1
|
Ratushnyy A, Ezdakova M, Matveeva D, Tyrina E, Buravkova L. Regulatory Effects of Senescent Mesenchymal Stem Cells: Endotheliocyte Reaction. Cells 2024; 13:1345. [PMID: 39195236 DOI: 10.3390/cells13161345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the "senescent" secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical "senescent" cytokines and growth factors after 48 h suggests that the addition of the "senescent" secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the "senescent" secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism's regulatory mechanisms are absent.
Collapse
Affiliation(s)
- Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Mariia Ezdakova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Diana Matveeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ekaterina Tyrina
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| |
Collapse
|
2
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
3
|
Pieroni M, Ciabatti M, Graziani F, Camporeale A, Saletti E, Lillo R, Figliozzi S, Bolognese L. The Heart in Fabry Disease: Mechanisms Beyond Storage and Forthcoming Therapies. Rev Cardiovasc Med 2022; 23:196. [PMID: 39077177 PMCID: PMC11273771 DOI: 10.31083/j.rcm2306196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 07/31/2024] Open
Abstract
In patients with Fabry disease (FD), cardiovascular involvement is the main cause of death and reduction of quality of life. Left ventricular hypertrophy mimicking hypertrophic cardiomyopathy is the main feature of FD cardiac involvement although glycolipid storage occurs in all cardiac cellular types. Accumulation of lysosomal globotriasylceramide represents the main mechanism of cardiac damage in early stages, but secondary pathways of cellular and tissue damage, triggered by lysosomal storage, and including altered energy production, inflammation and cell death, contribute to cardiac damage and disease progression. These mechanisms appear prominent in more advanced stages, hampering and reducing the efficacy of FD-specific treatments. Therefore, additional cardiovascular therapies are important to manage cardiovascular symptoms and reduce cardiovascular events. Although new therapies targeting lysosomal storage are in development, a better definition and comprehension of the complex pathophysiology of cardiac damage in FD, may lead to identify new therapeutic targets beyond storage and new therapeutic strategies.
Collapse
Affiliation(s)
- Maurizio Pieroni
- Cardiovascular Department, San Donato Hospital, 52100 Arezzo, Italy
| | - Michele Ciabatti
- Cardiovascular Department, San Donato Hospital, 52100 Arezzo, Italy
| | - Francesca Graziani
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging Unit, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Elisa Saletti
- Cardiovascular Department, San Donato Hospital, 52100 Arezzo, Italy
| | - Rosa Lillo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Stefano Figliozzi
- Clinical Echocardiography Diagnostic Service, Cardio Center, Humanitas Research Hospital IRCCS, 20089 Rozzano, Italy
| | | |
Collapse
|
4
|
5,2′-Dibromo-2,4′,5′-trihydroxydiphenylmethanone Inhibits LPS-Induced Vascular Inflammation by Targeting the Cav1 Protein. Molecules 2022; 27:molecules27092884. [PMID: 35566232 PMCID: PMC9101869 DOI: 10.3390/molecules27092884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular inflammation is directly responsible for atherosclerosis. 5,2′-Dibromo-2,4′,5′-trihydroxydiphenylmethanone (TDD), a synthetic bromophenol derivative, exhibits anti-atherosclerosis and anti-inflammatory effects. However, the underlying pathways are not yet clear. In this study, we first examined the effects of TDD on toll-like receptor-4 (TLR4) activity, the signaling receptor for lipopolysaccharide (LPS), and found that TDD does not inhibit LPS-induced TLR4 expression in EA.hy926 cells and the vascular wall in vivo. Next, we investigated the global protein alterations and the mechanisms underlying the action of TDD in LPS-treated EA.hy926 cells using an isobaric tag for the relative and absolute quantification technique. Western blot analysis revealed that TDD inhibited NF-κB activation by regulating the phosphorylation and subsequent degradation IκBα. Among the differentially expressed proteins, TDD concentration-dependently inhibited Caveolin 1(Cav1) expression. The interaction between Cav1 and TDD was determined by using biolayer interference assay, UV-vis absorption spectra, fluorescence spectrum, and molecular docking. We found that TDD can directly bind to Cav1 through hydrogen bonds and van der Waals forces. In conclusion, our results showed that TDD inhibited LPS-induced vascular inflammation and the NF-κB signaling pathway by specifically targeting the Cav1 protein. TDD may be a novel anti-inflammatory compound, especially for the treatment of atherosclerosis.
