1
|
Peng B, Bartkowiak K, Song F, Nissen P, Schlüter H, Siebels B. Hypoxia-Induced Adaptations of N-Glycomes and Proteomes in Breast Cancer Cells and Their Secreted Extracellular Vesicles. Int J Mol Sci 2024; 25:10216. [PMID: 39337702 PMCID: PMC11432262 DOI: 10.3390/ijms251810216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. We hypothesize that hypoxic tumors synthesize specific hypoxia-induced N-glycans in response to or as a consequence of hypoxia. This study utilized nano-LC-MS/MS to integrate quantitative proteomic and N-glycomic analyses of both cells and EVs derived from the MDA-MB-231 breast cancer cell line cultured under normoxic and hypoxic conditions. Whole N-glycome and proteome profiling revealed that hypoxia has an impact on the asparagine N-linked glycosylation patterns and on the glycolysis/gluconeogenesis proteins in cells in terms of altered N-glycosylation for their adaptation to low-oxygen conditions. Distinct N-glycan types, high-mannose glycans like Man3 and Man9, were highly abundant in the hypoxic cells. On the other hand, alterations in the sialylation and fucosylation patterns were observed in the hypoxic cells. Furthermore, hypoxia-induced EVs exhibit a signature consisting of mono-antennary structures and specific N-glycans (H4N3F1S2, H3N3F1S0, and H7N4F3S2; H8N4F1S0 and H8N6F1S2), which are significantly associated with poor prognoses for breast tumors, presumably altering the interactions within the tumor microenvironment to promote tumorigenesis and metastasis. Our findings provide an overview of the N-glycan profiles, particularly under hypoxic conditions, and offer insights into the potential biomarkers for tracking tumor microenvironment dynamics and for developing precision medicine approaches in oncology.
Collapse
Affiliation(s)
- Bojia Peng
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Paula Nissen
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Lu J, Feng Y, Zhou Y, Xiao Z, Yang Z, Li J, Cai H, Wang J. DPM2 serve as novel oncogene and prognostic marker transactivated by ESR1 in breast cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:1737-1746. [PMID: 38050961 DOI: 10.1002/tox.24059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Breast cancer (BRCA) is the most common malignancies worldwide with increasing rate. Dolichol phosphate mannose synthase (DPMS) is a critical mannosyltransferase involved in the posttranslational modification of proteins. At present, there is limited knowledge regarding the function of DPMS in breast cancer. In this study, silica analysis in multiple datasets found that dolichyl-phosphate mannosyltransferase subunit 2 (DPM2) is an unfavorable prognostic marker, suggesting its oncogenic role. Cell counting kit-8 and apoptosis assays show that DPM2-silenced cancer cells exhibit decreased growth potential and enhanced cell death rate. Further, transwell and wound healing assays show reduced invasion and migration capabilities in DPM2 knockdown groups, xenograft nude mice model demonstrated smaller tumor volume in DPM2 silenced BC cells. Then, the underlying downstream mechanism of DPM2 in BC was predicted and analyzed, highlighting classical tumorigenic pathways like JAK/STAT signaling pathway and oxidative phosphorylation activated in the cancer group. Finally, ChIP-seq analysis, expression correlation analysis, inhibitor treatment, and dual luciferase assays show that DPM2 is transcriptionally activated by estrogen receptor1 (ESR1). The results show that high expression of DPM2 mRNA is significantly correlated with shorter overall survival (OS) and disease-free survival (DFS) in breast cancer patients, and in vitro knockdown of DPM2 can significantly inhibit the malignant phenotypes of cells, including proliferation, invasion, migration, and apoptosis. These results suggest that DPM2 may play an important role in breast cancer. Altogether, we first uncovered the tumorigenic and prognostic role of DPM2 in breast cancer, cellular assays, and bioinformatics analysis highlighted DPM2 as oncogene via inhibited cancer-related signaling pathways in breast cancer. Besides, DPM2 is transcriptionally activated by ESR1, the signaling axis of ESR1/DPM2 provides a new strategy for BC-targeted therapy.
