1
|
Bellamy KKL, Skedsmo FS, Hultman J, Jansen JH, Lingaas F. Neuronal ceroid lipofuscinosis in a Schapendoes dog is caused by a missense variant in CLN6. Anim Genet 2024; 55:612-620. [PMID: 38866396 DOI: 10.1111/age.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders that occur in humans, dogs, and several other species. NCL is characterised clinically by progressive deterioration of cognitive and motor function, epileptic seizures, and visual impairment. Most forms present early in life and eventually lead to premature death. Typical pathological changes include neuronal accumulation of autofluorescent, periodic acid-Schiff- and Sudan black B-positive lipopigments, as well as marked loss of neurons in the central nervous system. Here, we describe a 19-month-old Schapendoes dog, where clinical signs were indicative of lysosomal storage disease, which was corroborated by pathological findings consistent with NCL. Whole genome sequencing of the affected dog and both parents, followed by variant calling and visual inspection of known NCL genes, identified a missense variant in CLN6 (c.386T>C). The variant is located in a highly conserved region of the gene and predicted to be harmful, which supports a causal relationship. The identification of this novel CLN6 variant enables pre-breeding DNA-testing to prevent future cases of NCL6 in the Schapendoes breed, and presents a potential natural model for NCL6 in humans.
Collapse
Affiliation(s)
| | - Fredrik S Skedsmo
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Josefin Hultman
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Johan Høgset Jansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Frode Lingaas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Christen M, Gregor KM, Böttcher-Künneke A, Lombardo MS, Baumgärtner W, Jagannathan V, Puff C, Leeb T. Intragenic MFSD8 duplication and histopathological findings in a rabbit with neuronal ceroid lipofuscinosis. Anim Genet 2024; 55:588-598. [PMID: 38712841 DOI: 10.1111/age.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are among the most prevalent neurodegenerative disorders of early life in humans. Disease-causing variants have been described for 13 different NCL genes. In this study, a refined pathological characterization of a female rabbit with progressive neurological signs reminiscent of NCL was performed. Cytoplasmic pigment present in neurons was weakly positive with Sudan black B and autofluorescent. Immunohistology revealed astrogliosis, microgliosis and axonal degeneration. During the subsequent genetic investigation, the genome of the affected rabbit was sequenced and examined for private variants in NCL candidate genes. The analysis revealed a homozygous ~10.7 kb genomic duplication on chromosome 15 comprising parts of the MFSD8 gene, NC_013683.1:g.103,727,963_103,738,667dup. The duplication harbors two internal protein coding exons and is predicted to introduce a premature stop codon into the transcript, truncating ~50% of the wild-type MFSD8 open reading frame encoding the major facilitator superfamily domain containing protein 8, XP_002717309.2:p.(Glu235Leufs*23). Biallelic loss-of-function variants in MFSD8 have been described to cause NCL7 in human patients, dogs and a single cat. The available clinical and pathological data, together with current knowledge about MFSD8 variants and their functional impact in other species, point to the MFSD8 duplication as a likely causative defect for the observed phenotype in the affected rabbit.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katharina M Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Mara S Lombardo
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Bullock G, Johnson GS, Pattridge SG, Mhlanga-Mutangadura T, Guo J, Cook J, Campbell RS, Vite CH, Katz ML. A Homozygous MAN2B1 Missense Mutation in a Doberman Pinscher Dog with Neurodegeneration, Cytoplasmic Vacuoles, Autofluorescent Storage Granules, and an α-Mannosidase Deficiency. Genes (Basel) 2023; 14:1746. [PMID: 37761886 PMCID: PMC10531151 DOI: 10.3390/genes14091746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A 7-month-old Doberman Pinscher dog presented with progressive neurological signs and brain atrophy suggestive of a hereditary neurodegenerative disorder. The dog was euthanized due to the progression of disease signs. Microscopic examination of tissues collected at the time of euthanasia revealed massive accumulations of vacuolar inclusions in cells throughout the central nervous system, suggestive of a lysosomal storage disorder. A whole genome sequence generated with DNA from the affected dog contained a likely causal, homozygous missense variant in MAN2B1 that predicted an Asp104Gly amino acid substitution that was unique among whole genome sequences from over 4000 dogs. A lack of detectable α-mannosidase enzyme activity confirmed a diagnosis of a-mannosidosis. In addition to the vacuolar inclusions characteristic of α-mannosidosis, the dog exhibited accumulations of autofluorescent intracellular inclusions in some of the same tissues. The autofluorescence was similar to that which occurs in a group of lysosomal storage disorders called neuronal ceroid lipofuscinoses (NCLs). As in many of the NCLs, some of the storage bodies immunostained strongly for mitochondrial ATP synthase subunit c protein. This protein is not a substrate for α-mannosidase, so its accumulation and the development of storage body autofluorescence were likely due to a generalized impairment of lysosomal function secondary to the accumulation of α-mannosidase substrates. Thus, it appears that storage body autofluorescence and subunit c accumulation are not unique to the NCLs. Consistent with generalized lysosomal impairment, the affected dog exhibited accumulations of intracellular inclusions with varied and complex ultrastructural features characteristic of autophagolysosomes. Impaired autophagic flux may be a general feature of this class of disorders that contributes to disease pathology and could be a target for therapeutic intervention. In addition to storage body accumulation, glial activation indicative of neuroinflammation was observed in the brain and spinal cord of the proband.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Savannah G. Pattridge