Collapse
|
5
|
Germain DP, Levade T, Hachulla E, Knebelmann B, Lacombe D, Seguin VL, Nguyen K, Noël E, Rabès JP. Challenging the traditional approach for interpreting genetic variants: Lessons from Fabry disease. Clin Genet 2021; 101:390-402. [PMID: 34927718 PMCID: PMC9304128 DOI: 10.1111/cge.14102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
Fabry disease (FD) is an X-linked genetic disease due to pathogenic variants in GLA. The phenotype varies depending on the GLA variant, alpha-galactosidase residual activity, patient's age and gender and, for females, X chromosome inactivation. Over 1000 variants have been identified, many through screening protocols more susceptible to disclose non-pathogenic variants or variants of unknown significance (VUS). This, together with the non-specificity of some FD symptoms, challenges physicians attempting to interpret GLA variants. The traditional way to interpreting pathogenicity is based on a combined approach using allele frequencies, genomic databases, global and disease-specific clinical databases, and in silico tools proposed by the American College of Medical Genetics and Genomics. Here, a panel of FD specialists convened to study how expertise may compare with the traditional approach. Several GLA VUS, highly controversial in the literature (p.Ser126Gly, p.Ala143Thr, p.Asp313Tyr), were re-analyzed through reviews of patients' charts. The same was done for pathogenic GLA variants with some specificities. Our data suggest that input of geneticists and physicians with wide expertise in disease phenotypes, prevalence, inheritance, biomarkers, alleles frequencies, disease-specific databases, and literature greatly contribute to a more accurate interpretation of the pathogenicity of variants, bringing a significant additional value over the traditional approach.
Collapse
Affiliation(s)
- Dominique P Germain
- French Referral Centre for Fabry Disease, Division of Medical Genetics, AP-HP University Paris Saclay, Garches, France.,Division of Medical Genetics, University of Versailles-Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Thierry Levade
- INSERM UMR1037, Cancer Research Center of Toulouse (CRCT) and Paul Sabatier University, Toulouse, France.,Clinical Biochemistry Laboratory, Reference Center for Inherited Metabolic Diseases, Federative Institute of Biology, University Hospital of Toulouse, Toulouse, France
| | - Eric Hachulla
- Department of Internal Medicine and Clinical Immunology, Claude Huriez Hospital, University of Lille, Lille, France
| | - Bertrand Knebelmann
- Nephrology-Dialysis Department, AP-HP, Necker Enfants Malades Hospital, University of Paris, Paris, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Vanessa Leguy Seguin
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, France
| | - Karine Nguyen
- Department of Medical Genetics, APHM, Timone Children Hospital, Marseille, France
| | - Esther Noël
- Department of Internal Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Pierre Rabès
- Division of Medical Genetics, University of Versailles-Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Department of Biochemistry and Molecular Genetics, Ambroise Paré University Hospital, APHP, Paris-Saclay University, Boulogne-Billancourt, France
| |
Collapse
|
6
|
Harzer K, Beck-Wödl S, Haack TB. Angiokeratoma corporis diffusum with severe acroparesthesia, an endothelial abnormality, and inconspicuous genetic findings. J Cutan Pathol 2021; 49:293-298. [PMID: 34672003 DOI: 10.1111/cup.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
Angiokeratoma corporis diffusum (ACD) was long thought to be a specific dermal sign of Fabry disease (FD, X-linked alpha-galactosidase A [GLA] deficiency). However, other lysosomal storage diseases (LSDs) have also been identified as triggers of ACD. Generalized vasculopathy is an important pathogenetic factor in FD and may also lead to the acroparesthesia (AP) often predominant in FD. We report on an 85-year-old woman with ACD present since her youth and associated with severe AP. Ultrastructure of the dermal lesion showed no lysosomal involvement, but the absence of the basement membrane of the endothelial cells of the capillary vessels was noteworthy. Repeated analyses of the GLA gene revealed no evidence of FD. Whole-exome sequencing was negative for FD and other LSDs, and allowed us to also study FD-related intronic regions of the GLA gene. This is the first report of a patient with FD-like ACD with an endothelial abnormality, otherwise unexplained vasculopathy and severe AP, which are not due to FD or another LSD. Based on family history, another genetic, yet unidentified, defect may cause the disease in this patient. In unexplained ACD, extended genetic analysis is required to exclude particular pathogenic variants of the GLA gene and other genes.
