1
|
Khade OS, Sasidharan S, Jain A, Maradani BS, Chatterjee A, Gopal D, Ravi Kumar RK, Krishnakumar S, Pandey A, Janakiraman N, Elchuri SV, Gundimeda S. Identification of dysregulation of sphingolipids in retinoblastoma using liquid chromatography-mass spectrometry. Exp Eye Res 2024; 240:109798. [PMID: 38246332 DOI: 10.1016/j.exer.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Retinoblastoma (RB) is a rare ocular cancer seen in children that counts for approximately 3% of all childhood cancers. It is found that mutation in RB1, a tumour Suppressor Gene on chromosome 13 as the cause of malignancy. Retinoblastoma protein is the target for ceramide to cause apoptosis. We studied lipidomics of two RB cell lines, one aggressive cell line (NCC-RbC-51) derived from a metastatic site and one non aggressive cell line (WERI-Rb1) in comparison with a control cell line (MIO-M1). Lipid profiles of all the cell lines were studied using high resolution mass spectrometer coupled to high performance liquid chromatography. Data acquired from all the three cell lines in positive mode were analyzed to identify differentially expressed metabolites. Several phospholipids and lysophospholipids were found to be dysregulated. We observed upregulation of hexosyl ceramides, and down regulation of dihydroceramides and higher order sphingoglycolipids hinting at a hindered sphingolipid biosynthesis. The results obtained from liquid chromatography-mass spectrometry are validated by using qPCR and it was observed that genes involved in ceramide biosynthesis pathway are getting down regulated.
Collapse
Affiliation(s)
- Omkar Surendra Khade
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Sruthy Sasidharan
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Ankit Jain
- Institute of Bioinformatics, Bangalore, Karnataka, India
| | | | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Divya Gopal
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Subramaniyan Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India; Department of Histopathology, Radheshyam Stem Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India; Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India.
| |
Collapse
|
2
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
3
|
Paquet Luzy C, Doppler E, Polasek TM, Giorgino R. First-in-human single-dose study of nizubaglustat, a dual inhibitor of ceramide glucosyltransferase and non-lysosomal glucosylceramidase: Safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses in healthy adults. Mol Genet Metab 2024; 141:108113. [PMID: 38113551 DOI: 10.1016/j.ymgme.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.
Collapse
Affiliation(s)
| | | | - Thomas M Polasek
- Principal Investigator, CMAX Research Phase 1 Unit, Ground Floor 21-24 North Terrace, Adelaide, 5000, SA, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | | |
Collapse
|
4
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
5
|
Pepe G, Capocci L, Marracino F, Realini N, Lenzi P, Martinello K, Bovier TF, Bichell TJ, Scarselli P, Di Cicco C, Bowman AB, Digilio FA, Fucile S, Fornai F, Armirotti A, Parlato R, Di Pardo A, Maglione V. Treatment with THI, an inhibitor of sphingosine-1-phosphate lyase, modulates glycosphingolipid metabolism and results therapeutically effective in experimental models of Huntington's disease. Mol Ther 2023; 31:282-299. [PMID: 36116006 PMCID: PMC9840122 DOI: 10.1016/j.ymthe.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.
Collapse
Affiliation(s)
| | | | | | - Natalia Realini
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Tiziana Francesca Bovier
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; Department of Pediatrics Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York 10032, NY, USA
| | - Terry Jo Bichell
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | | | | | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Filomena A Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Physiology and Pharmacology, Sapienza Rome University, Rome 00185, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosanna Parlato
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim Heidelberg University, Mannheim 68167, Germany
| | | | | |
Collapse
|
6
|
The Consequences of GBA Deficiency in the Autophagy-Lysosome System in Parkinson's Disease Associated with GBA. Cells 2023; 12:cells12010191. [PMID: 36611984 PMCID: PMC9818455 DOI: 10.3390/cells12010191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
GBA gene variants were the first genetic risk factor for Parkinson's disease. GBA encodes the lysosomal enzyme glucocerebrosidase (GBA), which is involved in sphingolipid metabolism. GBA exhibits a complex physiological function that includes not only the degradation of its substrate glucosylceramide but also the metabolism of other sphingolipids and additional lipids such as cholesterol, particularly when glucocerebrosidase activity is deficient. In the context of Parkinson's disease associated with GBA, the loss of GBA activity has been associated with the accumulation of α-synuclein species. In recent years, several hypotheses have proposed alternative and complementary pathological mechanisms to explain why lysosomal enzyme mutations lead to α-synuclein accumulation and become important risk factors in Parkinson's disease etiology. Classically, loss of GBA activity has been linked to a dysfunctional autophagy-lysosome system and to a subsequent decrease in autophagy-dependent α-synuclein turnover; however, several other pathological mechanisms underlying GBA-associated parkinsonism have been proposed. This review summarizes and discusses the different hypotheses with a special focus on autophagy-dependent mechanisms, as well as autophagy-independent mechanisms, where the role of other players such as sphingolipids, cholesterol and other GBA-related proteins make important contributions to Parkinson's disease pathogenesis.
