1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025:112466. [PMID: 39848431 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush University, Chicago, United States.
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, United States
| |
Collapse
|
2
|
Żołnierkiewicz O, Rogacka D. Hyperglycemia - A culprit of podocyte pathology in the context of glycogen metabolism. Arch Biochem Biophys 2024; 753:109927. [PMID: 38350532 DOI: 10.1016/j.abb.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Prolonged disruption in the balance of glucose can result in metabolic disorders. The kidneys play a significant role in regulating blood glucose levels. However, when exposed to chronic hyperglycemia, the kidneys' ability to handle glucose metabolism may be impaired, leading to an accumulation of glycogen. Earlier studies have shown that there can be a significant increase in glucose storage in the form of glycogen in the kidneys in diabetes. Podocytes play a crucial role in maintaining the integrity of filtration barrier. In diabetes, exposure to elevated glucose levels can lead to significant metabolic and structural changes in podocytes, contributing to kidney damage and the development of diabetic kidney disease. The accumulation of glycogen in podocytes is not a well-established phenomenon. However, a recent study has demonstrated the presence of glycogen granules in podocytes. This review delves into the intricate connections between hyperglycemia and glycogen metabolism within the context of the kidney, with special emphasis on podocytes. The aberrant storage of glycogen has the potential to detrimentally impact podocyte functionality and perturb their structural integrity. This review provides a comprehensive analysis of the alterations in cellular signaling pathways that may potentially lead to glycogen overproduction in podocytes.
Collapse
Affiliation(s)
- Olga Żołnierkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
3
|
Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies. Genes (Basel) 2021; 13:genes13010074. [PMID: 35052414 PMCID: PMC8774685 DOI: 10.3390/genes13010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute “crises” of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patient’s phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.
Collapse
|
4
|
Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, Fernández-Costa JM, Ramón-Azcón J. Bioengineered in vitro3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication 2021; 13. [PMID: 33836519 DOI: 10.1088/1758-5090/abf6ae] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models andin vitrotwo-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the firstin vitro3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.
Collapse
Affiliation(s)
- Xiomara Fernández-Garibay
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - María A Ortega
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Estefanía Cerro-Herreros
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Jordi Comelles
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), c/Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), c/Martí i Franquès 1-11, E08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, E28029 Madrid, Spain
| | - Rubén Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Juan M Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain.,Institució Catalana de Reserca I Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| |
Collapse
|
5
|
Malinska D, Testoni G, Bejtka M, Duran J, Guinovart JJ, Duszynski J. Alteration of mitochondrial function in the livers of mice with glycogen branching enzyme deficiency. Biochimie 2021; 186:28-32. [PMID: 33857563 DOI: 10.1016/j.biochi.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme gene (GBE1) that lead to the accumulation of aberrant glycogen in affected tissues, mostly in the liver. To determine whether dysfunctional glycogen metabolism in GSD IV affects other components of cellular bioenergetics, we studied mitochondrial function in heterozygous Gbe1 knockout (Gbe1+/-) mice. Mitochondria isolated from the livers of Gbe1+/- mice showed elevated respiratory complex I activity and increased reactive oxygen species production, particularly by respiratory chain complex III. These observations indicate that GBE1 deficiency leads to broader rearrangements in energy metabolism and that the mechanisms underlying GSD IV pathogenesis may include more than merely mechanical cell damage caused by the presence of glycogen aggregates.
Collapse
Affiliation(s)
- Dominika Malinska
- Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093, Warsaw, Poland.
| | - Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Malgorzata Bejtka
- Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093, Warsaw, Poland
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, 08028, Spain
| | - Jerzy Duszynski
- Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093, Warsaw, Poland
| |
Collapse
|
6
|
Malinska D, Testoni G, Duran J, Brudnicka A, Guinovart JJ, Duszynski J. Hallmarks of oxidative stress in the livers of aged mice with mild glycogen branching enzyme deficiency. Arch Biochem Biophys 2020; 695:108626. [PMID: 33049291 DOI: 10.1016/j.abb.2020.108626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Glycogen branching enzyme (GBE1) introduces branching points in the glycogen molecule during its synthesis. Pathogenic GBE1 gene mutations lead to glycogen storage disease type IV (GSD IV), which is characterized by excessive intracellular accumulation of abnormal, poorly branched glycogen in affected tissues and organs, mostly in the liver. Using heterozygous Gbe1 knock-out mice (Gbe1+/-), we analyzed the effects of moderate GBE1 deficiency on oxidative stress in the liver. The livers of aged Gbe1+/- mice (22 months old) had decreased GBE1 protein levels, which caused a mild decrease in the degree of glycogen branching, but did not affect the tissue glycogen content. GBE1 deficiency was accompanied by increased protein carbonylation and elevated oxidation of the glutathione pool, indicating the existence of oxidative stress. Furthermore, we have observed increased levels of glutathione peroxidase and decreased activity of respiratory complex I in Gbe1+/- livers. Our data indicate that even mild changes in the degree of glycogen branching, which did not lead to excessive glycogen accumulation, may have broader effects on cellular bioenergetics and redox homeostasis. In young animals cellular homeostatic mechanisms are able to counteract those changes, while in aged tissues the changes may lead to increased oxidative stress.
Collapse
Affiliation(s)
- Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland.
| | - Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigation Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alicja Brudnicka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigation Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), 28029 Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Jerzy Duszynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland
| |
Collapse
|
7
|
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ. Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 2020; 12:nu12051451. [PMID: 32443396 PMCID: PMC7285193 DOI: 10.3390/nu12051451] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive training may limit physiological muscle adaptation through chronic oxidative stress and inflammation. Improper diet and overtraining may also disrupt intestinal homeostasis and in consequence enhance inflammation. Altogether, these factors may lead to an imbalance in the gut ecosystem, causing dysregulation of the immune system. Therefore, it seems to be important to optimize the intestinal microbiota composition, which is able to modulate the immune system and reduce oxidative stress. Moreover, the optimal intestinal microbiota composition may have an impact on muscle protein synthesis and mitochondrial biogenesis and function, as well as muscle glycogen storage. Aproperly balanced microbiome may also reduce inflammatory markers and reactive oxygen species production, which may further attenuate macromolecules damage. Consequently, supplementation with probiotics may have some beneficial effect on aerobic and anaerobic performance. The phenomenon of gut-muscle axis should be continuously explored to function maintenance, not only in athletes.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marcin Folwarski
- Departmentof Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | | | | | - Jan Jacek Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-516-191-109
| |
Collapse
|
8
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Abstract
Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and Medicine, McMaster University, Hamilton Health Sciences Centre, Rm 2H26, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
10
|
Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, Ripani FR, Sabatini S, Caporossi D. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res 2018; 52:639-647. [DOI: 10.1080/10715762.2018.1459043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Fabrizio Margheritini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Francesca Romana Ripani
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University “La Sapienza”, Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|