Collapse
Affiliation(s)
- Klaus Harzer
- Department of Neuropediatrics, University Children's Hospital, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S, Pinto A. Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies. Int J Mol Sci 2021; 22:10088. [PMID: 34576250 PMCID: PMC8465525 DOI: 10.3390/ijms221810088] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anderson-Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson-Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy-lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Tiziana Di Chiara
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Salvatore Miceli
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
Genome editing in lysosomal disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:289-325. [PMID: 34175045 DOI: 10.1016/bs.pmbts.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomal disorders are a group of heterogenous diseases caused by mutations in genes that encode for lysosomal proteins. With exception of some cases, these disorders still lack both knowledge of disease pathogenesis and specific therapies. In this sense, genome editing arises as a technique that allows both the creation of specific cell lines, animal models and gene therapy protocols for these disorders. Here we explain the main applications of genome editing for lysosomal diseases, with examples based on the literature. The ability to rewrite the genome will be of extreme importance to study and potentially treat these rare disorders.
Collapse
|
9
|
Kok K, Zwiers KC, Boot RG, Overkleeft HS, Aerts JMFG, Artola M. Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules 2021; 11:271. [PMID: 33673160 PMCID: PMC7918333 DOI: 10.3390/biom11020271] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure. Among the therapeutic possibilities are intravenous administered enzyme replacement therapy (ERT), oral pharmacological chaperone therapy (PCT) or enzyme stabilizers, substrate reduction therapy (SRT) and the more recent gene/RNA therapy. Unfortunately, FD patients can only benefit from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive therapies to clinically manage FD-related chronic renal, cardiac and neurological complications. Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy (SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD, the pathophysiology and diagnostic procedures, together with the current treatments and potential therapeutic avenues that FD patients could benefit from in the future.
Collapse
Affiliation(s)
- Ken Kok
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kimberley C Zwiers
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Lo Curto A, Taverna S, Costa MA, Passantino R, Augello G, Adamo G, Aiello A, Colomba P, Zizzo C, Zora M, Accardi G, Candore G, Francofonte D, Di Chiara T, Alessandro R, Caruso C, Duro G, Cammarata G. Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease. Cells 2021; 10:356. [PMID: 33572275 PMCID: PMC7915347 DOI: 10.3390/cells10020356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) "young" and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.
