neurologic Diseases, Sanofi, Cambridge, USA
| |
Collapse
|
2
|
Benefits of tailored disease management in improving tremor, white matter hyperintensities, and liver enzymes in a child with heterozygous X-linked ornithine transcarbamylase deficiency. Mol Genet Metab Rep 2022; 33:100891. [PMID: 36620387 PMCID: PMC9817482 DOI: 10.1016/j.ymgmr.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/11/2023] Open
Abstract
We report the case of a 19-month-old girl with late-onset ornithine transcarbamylase (OTC) deficiency initially referred to gastroenterology for intermittent vomiting lasting a year and abnormal liver enzymes (AST 730 U/L [reference range 26-55 U/L]; ALT 1213 U/L [reference range 11-30 U/L]) without hepatomegaly. While the patient was hospitalized for liver biopsy, intermittent tremors of the upper extremities with varying severity were noted. The patient was presumed to have hyperammonemia secondary to acute liver failure and was discharged after 5 days; follow-up monitoring led to readmission 7 days later. A brain MRI showed nonspecific bilateral pericallosal and bifrontal white matter FLAIR hyperintensities. These findings raised suspicion for a metabolic disease and prompted a genetics consultation. After inconclusive biochemical testing and worsening clinical status, rapid whole genome sequencing results were obtained identifying a novel, de novo, likely pathogenic, variant c.608C > T (p.Ser203Phe) in the OTC gene. The patient was promptly started on an oral nitrogen scavenger, citrulline supplementation, and protein restriction. Ammonia and glutamine levels normalized within 1 month of treatment and have stayed within the goal ranges with continued tailoring of treatment. Her parents noted resolution of vomiting and improved mood stability. Liver enzymes normalized after 2 months of treatment. The tremor, identified as asterixis, improved and a repeat brain MRI 3 months after the initial imaging showed near-complete resolution of previous white matter hyperintensities.
Collapse
Key Words
- ALT, alanine transaminase
- AST, aspartate aminotransferase
- Asterixis
- BASC-3, Behavior Assessment System for Children
- BCAA, branched-chain amino acid
- FLAIR, fluid-attenuated inversion recovery
- GGT, gamma-glutamyl transferase
- Late onset
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Manifesting heterozygote
- OTC, ornithine transcarbamylase
- Ornithine transcarbamylase deficiency
- PT, prothrombin time
- Partial onset
- TID, 3 times a day
- UCD, urea cycle disorder
- Urea cycle disorder
- WPPSI-IV, Wechsler Preschool and Primary Scale of Intelligence
- X linked
Collapse
|
3
|
Ravindranath A, Sarma MS. Mitochondrial hepatopathy: Anticipated difficulties in management of fatty acid oxidation defects and urea cycle defects. World J Hepatol 2022; 14:180-194. [PMID: 35126847 PMCID: PMC8790400 DOI: 10.4254/wjh.v14.i1.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acid oxidation defects (FAOD) and urea cycle defects (UCD) are among the most common metabolic liver diseases. Management of these disorders is dotted with challenges as the strategies differ based on the type and severity of the defect. In those with FAOD the cornerstone of management is avoiding hypoglycemia which in turn prevents the triggering of fatty acid oxidation. In this review, we discuss the role of carnitine supplementation, dietary interventions, newer therapies like triheptanoin, long-term treatment and approach to positive newborn screening. In UCD the general goal is to avoid excessive protein intake and indigenous protein breakdown. However, one size does not fit all and striking the right balance between avoiding hyperammonemia and preventing deficiencies of essential nutrients is a formidable task. Practical issues during the acute presentation including differential diagnosis of hyperammonemia, dietary dilemmas, the role of liver transplantation, management of the asymptomatic individual and monitoring are described in detail. A multi-disciplinary team consisting of hepatologists, metabolic specialists and dieticians is required for optimum management and improvement in quality of life for these patients.
