1
|
Xue R, Yang K, Xiao F, Yang L, Chen G, Li Y, Ye Y, Chen K, Smith ST, Li G, Kong Q, Zhou J. dNAGLU Extends Life Span and Promotes Fitness and Stress Resistance in Drosophila. Int J Mol Sci 2022; 23:ijms232214433. [PMID: 36430913 PMCID: PMC9694703 DOI: 10.3390/ijms232214433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
To identify new factors that promote longevity and healthy aging, we studied Drosophila CG13397, an ortholog of the human NAGLU gene, a lysosomal enzyme overexpressed in centenarians. We found that the overexpression of CG13397 (dNAGLU) ubiquitously, or tissue specifically, in the nervous system or fat body could extend fly life span. It also extended the life span of flies overexpressing human Aβ42, in a Drosophila Alzheimer's disease (AD) model. To investigate whether dNAGLU could influence health span, we analyzed the effect of its overexpression on AD flies and found that it improved the climbing ability and stress resistance, including desiccation and hunger, suggesting that dNAGLU improved fly health span. We found that the deposition of Aβ42 in the mushroom body, which is the fly central nervous system, was reduced, and the lysosomal activity in the intestine was increased in dNAGLU over-expressing flies. When NAGLU was overexpressed in human U251-APP cells, which expresses a mutant form of the Aβ-precursor protein (APP), APP-p.M671L, these cells exhibited stronger lysosomal activity and and enhanced expression of lysosomal pathway genes. The concentration of Aβ42 in the cell supernatant was reduced, and the growth arrest caused by APP expression was reversed, suggesting that NAGLU could play a wider role beyond its catalytic activity to enhance lysosomal activity. These results also suggest that NAGLU overexpression could be explored to promote healthy aging and to prevent the onset of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Rubing Xue
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
| | - Yongxuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunshuang Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
| | - Kangning Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheryl T. Smith
- Biology Department, Arcadia University, Glenside, PA 19038, USA
| | - Gonghua Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
- Correspondence:
| |
Collapse
|
2
|
Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the Development of Pharmacological Chaperones for the Mucopolysaccharidoses. Int J Mol Sci 2019; 21:ijms21010232. [PMID: 31905715 PMCID: PMC6981736 DOI: 10.3390/ijms21010232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of 11 lysosomal storage diseases (LSDs) produced by mutations in the enzymes involved in the lysosomal catabolism of glycosaminoglycans. Most of the mutations affecting these enzymes may lead to changes in processing, folding, glycosylation, pH stability, protein aggregation, and defective transport to the lysosomes. It this sense, it has been proposed that the use of small molecules, called pharmacological chaperones (PCs), can restore the folding, trafficking, and biological activity of mutated enzymes. PCs have the advantages of wide tissue distribution, potential oral administration, lower production cost, and fewer issues of immunogenicity than enzyme replacement therapy. In this paper, we will review the advances in the identification and characterization of PCs for the MPS. These molecules have been described for MPS II, IVA, and IVB, showing a mutation-dependent enhancement of the mutated enzymes. Although the results show the potential of this strategy, further studies should focus in the development of disease-specific cellular models that allow a proper screening and evaluation of PCs. In addition, in vivo evaluation, both pre-clinical and clinical, should be performed, before they can become a real therapeutic strategy for the treatment of MPS patients.
Collapse
Affiliation(s)
- Juan Camilo Losada Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Jacobo Cepeda del Castillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Edwin Alexander Rodriguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Correspondence: ; Tel.: +57-1-3208320 (ext. 4140); Fax: +57-1-3208320 (ext. 4099)
| |
Collapse
|
3
|
Clark WT, Kasak L, Bakolitsa C, Hu Z, Andreoletti G, Babbi G, Bromberg Y, Casadio R, Dunbrack R, Folkman L, Ford CT, Jones D, Katsonis P, Kundu K, Lichtarge O, Martelli PL, Mooney SD, Nodzak C, Pal LR, Radivojac P, Savojardo C, Shi X, Zhou Y, Uppal A, Xu Q, Yin Y, Pejaver V, Wang M, Wei L, Moult J, Yu GK, Brenner SE, LeBowitz JH. Assessment of predicted enzymatic activity of α-N-acetylglucosaminidase variants of unknown significance for CAGI 2016. Hum Mutat 2019; 40:1519-1529. [PMID: 31342580 PMCID: PMC7156275 DOI: 10.1002/humu.23875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
The NAGLU challenge of the fourth edition of the Critical Assessment of Genome Interpretation experiment (CAGI4) in 2016, invited participants to predict the impact of variants of unknown significance (VUS) on the enzymatic activity of the lysosomal hydrolase α-N-acetylglucosaminidase (NAGLU). Deficiencies in NAGLU activity lead to a rare, monogenic, recessive lysosomal storage disorder, Sanfilippo syndrome type B (MPS type IIIB). This challenge attracted 17 submissions from 10 groups. We observed that top models were able to predict the impact of missense mutations on enzymatic activity with Pearson's correlation coefficients of up to .61. We also observed that top methods were significantly more correlated with each other than they were with observed enzymatic activity values, which we believe speaks to the importance of sequence conservation across the different methods. Improved functional predictions on the VUS will help population-scale analysis of disease epidemiology and rare variant association analysis.
Collapse
Affiliation(s)
| | - Laura Kasak
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Constantina Bakolitsa
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Gaia Andreoletti
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Giulia Babbi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Lukas Folkman
- School of Information and Communication Technology, Griffith University, Southport, Australia
| | - Colby T. Ford
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, NC, USA
| | - David Jones
- Bioinformatics Group, Department of Computer Science, University College London, UK
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kunal Kundu
- University of Maryland, College Park, MD, USA
| | - Olivier Lichtarge
- Departments of Molecular and Human Genetics, Biochemistry & Molecular Biology, Pharmacology, and Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Conor Nodzak
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, NC, USA
| | | | - Predrag Radivojac
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Xinghua Shi
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, NC, USA
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Australia
| | - Aneeta Uppal
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, NC, USA
| | - Qifang Xu
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yizhou Yin
- University of Maryland, College Park, MD, USA
| | - Vikas Pejaver
- Department of Computer Science and Informatics, Indiana University, Bloomington, IN, USA
| | - Meng Wang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - John Moult
- University of Maryland, College Park, MD, USA
| | - G. Karen Yu
- BioMarin Pharmaceutical, San Rafael, California, USA
| | - Steven E. Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|