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA;
| | - Rebecca S. Campbell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Pervin S, Islam MS, Tada N, Tsutsui T, Rahman MM, Yabuki A, Tacharina MR, Rakib TM, Maki S, Yamato O. Screening and Carrier Rate of Neuronal Ceroid Lipofuscinosis in Chihuahua Dogs in Japan. Animals (Basel) 2022; 12:1210. [PMID: 35565635 PMCID: PMC9106037 DOI: 10.3390/ani12091210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of rare lethal neurodegenerative lysosomal storage diseases that occur in a range of dog breeds, including Chihuahuas. Recently, a homozygous single base-pair deletion (c.846delT), which causes a frame shift generating a premature stop codon (p.Phe282Leufs13*) in the canine CLN7/MFSD8 gene, has been identified as a causative mutation for NCL in Chihuahuas. The objective of this study was to determine the frequency of the mutant allele and/or carrier rate of NCL in Chihuahuas in Japan using a newly designed real-time PCR assay. Samples of saliva were randomly collected from 1007 Chihuahua puppies during physical examinations prior to the transportation to pet shops. Screening results revealed a carrier rate of 1.29%, indicating a mutant allele frequency (0.00645) that is considered sufficiently high to warrant measures for the control and prevention of this lethal disease. The genotyping assay designed in this study could make a valuable contribution to the control and prevention of NCL.
Collapse
Affiliation(s)
- Shahnaj Pervin
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
| | - Md Shafiqul Islam
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Naomi Tada
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Japan Institute of Small Animal Reproduction (Bio Art), 3-16-9 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan;
| | - Toshihiko Tsutsui
- Japan Institute of Small Animal Reproduction (Bio Art), 3-16-9 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan;
| | - Mohammad Mahbubur Rahman
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Akira Yabuki
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
| | - Martia Rani Tacharina
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Faculty of Veterinary Medicine, Airlangga University, Campus C, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Tofazzal Md Rakib
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Shinichiro Maki
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
| | - Osamu Yamato
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Faculty of Veterinary Medicine, Airlangga University, Campus C, Jl. Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
5
|
Adult-Onset Neuronal Ceroid Lipofuscinosis in a Shikoku Inu. Vet Sci 2021; 8:vetsci8100227. [PMID: 34679057 PMCID: PMC8538799 DOI: 10.3390/vetsci8100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
A two-year-and-eleven-month-old male Shikoku Inu was referred for evaluation of progressive gait abnormality that had begun three months prior. Neurological examination revealed ventral flexion of the neck, a wide-based stance in the hindlimb, wide excursions of the head from side to side, tremor in all four limbs, hypermetria in all four limbs, proprioceptive deficits in all four limbs, reduced patellar reflex in both hindlimbs, and postural vertical nystagmus. Later, behavioral and cognitive dysfunction, ataxia, and visual deficits slowly progressed. Magnetic resonance imaging revealed symmetrical progressive atrophy of the whole brain and cervical spinal cord. Bilateral retinal degeneration was observed, and both flush and flicker electroretinograms were bilaterally non-recordable at the age of five years and eight months, and the dog was euthanized. Histopathologically, faint-to-moderate deposition of light-brown pigments was frequently observed in the cytoplasm of neurons throughout the cerebrum, cerebellum, and nuclei of the brainstem. The pigments were positive for Luxol fast blue, periodic acid–Schiff, and Sudan black B, and exhibited autofluorescence. Electron microscopic examination revealed the accumulation of membranous material deposition in the neuronal cytoplasm. Small foci of pigment-containing macrophages were frequently observed around the capillary vessels. Based on these clinical and pathological findings, the animal was diagnosed with adult-onset neuronal ceroid lipofuscinosis.
Collapse
|
6
|
Salpeter EM, Leonard BC, Lopez AJ, Murphy CJ, Thomasy S, Imai DM, Grimsrud K, Lloyd KCK, Yan J, Sanchez Russo R, Shankar SP, Moshiri A. Retinal degeneration in mice and humans with neuronal ceroid lipofuscinosis type 8. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1274. [PMID: 34532411 PMCID: PMC8421982 DOI: 10.21037/atm-20-4739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Background Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. Methods Cln8−/− mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8−/− mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. Results Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8−/− mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8−/− mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8−/− mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. Conclusions This study provides detailed clinical characterization of retinopathy in adult Cln8−/− mice. Findings suggest that Cln8−/− mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.
Collapse
Affiliation(s)
- Elyse M Salpeter
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Brian C Leonard
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Antonio J Lopez
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Christopher J Murphy
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Sara Thomasy
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kristin Grimsrud
- Mouse Biology Program, University of California, Davis, Davis, California, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, Davis, California, USA.,Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Jiong Yan
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | | | - Suma P Shankar
- Department of Pediatrics & Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|