1
|
Garrett OS, Druss JJ, Vos EN, Fu YD, Lucia S, Greenstein PE, Bauer A, Sykut‐Cegielska J, Stepien KM, Arbuckle C, Grafakou O, Meyer U, Vanhoutvin N, Pané A, Bosch AM, Rubio‐Gozalbo E, Berry GT, Fridovich‐Keil JL. Health and well-being of maturing adults with classic galactosemia. J Inherit Metab Dis 2025; 48:e12786. [PMID: 39143820 PMCID: PMC11670443 DOI: 10.1002/jimd.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Long-term outcomes in classic galactosemia (CG) have been studied previously, but all prior studies have relied on cohorts of patients that were small in number, or heavily skewed toward children and young adults, or both. Here, we extend what is known about the health and well-being of maturing adults with CG by analyzing the results of anonymous custom surveys completed by 92 affected individuals, ages 30-78, and 38 unaffected sibling controls, ages 30-79. The median age for patients was 38.5 years and for controls was 41 years. These study participants hailed from 12 different countries predominantly representing Europe and North America. Participants reported on their general life experiences and outcomes in seven different domains including: speech/voice/language, cognition, motor function, cataracts, bone health, psychosocial well-being, and gastrointestinal health. We also queried women about ovarian function. Our results indicated a prevalence of long-term complications across all outcome domains that aligned with levels previously reported in younger cohorts. Given the sample size and age range of participants in this study, these findings strongly suggest that the adverse developmental outcomes commonly linked to CG are not progressive with age for most patients. We also tested four candidate modifiers for possible association with each of the outcomes followed, including: days of neonatal milk exposure, rigor of dietary galactose restriction in early childhood, current age, and home continent. We observed no associations that reached even nominal significance, except for the following: cataracts with neonatal milk exposure (p = 2.347e-04), cataracts with age (p = 0.018), and bone health with home continent (p = 0.03).
Collapse
Affiliation(s)
- Olivia S. Garrett
- Department of Human GeneticsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jared J. Druss
- Department of Human GeneticsEmory University School of MedicineAtlantaGeorgiaUSA
| | - E. Naomi Vos
- MosaKids Children's Hospital, Department of PediatricsMaastricht University Medical CenterMaastrichtNetherlands
| | - Yu‐Ting Debbie Fu
- Division of Genetics and Genomics, Department of PediatricsBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Stephanie Lucia
- Division of Genetics and Genomics, Department of PediatricsBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Patricia E. Greenstein
- Department of NeurologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Anna Bauer
- Department of Inborn Errors of Metabolism and PediatricsInstitute of Mother and ChildWarsawPoland
| | - Jolanta Sykut‐Cegielska
- Department of Inborn Errors of Metabolism and PediatricsInstitute of Mother and ChildWarsawPoland
| | - Karolina M. Stepien
- Adult Inherited Metabolic Disorders DepartmentSalford Royal Organization, Northern Care Alliance NHS Foundation TrustSalfordUK
| | - Cameron Arbuckle
- Charles Dent Metabolic UnitUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Olga Grafakou
- Clinical Genetics and Metabolic Disorders Clinic, Department of PediatricsArchbishop Makarios III Hospital, State Health Services OrganizationNicosiaCyprus
| | - Uta Meyer
- Department of Pediatric Kidney, Liver, Metabolic and Neurological DiseasesHannover Medical SchoolHannoverGermany
| | - Nele Vanhoutvin
- Department of Gastroenterology‐Hepatology and Metabolic CenterUniversity Hospitals Leuven3000 LeuvenBelgium
| | - Adriana Pané
- Endocrinology and Nutrition Department, Hospital Clinic de BarcelonaCIBEROBN, Instituto de Salud Carlos IIIMadridSpain
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology and MetabolismEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Estela Rubio‐Gozalbo
- MosaKids Children's Hospital, Department of PediatricsMaastricht University Medical CenterMaastrichtNetherlands
- Laboratory of Clinical GeneticsMaastricht University Medical CenterMaastrichtNetherlands
| | - Gerard T. Berry
- Division of Genetics and Genomics, Department of PediatricsBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
4
|
Panis B, Vos EN, Barić I, Bosch AM, Brouwers MCGJ, Burlina A, Cassiman D, Coman DJ, Couce ML, Das AM, Demirbas D, Empain A, Gautschi M, Grafakou O, Grunewald S, Kingma SDK, Knerr I, Leão-Teles E, Möslinger D, Murphy E, Õunap K, Pané A, Paci S, Parini R, Rivera IA, Scholl-Bürgi S, Schwartz IVD, Sdogou T, Shakerdi LA, Skouma A, Stepien KM, Treacy EP, Waisbren S, Berry GT, Rubio-Gozalbo ME. Brain function in classic galactosemia, a galactosemia network (GalNet) members review. Front Genet 2024; 15:1355962. [PMID: 38425716 PMCID: PMC10902464 DOI: 10.3389/fgene.2024.1355962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Classic galactosemia (CG, OMIM #230400, ORPHA: 79,239) is a hereditary disorder of galactose metabolism that, despite treatment with galactose restriction, affects brain function in 85% of the patients. Problems with cognitive function, neuropsychological/social emotional difficulties, neurological symptoms, and abnormalities in neuroimaging and electrophysiological assessments are frequently reported in this group of patients, with an enormous individual variability. In this review, we describe the role of impaired galactose metabolism on brain dysfunction based on state of the art knowledge. Several proposed disease mechanisms are discussed, as well as the time of damage and potential treatment options. Furthermore, we combine data from longitudinal, cross-sectional and retrospective studies with the observations of specialist teams treating this disease to depict the brain disease course over time. Based on current data and insights, the majority of patients do not exhibit cognitive decline. A subset of patients, often with early onset cerebral and cerebellar volume loss, can nevertheless experience neurological worsening. While a large number of patients with CG suffer from anxiety and depression, the increased complaints about memory loss, anxiety and depression at an older age are likely multifactorial in origin.