Collapse
Affiliation(s)
- Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, China
| | - Yiting Zhou
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Jiangsu, China
| | - Zengyou Xiao
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, China
| | - Zean Yang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, China
| | - Jiaxian Li
- Department Surgery, Putuo Hospital, University of Traditional Chinese Medicine in Shanghai, Shanghai, China
| | - Han Cai
- Department Surgery, Putuo Hospital, University of Traditional Chinese Medicine in Shanghai, Shanghai, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, China
- Department Surgery, Putuo Hospital, University of Traditional Chinese Medicine in Shanghai, Shanghai, China
| |
Collapse
|
4
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
5
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
6
|
Radenkovic S, Ligezka AN, Mokashi SS, Driesen K, Dukes-Rimsky L, Preston G, Owuocha LF, Sabbagh L, Mousa J, Lam C, Edmondson A, Larson A, Schultz M, Vermeersch P, Cassiman D, Witters P, Beamer LJ, Kozicz T, Flanagan-Steet H, Ghesquière B, Morava E. Tracer metabolomics reveals the role of aldose reductase in glycosylation. Cell Rep Med 2023; 4:101056. [PMID: 37257447 PMCID: PMC10313913 DOI: 10.1016/j.xcrm.2023.101056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Abnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive. PMM2-CDG, caused by PMM2 deficiency, presents with depleted GDP-mannose and abnormal glycosylation. Here, we show that, apart from glycosylation abnormalities, PMM2 deficiency affects intracellular glucose flux, resulting in polyol increase. Targeting AR with epalrestat decreases polyols and increases GDP-mannose both in patient-derived fibroblasts and in pmm2 mutant zebrafish. Using tracer studies, we demonstrate that AR inhibition diverts glucose flux away from polyol production toward the synthesis of sugar nucleotides, and ultimately glycosylation. Finally, PMM2-CDG individuals treated with epalrestat show a clinical and biochemical improvement.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Sneha S Mokashi
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Karen Driesen
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lynn Dukes-Rimsky
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Luckio F Owuocha
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | - Leila Sabbagh
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jehan Mousa
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrew Edmondson
- Section of Biochemical Genetics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew Schultz
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - David Cassiman
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, 3000 Leuven, Belgium; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Witters
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lesa J Beamer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Anatomy and Department of Genetics, University of Pecs Medical School, Pecs, Hungary
| | | | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Anatomy and Department of Genetics, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
7
|
Martín-Grau C, Orellana Alonso C, Roselló Piera M, Pedrola Vidal L, Llorens-Salvador R, Quiroga R, Marín Reina P, Rubio Moll JS, Gómez Portero R, Martínez-Castellano F. Expanding the phenotype of PIGP deficiency to multiple congenital anomalies-hypotonia-seizures syndrome. Clin Genet 2023. [PMID: 37125481 DOI: 10.1111/cge.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins are involved in multiple physiological processes and the initial stage of their biosynthesis is mediated by PIGA, PIGC, PIGH, PIGP, PIGQ, PIGY, and DMP2 genes, which have been linked to a wide spectrum of phenotypes depending on the gene damaged. To date, the PIGP gene has only been related to Developmental and Epileptic Encephalopathy 55 (MIM#617599) in just seven patients. A detailed medical history was performed in two affected siblings with a multiple malformation syndrome. Genetic testing was performed using whole-exome sequencing. One patient presented dysmorphic features, congenital anomalies, hypotonia and epileptic encephalopathy as described in PIGA, PIGQ and PIGY deficiencies. The other one was a fetus with a severe malformation disorder at 17 weeks of gestation whose pregnancy was interrupted. Both were compound heterozygous of pathogenic variants in PIGP gene: NM_153682.3:c.2 T > C(p.?) and a 136 Kb deletion (GRCh37/hg19 21q22.13(chr21:38329939-38 466 066)×1) affecting the entire PIGP gene. Our results extend the clinical phenotype associated to PIGP gene and propose to include it as a novel cause of Multiple Congenital Anomalies-Hypotonia-Seizures syndrome.