Collapse
Affiliation(s)
- Aathira Ravindranath
- Division of Pediatric Gastroenterology, Institute of Gastrointestinal Sciences, Apollo BGS Hospitals, Mysore 570023, Karnataka, India
| | - Moinak Sen Sarma
- Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
4
|
Kripps KA, Baker PR, Thomas JA, Skillman HE, Bernstein L, Gaughan S, Burns C, Coughlin CR, McCandless SE, Larson AA, Kochar A, Stillman CF, Wymore EM, Hendricks EG, Woontner M, Van Hove JLK. REVIEW: Practical strategies to maintain anabolism by intravenous nutritional management in children with inborn metabolic diseases. Mol Genet Metab 2021; 133:231-241. [PMID: 33985889 DOI: 10.1016/j.ymgme.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
One of the most vital elements of management for patients with inborn errors of intermediary metabolism is the promotion of anabolism, the state in which the body builds new components, and avoidance of catabolism, the state in which the body breaks down its own stores for energy. Anabolism is maintained through the provision of a sufficient supply of substrates for energy, as well as critical building blocks of essential amino acids, essential fatty acids, and vitamins for synthetic function and growth. Patients with metabolic diseases are at risk for decompensation during prolonged fasting, which often occurs during illnesses in which enteral intake is compromised. During these times, intravenous nutrition must be supplied to fully meet the specific nutritional needs of the patient. We detail our approach to intravenous management for metabolic patients and its underlying rationale. This generally entails a combination of intravenous glucose and lipid as well as early introduction of protein and essential vitamins. We exemplify the utility of our approach in case studies, as well as scenarios and specific disorders which require a more careful administration of nutritional substrates or a modification of macronutrient ratios.
Collapse
Affiliation(s)
- Kimberly A Kripps
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Janet A Thomas
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Heather E Skillman
- Department of Clinical Nutrition, Children's Hospital Colorado, Aurora, CO, USA
| | - Laurie Bernstein
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Sommer Gaughan
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Casey Burns
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Curtis R Coughlin
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Shawn E McCandless
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Aaina Kochar
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Chelsey F Stillman
- Section of Child Neurology, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Neuroscience Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Erica M Wymore
- Section of Neonatology, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Ellie G Hendricks
- Department of Pharmacy, Children's Hospital Colorado, Aurora, CO, USA
| | - Michael Woontner
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
5
|
Bérat CM, Roda C, Brassier A, Bouchereau J, Wicker C, Servais A, Dubois S, Assoun M, Belloche C, Barbier V, Leboeuf V, Petit FM, Gaignard P, Lebigot E, Bérat PJ, Pontoizeau C, Touati G, Talbotec C, Campeotto F, Ottolenghi C, Arnoux JB, de Lonlay Pascale P. Enteral tube feeding in patients receiving dietary treatment for metabolic diseases: A retrospective analysis in a large French cohort. Mol Genet Metab Rep 2021; 26:100655. [PMID: 33473351 PMCID: PMC7803652 DOI: 10.1016/j.ymgmr.2020.100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Context A strictly controlled diet (often involving enteral tube feeding (ETF)) is part of the treatment of many inherited metabolic diseases (IMDs). Objective To describe the use of ETF in a large cohort of patients with IMDs. Design A retrospective analysis of ETF in patients with urea cycle disorders (UCDs), organic aciduria (OA), maple syrup disease (MSUD), glycogen storage diseases (GSDs) or fatty acid oxidation disorders (FAODs) diagnosed before the age of 12 months. Setting The reference center for IMDs at Necker Hospital (Paris, France). Results 190 patients born between January 1991 and August 2017 were being treated for OA (n = 60), UCDs (n = 55), MSUD (n = 32), GSDs (n = 26) or FAODs (n = 17). Ninety-eight of these patients (52%) received ETF (OA subgroup: n = 40 (67%); UCDs: n = 12 (22%); MSUD: n = 9 (28%); GSDs: n = 23 (88%); FAODs: n = 14 (82%)). Indications for ETF were feeding difficulties in 64 (65%) patients, cessation of fasting in 39 (40%), and recurrent metabolic decompensation in 14 (14%). Complications of ETF were recorded in 48% of cases, more frequently with nasogastric tube (NGT) than with gastrostomy. Among patients in whom ETF was withdrawn, the mean duration of ETF was 5.9 (SD: 4.8) years (range: 0.6–19.8 years). The duration of ETF was found to vary from one disease subgroup to another (p = 0.051). While the longest median duration was found in the GSD subgroup (6.8 years), the shortest one was found in the UCD subgroup (0.9 years). Conclusion ETF is an integral part of the dietary management of IMDs. The long duration of ETF and the specific risks of NGT highlights the potential value of gastrostomy. In this study at a French tertiary hospital, we documented the indications, modalities, duration and complications of enteral tube feeding in a cohort of patients with inherited metabolic diseases.