Collapse
Affiliation(s)
- Bianca Panis
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
| | - E. Naomi Vos
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Croatia, and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Annet M. Bosch
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Martijn C. G. J. Brouwers
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Alberto Burlina
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, University Hospital Padova, Padova, Italy
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - David J. Coman
- Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, QLD, Australia
| | - María L. Couce
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Pediatrics, Diagnosis and Treatment Unit of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, IDIS-Health Research Institute of Santiago de Compostela, CIBERER, RICORS Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Anibh M. Das
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Pediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Didem Demirbas
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Aurélie Empain
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Metabolic and Nutrition Unit, Division of Endocrinology, Diabetes and Metabolism, University Hospital for Children Queen Fabiola, Bruxelles, Belgium
| | - Matthias Gautschi
- Department of Paediatrics, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Swiss Reference Centre for Inborn Errors of Metabolism, Site Bern, Division of Pediatric Endocrinology, Diabetes and Metabolism, University of Bern, Bern, Switzerland
| | - Olga Grafakou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- IEM Clinic, Arch Makarios III Hospital, Nicosia, Cyprus
| | - Stephanie Grunewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, United Kingdom
| | - Sandra D. K. Kingma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, University College Dublin, Dublin, Ireland
| | - Elisa Leão-Teles
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Dorothea Möslinger
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| | - Katrin Õunap
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Genetics and Personalized Medicine Clinic, Faculty of Medicine, Tartu University Hospital, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Adriana Pané
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sabrina Paci
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Inborn Errors of Metabolism, Clinical Department of Pediatrics, San Paolo Hospital - ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Rossella Parini
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Rare Diseases Unit, Department of Internal Medicine, San Gerardo Hospital IRCCS, Monza, Italy
| | - Isabel A. Rivera
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I-Inherited Metabolic Disorders, Medical University Innsbruck, Innsbruck, Austria
| | - Ida V. D. Schwartz
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Triantafyllia Sdogou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Loai A. Shakerdi
- Adult Metabolics/Genetics, National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Anastasia Skouma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Karolina M. Stepien
- Salford Royal Organisation, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Eileen P. Treacy
- School of Medicine, Trinity College Dublin, National Rare Diseases Office, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Susan Waisbren
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Gerard T. Berry
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - M. Estela Rubio-Gozalbo
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Hagen-Lillevik S, Johnson J, Siddiqi A, Persinger J, Hale G, Lai K. Harnessing the Power of Purple Sweet Potato Color and Myo-Inositol to Treat Classic Galactosemia. Int J Mol Sci 2022; 23:8654. [PMID: 35955788 PMCID: PMC9369367 DOI: 10.3390/ijms23158654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Classic Galactosemia (CG) is a devastating inborn error of the metabolism caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. Severe complications of CG include neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. The absence of the GALT enzyme leads to an accumulation of aberrant galactose metabolites, which are assumed to be responsible for the sequelae. There is no treatment besides the restriction of dietary galactose, which does not halt the development of the complications; thus, additional treatments are sorely needed. Supplements have been used in other inborn errors of metabolism but are not part of the therapeutic regimen for CG. The goal of this study was to test two generally recognized as safe supplements (purple sweet potato color (PSPC) and myo-inositol (MI)) that may impact cellular pathways contributing to the complications in CG. Our group uses a GalT gene-trapped mouse model to study the pathophysiology in CG, which phenocopy many of the complications. Here we report the ability of PSPC to ameliorate dysregulation in the ovary, brain, and liver of our mutant mice as well as positive results of MI supplementation in the ovary and brain.
Collapse
Affiliation(s)
- Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Joshua Johnson
- Division of Reproductive Sciences, Aurora, CO 80045, USA
- Division of Reproductive Endocrinology and Infertility, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, Aurora, CO 80045, USA
| | - Anwer Siddiqi
- College of Medicine, University of Florida, Jacksonville, FL 32209, USA
| | - Jes Persinger
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80302, USA
| | - Gillian Hale
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|