Collapse
Affiliation(s)
- Alessia Lo Curto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Simona Taverna
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Maria Assunta Costa
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Rosa Passantino
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Giuseppa Augello
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Paolo Colomba
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Carmela Zizzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Marco Zora
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Daniele Francofonte
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Tiziana Di Chiara
- Department PROMISE, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Alessandro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-Section of Biology and Genetics, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giuseppe Cammarata
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| |
Collapse
|
11
|
Differences between common endothelial cell models (primary human aortic endothelial cells and EA.hy926 cells) revealed through transcriptomics, bioinformatics, and functional analysis. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
van Eijk M, Ferraz MJ, Boot RG, Aerts JMFG. Lyso-glycosphingolipids: presence and consequences. Essays Biochem 2020; 64:565-578. [PMID: 32808655 PMCID: PMC7517347 DOI: 10.1042/ebc20190090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Lyso-glycosphingolipids are generated in excess in glycosphingolipid storage disorders. In the course of these pathologies glycosylated sphingolipid species accumulate within lysosomes due to flaws in the respective lipid degrading machinery. Deacylation of accumulating glycosphingolipids drives the formation of lyso-glycosphingolipids. In lysosomal storage diseases such as Gaucher Disease, Fabry Disease, Krabbe disease, GM1 -and GM2 gangliosidosis, Niemann Pick type C and Metachromatic leukodystrophy massive intra-lysosomal glycosphingolipid accumulation occurs. The lysosomal enzyme acid ceramidase generates the deacylated lyso-glycosphingolipid species. This review discusses how the various lyso-glycosphingolipids are synthesized, how they may contribute to abnormal immunity in glycosphingolipid storing lysosomal diseases and what therapeutic opportunities exist.
Collapse
Affiliation(s)
- Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Rolf G Boot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
13
|
Forstenpointner J, Sendel M, Moeller P, Reimer M, Canaan-Kühl S, Gaedeke J, Rehm S, Hüllemann P, Gierthmühlen J, Baron R. Bridging the Gap Between Vessels and Nerves in Fabry Disease. Front Neurosci 2020; 14:448. [PMID: 32612493 PMCID: PMC7308469 DOI: 10.3389/fnins.2020.00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Fabry disease frequently includes pain as an early disease feature, which was characterized as a dysfunctional processing of somatosensory information in various studies. The pathomechanism involves the mutation in the x-chromosomal GLA-gene and a consequent reduction of the α-galactosidase. This results in an insufficient reduction of globotriaosylceramide (GL3). Interestingly, an accumulation of GL3 was shown in both vascular endothelial cells and nerve tissue. This implicates that both an endothelial and nerve-dependent dysfunction may be considered as prominent mechanisms in pain pathogeneses. Patients and Methods The exploration of endothelial and C-fiber-dependent microcirculatory changes was conducted in a healthy cohort (n = 22) and in patients with polyneuropathy (n = 21) and Fabry disease (n = 15). Microcirculatory measurements were conducted using a laser speckle contrast analysis (LASCA) in combination with a thermoprobe controlling system, which applied a constant heat stimulus (42°C). Additionally, nerve fiber function was assessed via Quantitative Sensory Testing and heart rate variability (HRV). Results The results indicated a characteristic perfusion profile in the control group as well as both patient groups. Fabry patients had the smallest increase of endothelial-dependent perfusion as compared to the others [% increase as compared to Fabry: control + 129% (p = 0.002), PNP + 126% (p = 0.019)]. The sensory testing indicated a dysfunctional processing of A-delta fibers in Fabry disease as compared to healthy controls [cold detection threshold (CDT): p = 0.004, mechanical pain threshold (MPT): p = 0.007] and PNP patients (MPT: p = 0.001). Conclusion Our results point to both an endothelial and a nerve-dependent dysfunction in Fabry disease. Therefore, not only direct changes in nerve fiber tissue may contribute to an altered sensory processing. Indeed, evidence of a perfusion change in vasa nervorum could also contribute to the dysfunctional processing of sensory information, which likely occurs under physical stress.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul Moeller
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Reimer
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sima Canaan-Kühl
- Department of Medicine, Division of Nephrology, Charité, Berlin, Germany
| | - Jens Gaedeke
- Department of Medicine, Division of Nephrology, Charité, Berlin, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, Alméciga-Díaz CJ. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med (Berl) 2020; 98:931-946. [PMID: 32529345 DOI: 10.1007/s00109-020-01935-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic diseases characterized by progressive accumulation of undegraded substrates into the lysosome, due to mutations in genes that encode for proteins involved in normal lysosomal function. In recent years, several approaches have been explored to find effective and successful therapies, including enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, hematopoietic stem cell transplantation, and gene therapy. In the case of gene therapy, genome editing technologies have opened new horizons to accelerate the development of novel treatment alternatives for LSD patients. In this review, we discuss the current therapies for this group of disorders and present a detailed description of major genome editing technologies, as well as the most recent advances in the treatment of LSDs. We will further highlight the challenges and current bioethical debates of genome editing.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Oscar F Sánchez
- Neurobiochemistry and Systems Physiology, Biochemistry and Nutrition Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Carlos Manuel Ramírez
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Luis Humberto Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia.