Collapse
Affiliation(s)
- Claire-Marine Bérat
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Célina Roda
- Université de Paris, CRESS, HERA team, INSERM, INRAE, F-75004 Paris, France
| | - Anais Brassier
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Camille Wicker
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Aude Servais
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Sandrine Dubois
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Murielle Assoun
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Claire Belloche
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Valérie Barbier
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Virginie Leboeuf
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - François M Petit
- Department of Molecular Genetics, Antoine Béclère Hospital, APHP, Université Paris Saclay, 92141 Clamart, Cedex, France
| | - Pauline Gaignard
- Department of Biochemistry, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France
| | - Elise Lebigot
- Department of Biochemistry, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France
| | - Pierre-Jean Bérat
- Department of Odontology, Louis Mourier Hospital, APHP, University Paris Descartes University, Paris, France
| | - Clément Pontoizeau
- Department of Biochemistry, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, metabERN, Paris Descartes University, Paris, France
| | - Guy Touati
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Cécile Talbotec
- Department of Gastroenterology, Hospital Necker Enfants Malades, APHP, Paris, France
| | - Florence Campeotto
- Department of Gastroenterology, Hospital Necker Enfants Malades, APHP, Paris, France
| | - Chris Ottolenghi
- Department of Biochemistry, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, metabERN, Paris Descartes University, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Pascale de Lonlay Pascale
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| |
Collapse
|
6
|
Francini-Pesenti F, Gugelmo G, Lenzini L, Vitturi N. Nutrient Intake and Nutritional Status in Adult Patients with Inherited Metabolic Diseases Treated with Low-Protein Diets: A Review on Urea Cycle Disorders and Branched Chain Organic Acidemias. Nutrients 2020; 12:E3331. [PMID: 33138136 PMCID: PMC7693747 DOI: 10.3390/nu12113331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
Low-protein diets (LPDs) are the main treatment for urea cycle disorders (UCDs) and organic acidemias (OAs). In most cases, LPDs start in childhood and must be continued into adulthood. The improved life expectancy of patients with UCDs and OAs raises the question of their consequences on nutritional status in adult subjects. As this topic has so far received little attention, we conducted a review of scientific studies that investigated the nutrient intake and nutritional status in adult patients with UCDs and branched chain organic acidemias (BCOAs) on LPD. METHODS The literature search was conducted in PubMed/MEDLINE, Scopus, EMBASE and Google Scholar from 1 January 2000 to 31 May 2020, focusing on nutrient intake and nutritional status in UCD and OA adult patients. RESULTS Despite protein restriction is recommended as the main treatment for UCDs and OAs, in these patients, protein intake ranges widely, with many patients who do not reach safety levels. When evaluated, micronutrient intake resulted below recommended values in some patients. Lean body mass resulted in most cases lower than normal range while fat body mass (FM) was often found normal or higher than the controls or reference values. Protein intake correlated inversely with FM both in adult and pediatric UCD patients. CONCLUSIONS The clinical management of adult patients with UCDs and BCOAs should include an accurate assessment of the nutritional status and body composition. However, as little data is still available on this topic, further studies are needed to better clarify the effects of LPDs on nutritional status in adult UCD and BCOA patients.
Collapse
Affiliation(s)
- Francesco Francini-Pesenti
- Department of Medicine-DIMED, University of Padova, Division of Clinical Nutrition, University Hospital, 35128 Padova, Italy; (F.F.-P.); (G.G.)
| | - Giorgia Gugelmo
- Department of Medicine-DIMED, University of Padova, Division of Clinical Nutrition, University Hospital, 35128 Padova, Italy; (F.F.-P.); (G.G.)
| | - Livia Lenzini
- Department of Medicine-DIMED, University of Padova, Hypertension Unit, University Hospital, 35128 Padova, Italy;
| | - Nicola Vitturi
- Department of Medicine-DIMED, Division of Metabolic Diseases, University Hospital, 35128 Padova, Italy
| |
Collapse
|
7
|
Posset R, Garbade SF, Gleich F, Gropman AL, de Lonlay P, Hoffmann GF, Garcia-Cazorla A, Nagamani SCS, Baumgartner MR, Schulze A, Dobbelaere D, Yudkoff M, Kölker S, Zielonka M. Long-term effects of medical management on growth and weight in individuals with urea cycle disorders. Sci Rep 2020; 10:11948. [PMID: 32686765 PMCID: PMC7371674 DOI: 10.1038/s41598-020-67496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs.