Collapse
|
7
|
Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, Di Monte DA. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 2022; 145:1038-1051. [PMID: 35362022 PMCID: PMC9050548 DOI: 10.1093/brain/awab371] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson’s disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson’s disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein–lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson’s disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson’s disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein–lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.
Collapse
Affiliation(s)
- Céline Galvagnion
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik Ravnkilde Marlet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
8
|
Mehendale N, Mallik R, Kamat SS. Mapping Sphingolipid Metabolism Pathways during Phagosomal Maturation. ACS Chem Biol 2021; 16:2757-2765. [PMID: 34647453 DOI: 10.1021/acschembio.1c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phagocytosis is an important physiological process, which, in higher organisms, is a means of fighting infections and clearing cellular debris. During phagocytosis, detrimental foreign particles (e.g. pathogens and apoptotic cells) are engulfed by phagocytes (e.g. macrophages), enclosed in membrane-bound vesicles called phagosomes, and transported to the lysosome for eventual detoxification. During this well-choreographed process, the nascent phagosome (also called early phagosome, EP) undergoes a series of spatiotemporally regulated changes in its protein and lipid composition and matures into a late phagosome (LP), which subsequently fuses with the lysosomal membrane to form the phagolysosome. While several elegant proteomic studies have identified the role of unique proteins during phagosomal maturation, the corresponding lipidomic studies are sparse. Recently, we reported a comparative lipidomic analysis between EPs and LPs and showed that ceramides are enriched on the LPs. Further, we found that this ceramide accumulation on LPs was orchestrated by ceramide synthase 2, inhibition of which hampers phagosomal maturation. Following up on this study, here, using biochemical assays, we first show that the increased ceramidase activity on EPs also significantly contributes to the accumulation of ceramides on LPs. Next, leveraging lipidomics, we show that de novo ceramide synthesis does not significantly contribute to the ceramide accumulation on LPs, while concomitant to increased ceramides, glucosylceramides are substantially elevated on LPs. We validate this interesting finding using biochemical assays and show that LPs indeed have heightened glucosylceramide synthase activity. Taken together, our studies provide interesting insights and possible new roles of sphingolipid metabolism during phagosomal maturation.
Collapse
Affiliation(s)
- Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
9
|
Rowland RJ, Chen Y, Breen I, Wu L, Offen WA, Beenakker TJ, Su Q, van den Nieuwendijk AMCH, Aerts JMFG, Artola M, Overkleeft HS, Davies GJ. Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Chemistry 2021; 27:16377-16388. [PMID: 34570911 PMCID: PMC9298352 DOI: 10.1002/chem.202102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β‐glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA‐targeting activity‐based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism‐based mode of action and uncover binding of the new N‐functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6‐fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA's preference for O6‐ and N‐functionalised reagents, a bi‐functional aziridine ABP was synthesized as a potentially more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.