| |
Collapse
|
15
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Affiliation(s)
- Antonino Tuttolomondo
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Irene Simonetta
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Antonio Pinto
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| |
Collapse
|
17
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
18
|
Garimano N, Amaral MM, Ibarra C. Endocytosis, Cytotoxicity, and Translocation of Shiga Toxin-2 Are Stimulated by Infection of Human Intestinal (HCT-8) Monolayers With an Hypervirulent E. coli O157:H7 Lacking stx2 Gene. Front Cell Infect Microbiol 2019; 9:396. [PMID: 31824869 PMCID: PMC6881261 DOI: 10.3389/fcimb.2019.00396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for multiple clinical syndromes, including hemolytic uremic syndrome (HUS). E. coli O157:H7 is the most prevalent serotype associated with HUS and produces a variety of virulence factors being Stx2 the responsible of the most HUS severe cases. After intestinal colonization by STEC, Stx2 is released into the intestinal lumen, translocated to the circulatory system and then binds to its receptor, globotriaosylceramide (Gb3), in target cells. Thus, Stx2 passage through the colonic epithelial barrier is a key step in order to produce disease, being its mechanisms still poorly understood. We have previously reported that STEC interaction with the human colonic mucosa enhanced Stx2 production. In the present work, we have demonstrated that infection with O157:H7Δstx2, a mutant unable to produce Stx2, enhanced either Stx2 cytotoxicity on an intestinal cell line (HCT-8), or translocation across HCT-8 monolayers. Moreover, we found that translocation was enhanced by both paracellular and transcellular pathways. Using specific endocytosis inhibitors, we have further demonstrated that the main mechanisms implicated on Stx2 endocytosis and translocation, either when O157:H7Δstx2 was present or not, were Gb3-dependent, but dynamin-independent. On the other hand, dynamin dependent endocytosis and macropinocytosis became more relevant only when O157:H7Δstx2 infection was present. Overall, this study highlights the effects of STEC infection on the intestinal epithelial cell host and the mechanisms underlying Stx2 endocytosis, cytotoxic activity and translocation, in the aim of finding new tools toward a therapeutic approach.
Collapse
Affiliation(s)
- Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Righi M, Belleri M, Presta M, Giacomini A. Quantification of 3D Brain Microangioarchitectures in an Animal Model of Krabbe Disease. Int J Mol Sci 2019; 20:E2384. [PMID: 31091708 PMCID: PMC6567268 DOI: 10.3390/ijms20102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022] Open
Abstract
We performed a three-dimensional (3D) analysis of the microvascular network of the cerebral cortex of twitcher mice (an authentic model of Krabbe disease) using a restricted set of indexes that are able to describe the arrangement of the microvascular tree in CD31-stained sections. We obtained a near-linear graphical "fingerprint" of the microangioarchitecture of wild-type and twitcher animals that describes the amounts, spatial dispersion, and spatial relationships of adjacent classes of caliber-filtered microvessels. We observed significant alterations of the microangioarchitecture of the cerebral cortex of twitcher mice, whereas no alterations occur in renal microvessels, which is keeping with the observation that kidney is an organ that is not affected by the disease. This approach may represent an important starting point for the study of the microvascular changes that occur in the central nervous system (CNS) under different physiopathological conditions.
Collapse
Affiliation(s)
- Marco Righi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Mirella Belleri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Arianna Giacomini
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|