Collapse
Affiliation(s)
- Roland Posset
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Florian Gleich
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques (MaMEA), filière G2M, Université Paris-Descartes, Paris, France
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Angeles Garcia-Cazorla
- Hospital San Joan de Deu, Institut Pediàtric de Recerca. Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Matthias R Baumgartner
- University Children's Hospital Zurich and Children's Research Center, Zurich, Switzerland
| | - Andreas Schulze
- University of Toronto and the Hospital for Sick Children, Toronto, ON, Canada
| | - Dries Dobbelaere
- Centre de Référence Maladies Héréditaires du Métabolisme de L'Enfant Et de L'Adulte, Jeanne de Flandre Hospital, CHRU Lille, and Faculty of Medicine, University Lille 2, Lille, France
| | - Marc Yudkoff
- School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Matthias Zielonka
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
8
|
Schiergens KA, Weiß KJ, Dokoupil K, Fleissner S, Maier EM. [Dietary treatment of inborn errors of metabolism-a balancing act between indulgence and therapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:864-871. [PMID: 32542434 DOI: 10.1007/s00103-020-03168-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many inborn metabolic diseases, a lifelong diet is a crucial part of the therapy since pharmacological therapy is available for only a few conditions and patients. The implementation of a low natural protein diet with a reduced intake of natural protein and the complementary use of synthetic amino acid mixtures is described using the examples of phenylketonuria and urea cycle disorders focusing on children and adolescents. For phenylketonuria, the amino acid supplement is free of phenylalanine whereas for urea cycle disorders, it exclusively consists of essential amino acids. The dietary treatment aims to maintain metabolic stability and to prevent accumulation of toxic metabolites. At the same time, the nutritional requirements to ensure growth and development must be met. Therefore, patients need to follow strict rules regarding the choice of food products. This restrictive therapy interferes with the desire for autonomy and the joy of eating and often results in a reduced quality of life.Following the diet is crucial for a favorable outcome. To meet its requirements, patients and their families are provided with training. It is a great challenge not only to support the patients and their families in all practical aspects of dietary management, but also to motivate them to lifelong adherence in order to ensure the best possible outcome.
Collapse
Affiliation(s)
- Katharina A Schiergens
- Abteilung für angeborene Stoffwechselerkrankungen, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital der LMU München, Lindwurmstr. 4, 80337, München, Deutschland
| | - Katharina J Weiß
- Abteilung für angeborene Stoffwechselerkrankungen, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital der LMU München, Lindwurmstr. 4, 80337, München, Deutschland
| | - Katharina Dokoupil
- Abteilung für angeborene Stoffwechselerkrankungen, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital der LMU München, Lindwurmstr. 4, 80337, München, Deutschland
| | - Sandra Fleissner
- Abteilung für angeborene Stoffwechselerkrankungen, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital der LMU München, Lindwurmstr. 4, 80337, München, Deutschland
| | - Esther M Maier
- Abteilung für angeborene Stoffwechselerkrankungen, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital der LMU München, Lindwurmstr. 4, 80337, München, Deutschland.
| |
Collapse
|
9
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
10
|
Nassar MF. The macronutrients' interplay. Clin Nutr 2018; 38:2943-2944. [PMID: 30545663 DOI: 10.1016/j.clnu.2018.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- M F Nassar
- Professor of Pediatrics and Consultant of Pediatric Clinical Nutrition, Children`s Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Ho G, Ueda K, Houben RFA, Joa J, Giezen A, Cheng B, van Karnebeek CDM. Metabolic Diet App Suite for inborn errors of amino acid metabolism. Mol Genet Metab 2016; 117:322-7. [PMID: 26748688 DOI: 10.1016/j.ymgme.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. OBJECTIVES To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. METHODS & RESULTS The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. DISCUSSION The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice.
Collapse
Affiliation(s)
- Gloria Ho
- Division of Biochemical Diseases, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Keiko Ueda
- Division of Biochemical Diseases, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | | | | | - Alette Giezen
- Division of Biochemical Diseases, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Barbara Cheng
- Division of Biochemical Diseases, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Clara D M van Karnebeek
- Division of Biochemical Diseases, BC Children's Hospital, University of British Columbia, Vancouver, Canada; Department of Pediatrics, Centre for Molecular Medicine & Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|