Collapse
Affiliation(s)
- Rhianna J Rowland
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Yurong Chen
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Imogen Breen
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Wendy A Offen
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Thomas J Beenakker
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Qin Su
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | | | - Johannes M F G Aerts
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Marta Artola
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
10
|
Backman APE, Mattjus P. Who moves the sphinx? An overview of intracellular sphingolipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159021. [PMID: 34339859 DOI: 10.1016/j.bbalip.2021.159021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Lipid bilayers function as boundaries that enclose their content from the surrounding media, and the composition of different membrane types is accurately and dynamically tailored so that they can perform their function. To achieve this balance, lipid biosynthetic machinery and lipid trafficking events are intertwined into an elegant network. In this review, we focus on the intracellular movement of sphingolipids mediated by sphingolipid transfer proteins. Additionally, we will focus on the best characterized and understood mammalian sphingolipid transfer proteins and provide an overview of how they are hypothesized to function. Some are already well understood, while others remain enigmatic. A few are actual lipid transfer proteins, moving lipids from membrane to membrane, while others may have more of a sensor role, possibly reacting to changes in the concentrations of their ligands. Considering the substrates available for cytosolic sphingolipid transfer proteins, one open question that is discussed is whether galactosylceramide is a target. Another question is the exact mechanics by which sphingolipid transfer proteins are targeted to different organelles, such as how four phosphate adapter protein-2, FAPP2 is targeted to the endoplasmic reticulum. The aim of this review is to discuss what is known within the field today and to provide a basic understanding of how these proteins may work.
Collapse
Affiliation(s)
- Anders P E Backman
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
11
|
Allende ML, Zhu H, Kono M, Hoachlander-Hobby LE, Huso VL, Proia RL. Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cell Signal 2021; 78:109879. [PMID: 33296739 PMCID: PMC7775721 DOI: 10.1016/j.cellsig.2020.109879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease. Here we review the information indicating that microglia, which actively clear sphingolipid-rich membranes in the brain during development and homeostasis, are directly affected by these mutations and promote neurodegeneration in the sphingolipidoses. We also identify parallels between the sphingolipidoses and more common forms of neurodegeneration, which both exhibit evidence of defective sphingolipid clearance in the nervous system.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongling Zhu
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mari Kono
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lila E Hoachlander-Hobby
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vienna L Huso
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Roy KR, Uddin MB, Roy SC, Hill RA, Marshall J, Li Y, Chamcheu JC, Lu H, Liu Y. Gb3-cSrc complex in glycosphingolipid-enriched microdomains contributes to the expression of p53 mutant protein and cancer drug resistance via β-catenin-activated RNA methylation. FASEB Bioadv 2020; 2:653-667. [PMID: 33205006 PMCID: PMC7655095 DOI: 10.1096/fba.2020-00044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glucosylceramide synthase (GCS) is a key enzyme catalyzing ceramide glycosylation to generate glucosylceramide (GlcCer), which in turn serves as the precursor for cells to produce glycosphingolipids (GSLs). In cell membranes, GSLs serve as essential components of GSL-enriched microdomains (GEMs) and mediate membrane functions and cell behaviors. Previous studies showed that ceramide glycosylation correlates with upregulated expression of p53 hotspot mutant R273H and cancer drug resistance. Yet, the underlying mechanisms remain elusive. We report herewith that globotriaosylceramide (Gb3) is associated with cSrc kinase in GEMs and plays a crucial role in modulating expression of p53 R273H mutant and drug resistance. Colon cancer cell lines, either WiDr homozygous for missense-mutated TP53 (R273H+/+) or SW48/TP53-Dox bearing heterozygous TP53 mutant (R273H/+), display drug resistance with increased ceramide glycosylation. Inhibition of GCS with Genz-161 (GENZ 667161) resensitized cells to apoptosis in these p53 mutant-carrying cancer cells. Genz-161 effectively inhibited GCS activity, and substantially suppressed the elevated Gb3 levels seen in GEMs of p53-mutant cells exposed to doxorubicin. Complex formation between Gb3 and cSrc in GEMs to activate β-catenin was detected in both cultured cells and xenograft tumors. Suppression of ceramide glycosylation significantly decreased Gb3-cSrc in GEMs, β-catenin, and methyltransferase-like 3 for m6A RNA methylation, thus altering pre-mRNA splicing, resulting in upregulated expression of wild-type p53 protein, but not mutants, in cells carrying p53 R273H. Altogether, increased Gb3-cSrc complex in GEMs of membranes in response to anticancer drug induced cell stress promotes expression of p53 mutant proteins and accordant cancer drug resistance.