Collapse
Affiliation(s)
- Carla Martín-Grau
- Genetics Unit, Translational Genetics Research Group, Hospital Universitario y Politecnico La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Carmen Orellana Alonso
- Genetics Unit, Translational Genetics Research Group, Hospital Universitario y Politecnico La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Mónica Roselló Piera
- Genetics Unit, Translational Genetics Research Group, Hospital Universitario y Politecnico La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Laia Pedrola Vidal
- Genetics Unit, Translational Genetics Research Group, Hospital Universitario y Politecnico La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | | | - Ramiro Quiroga
- Obstetrics and Gynaecology Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | | | - Rosa Gómez Portero
- Obstetrics and Gynaecology Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Francisco Martínez-Castellano
- Genetics Unit, Translational Genetics Research Group, Hospital Universitario y Politecnico La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| |
Collapse
|
8
|
Zhao P, Hu Y, Hu J, Li C, Huang Y, Zhang L, Luo S, Zhu H, Jiang J, He X. Identification and characterization of a new variation in DPM2 gene in two Chinese siblings with mild intellectual impairment. Front Genet 2023; 14:930692. [PMID: 37152991 PMCID: PMC10154465 DOI: 10.3389/fgene.2023.930692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of metabolic disorders caused by abnormal protein or lpid glycosylation. DPM2 is one subunit of a heterotrimeric complex for dolichol-phosphatemannose synthase (DPMS), a key enzyme in glycosylation, and only four patients with DPM2-CDG have been reported. Methods: Whole-exome sequencing (WES) was performed in a Chinese family having two siblings with a mild form of DPM2-CDG with developmental delay, mild intellectual disability, hypotonia, and increased serum creatine kinase. Sanger sequencing was used to validate the variants identified in the siblings and their parents. In vitro functional study was performed. Results: A homozygous mutation, c.197G>A (p.Gly66Glu) in exon 4 of DPM2 (NM_003863) was identified by whole exome sequencing (WES). In vitro functional analysis demonstrated that this variant increased the expression level of DPM2 protein and western blot revealed a significant decrease in ICAM1, a universal biomarker for hypoglycosylation in patients with CDG, suggesting abnormal N-linked glycosylation. We also reviewed the 4 previously reported patients carrying homozygous or compound heterozygous variants of DMP2 gene, and found that patients with variants within the region encoding the first domain had more severe clinical symptoms than those with variants within the second domain. However, the actual genotype-phenotype relationship needs more study. Discussion: Overall, our study broadens the variant spectrum of DPM2 gene, attempts to explain the different phenotypes in patients with different DPM2 variants, and emphasizes the need of further functional studies to understand the underlying pathophysiology of the phenotypic heterogeneity.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Hu
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Rehabilitation Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Li
- Department of Neuroelectrophysiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Zhu
- Rehabilitation Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| | - Jun Jiang
- Department of Neuroelectrophysiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| | - Xuelian He
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| |
Collapse
|
9
|
Muylle E, Jiang H, Johnsen C, Byeon SK, Ranatunga W, Garapati K, Zenka RM, Preston G, Pandey A, Kozicz T, Fang F, Morava E. TRIT1 defect leads to a recognizable phenotype of myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and normal lactate levels. J Inherit Metab Dis 2022; 45:1039-1047. [PMID: 36047296 PMCID: PMC9826177 DOI: 10.1002/jimd.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
TRIT1 defect is a rare, autosomal-recessive disorder of transcription, initially described as a condition with developmental delay, myoclonic seizures, and abnormal mitochondrial function. Currently, only 13 patients have been reported. We reviewed the genetic, clinical, and metabolic aspects of the disease in all known patients, including two novel, unrelated TRIT1 cases with abnormalities in oxidative phosphorylation complexes I and IV in fibroblasts. Taken together the features of all 15 patients, TRIT1 defect could be identified as a potentially recognizable syndrome including myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and variable microcephaly, with normal lactate levels. Half of the patients had oxidative phosphorylation complex measurements and had multiple complex abnormalities.
Collapse
Affiliation(s)
- Ewout Muylle
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Huafang Jiang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | | | - Seul Kee Byeon
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Kishore Garapati
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Institute of Bioinformatics, International Technology ParkBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Roman M. Zenka
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Graeme Preston
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Tamas Kozicz
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Fang Fang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Eva Morava
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Department of Medical GeneticsUniversity of Pecs Medical SchoolPecsHungary
- Department of BiophysicsUniversity of Pecs Medical SchoolPecsHungary
| |
Collapse
|
10
|
Huang Y, Zhou J, Zhong H, Xie N, Zhang FR, Zhang Z. Identification of a novel lipid metabolism-related gene signature for predicting colorectal cancer survival. Front Genet 2022; 13:989327. [PMID: 36147494 PMCID: PMC9485806 DOI: 10.3389/fgene.2022.989327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor worldwide. Lipid metabolism is a prerequisite for the growth, proliferation and invasion of cancer cells. However, the lipid metabolism-related gene signature and its underlying molecular mechanisms remain unclear. The aim of this study was to establish a lipid metabolism signature risk model for survival prediction in CRC and to investigate the effect of gene signature on the immune microenvironment. Lipid metabolism-mediated genes (LMGs) were obtained from the Molecular Signatures Database. The consensus molecular subtypes were established using "ConsensusClusterPlus" based on LMGs and the cancer genome atlas (TCGA) data. The risk model was established using univariate and multivariate Cox regression with TCGA database and independently validated in the international cancer genome consortium (ICGC) datasets. Immune infiltration in the risk model was developed using CIBERSORT and xCell analyses. A total of 267 differentially expressed genes (DEGs) were identified between subtype 1 and subtype 2 from consensus molecular subtypes, including 153 upregulated DEGs and 114 downregulated DEGs. 21 DEGs associated with overall survival (OS) were selected using univariate Cox regression analysis. Furthermore, a prognostic risk model was constructed using the risk coefficients and gene expression of eleven-gene signature. Patients with a high-risk score had poorer OS compared with patients in the low-risk score group (p = 3.36e-07) in the TCGA cohort and the validationdatasets (p = 4.03e-05). Analysis of immune infiltration identified multiple T cells were associated with better prognosis in the low-risk group, including Th2 cells (p = 0.0208), regulatory T cells (p = 0.0425), and gammadelta T cells (p = 0.0112). A nomogram integrating the risk model and clinical characteristics was further developed to predict the prognosis of patients with CRC. In conclusion, our study revealed that the expression of lipid-metabolism genes were correlated with the immune microenvironment. The eleven-gene signature might be useful for prediction the prognosis of CRC patients.
Collapse
Affiliation(s)
- Yanpeng Huang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Haibin Zhong
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ning Xie
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei-Ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanmin Zhang
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Ligezka AN, Radenkovic S, Saraswat M, Garapati K, Ranatunga W, Krzysciak W, Yanaihara H, Preston G, Brucker W, McGovern RM, Reid JM, Cassiman D, Muthusamy K, Johnsen C, Mercimek-Andrews S, Larson A, Lam C, Edmondson AC, Ghesquière B, Witters P, Raymond K, Oglesbee D, Pandey A, Perlstein EO, Kozicz T, Morava E. Sorbitol Is a Severity Biomarker for PMM2-CDG with Therapeutic Implications. Ann Neurol 2021; 90:887-900. [PMID: 34652821 DOI: 10.1002/ana.26245] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Center, VIB-KU Leuven, Leuven, Belgium
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.,Institute of Bioinformatics, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.,Institute of Bioinformatics, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Wirginia Krzysciak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - William Brucker
- Department of Pediatrics, Human Genetics, Rhode Island Hospital, Providence, RI
| | - Renee M McGovern
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Joel M Reid
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN
| | - David Cassiman
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Leuven, Belgium.,Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Genetics, University of Alberta, Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA
| | - Andrew C Edmondson
- Section of Biochemical Genetics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bart Ghesquière
- Department of Oncology, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Center, VIB-KU Leuven, Leuven, Belgium
| | - Peter Witters
- Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.,Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|