Collapse
Affiliation(s)
- Kartik R. Roy
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Mohammad B. Uddin
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - John Marshall
- Department of Rare Genetic Disease ResearchSanofi‐Genzyme R&D CenterGenzyme, FraminghamMassachusettsUSA
| | - Yu‐Teh Li
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Hua Lu
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yong‐Yu Liu
- School of Basic Pharmaceutical and Toxicological SciencesCollege of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|
13
|
Jang H, Lim S, Kim J, Yoon S, Lee CY, Hwang H, Shin JW, Shin KJ, Kim HY, Park KI, Nam D, Lee JY, Yea K, Hirabayashi Y, Lee YJ, Chae YC, Suh P, Choi JH. Glucosylceramide synthase regulates adipo‐osteogenic differentiation through synergistic activation of PPARγ with GlcCer. FASEB J 2019; 34:1270-1287. [DOI: 10.1096/fj.201901437r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hyun‐Jun Jang
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Seyoung Lim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jung‐Min Kim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Sora Yoon
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Chae Young Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Hyeon‐Jeong Hwang
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jeong Woo Shin
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Hye Yun Kim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kwang Il Park
- Korean Medicine (KM) Application Center Korea Institute of Oriental Medicine Daegu Republic of Korea
| | - Dougu Nam
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Ja Yil Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology DGIST Daegu Republic of Korea
| | | | - Yu Jin Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Young Chan Chae
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Pann‐Ghill Suh
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jang Hyun Choi
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| |
Collapse
|
14
|
Structural basis of the inhibition of GH1 β-glucosidases by multivalent pyrrolidine iminosugars. Bioorg Chem 2019; 89:103026. [DOI: 10.1016/j.bioorg.2019.103026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
|
15
|
Ren WW, Jin ZC, Dong W, Kitajima T, Gao XD, Fujita M. Glycoengineering of HEK293 cells to produce high-mannose-type N-glycan structures. J Biochem 2019; 166:245-258. [DOI: 10.1093/jb/mvz032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 01/02/2023] Open
Abstract
Abstract
Therapeutic proteins are a developing part of the modern biopharmaceutical industry, providing novel therapies to intractable diseases including cancers and autoimmune diseases. The human embryonic kidney 293 (HEK293) cell line has been widely used to produce recombinant proteins in both basic science and industry. The heterogeneity of glycan structures is one of the most challenging issues in the production of therapeutic proteins. Previously, we knocked out genes encoding α1,2-mannosidase-Is, MAN1A1, MAN1A2 and MAN1B1, in HEK293 cells, establishing a triple-knockout (T-KO) cell line, which produced recombinant protein with mainly high-mannose-type N-glycans. Here, we further knocked out MAN1C1 and MGAT1 encoding another Golgi α1,2-mannosidase-I and N-acetylglucosaminyltransferase-I, respectively, based on the T-KO cells. Two recombinant proteins, lysosomal acid lipase (LIPA) and immunoglobulin G1 (IgG1), were expressed in the quadruple-KO (QD-KO) and quintuple-KO (QT-KO) cell lines. Glycan structural analysis revealed that all the hybrid-type and complex-type N-glycans were eliminated, and only the high-mannose-type N-glycans were detected among the recombinant proteins prepared from the QD-KO and QT-KO cells. Overexpression of the oncogenes MYC and MYCN recovered the slow growth in QD-KO and QT-KO without changing the glycan structures. Our results suggest that these cell lines could be suitable platforms to produce homogeneous therapeutic proteins.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ze-Cheng Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Assessment of Liver and Spleen in Children With Gaucher Disease Type 1 With Chemical Shift Imaging. J Comput Assist Tomogr 2019; 43:183-186. [DOI: 10.1097/rct.0000000000000817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Sturgill JL. Sphingolipids and their enigmatic role in asthma. Adv Biol Regul 2018; 70:74-81. [PMID: 30197277 PMCID: PMC6560640 DOI: 10.1016/j.jbior.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Asthma is defined as a chronic inflammatory condition in the lung and is characterized by episodic shortness of breath with expiratory wheezing and cough. Asthma is a serious public health concern globally with an estimated incidence over 300 million. Asthma is a complex disease in that it manifests as disease of gene and environmental interactions. Sphingolipids are a unique class of lipids involved in a host of biological functions ranging from serving as key cellular membrane lipids to acting as critical signaling molecules. To date sphingolipids have been studied across various human conditions ranging from neurological disorders to cancer to infection to autoimmunity. This review will focus on the role of sphingolipids in asthma development and pathology with particular focus on the role of mast cell sphingolipid biology.
Collapse
Affiliation(s)
- Jamie L Sturgill
- University of Kentucky, Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep Medicine, 740 South Limestone St, Lexington, KY 40536, United States.
| |
Collapse
|
18
|
Jian J, Chen Y, Liberti R, Fu W, Hu W, Saunders-Pullman R, Pastores GM, Chen Y, Sun Y, Grabowski GA, Liu CJ. Chitinase-3-like Protein 1: A Progranulin Downstream Molecule and Potential Biomarker for Gaucher Disease. EBioMedicine 2018; 28:251-260. [PMID: 29396296 PMCID: PMC5835567 DOI: 10.1016/j.ebiom.2018.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
We recently reported that progranulin (PGRN) is a novel regulator of glucocerebrosidase and its deficiency associates with Gaucher Diseases (GD) (Jian et al., 2016a; Jian et al., 2018). To isolate the relevant downstream molecules, we performed a whole genome microarray and mass spectrometry analysis, which led to the isolation of Chitinase-3-like-1 (CHI3L1) as one of the up-regulated genes in PGRN null mice. Elevated levels of CHI3L1 were confirmed by immunoblotting and immunohistochemistry. In contrast, treatment with recombinant Pcgin, a derivative of PGRN, as well as imigluerase, significantly reduced the expressions of CHI3L1 in both PGRN null GD model and the fibroblasts from GD patients. Serum levels of CHIT1, a clinical biomarker for GD, were significantly higher in GD patients than healthy controls (51.16±2.824ng/ml vs 35.07±2.099ng/ml, p<0.001). Similar to CHIT1, serum CHI3L1 was also significantly increased in GD patients compared with healthy controls (1736±152.1pg/ml vs 684.7±68.20pg/ml, p<0.001). Whereas the PGRN level is significantly reduced in GD patients as compared to the healthy control (91.56±3.986ng/ml vs 150.6±4.501, p<0.001). Collectively, these results indicate that CHI3L1 may be a previously unrecognized biomarker for diagnosing GD and for evaluating the therapeutic effects of new GD drug(s).
Collapse
Affiliation(s)
- Jinlong Jian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Rossella Liberti
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Wenhuo Hu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | | | - Gregory M Pastores
- Department of Neurology, New York University School of Medicine, 550 First Ave, New York, NY 10016, USA
| | - Ying Chen
- Depression Evaluation Service, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory A Grabowski
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
Magalhaes J, Gegg ME, Migdalska-Richards A, Schapira AH. Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons. Sci Rep 2018; 8:1385. [PMID: 29362387 PMCID: PMC5780491 DOI: 10.1038/s41598-018-19479-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023] Open
Abstract
Glucocerebrosidase (GBA1) mutations are the major genetic risk factor for Parkinson's Disease (PD). The pathogenic mechanism is still unclear, but alterations in lysosomal-autophagy processes are implicated due to reduction of mutated glucocerebrosidase (GCase) in lysosomes. Wild-type GCase activity is also decreased in sporadic PD brains. Small molecule chaperones that increase lysosomal GCase activity have potential to be disease-modifying therapies for GBA1-associated and sporadic PD. Therefore we have used mouse cortical neurons to explore the effects of the chaperone ambroxol. This chaperone increased wild-type GCase mRNA, protein levels and activity, as well as increasing other lysosomal enzymes and LIMP2, the GCase transporter. Transcription factor EB (TFEB), the master regulator of the CLEAR pathway involved in lysosomal biogenesis was also increased upon ambroxol treatment. Moreover, we found macroautophagy flux blocked and exocytosis increased in neurons treated with ambroxol. We suggest that ambroxol is blocking autophagy and driving cargo towards the secretory pathway. Mitochondria content was also found to be increased by ambroxol via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Our data suggest that ambroxol, besides being a GCase chaperone, also acts on other pathways, such as mitochondria, lysosomal biogenesis, and the secretory pathway.
Collapse
Affiliation(s)
- J Magalhaes
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - M E Gegg
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - A Migdalska-Richards
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - A H Schapira
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW3 2PF, UK.
| |
Collapse
|
20
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
21
|
von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 2017; 58:1247-1258. [PMID: 28373486 DOI: 10.1194/jlr.d076190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS2 method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kerstin Schlosser
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ivan Morace
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology and Center for Rare Diseases University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Richard Jennemann
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany .,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|