1
|
Goker-Alpan O, Ivanova MM. Neuronopathic Gaucher disease: Rare in the West, common in the East. J Inherit Metab Dis 2024. [PMID: 38768609 DOI: 10.1002/jimd.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Gaucher disease (GD) stands as one of the most prevalent lysosomal disorders, yet neuronopathic GD (nGD) is an uncommon subset characterized by a wide array of clinical manifestations that complicate diagnosis, particularly when neurological symptoms are understated. nGD may manifest as the acute neuronopathic type, or GD type 2 (GD2), either prenatally or within the first weeks to months of life, whereas GD type 3 (GD3) symptoms may emerge at any point during childhood or occasionally in adolescence. The clinical presentation encompasses severe systemic involvement to mild visceral disease, often coupled with a spectrum of progressive neurological signs and symptoms such as cognitive impairment, ataxia, seizures, myoclonus, varying degrees of brainstem dysfunction presenting with stridor, apneic episodes, and/or impaired swallowing. This manuscript aims to provide a comprehensive review of the incidence, distinctive presentations, and diverse clinical phenotypes of nGD across various countries and regions. It will explore the natural history of the neurodegenerative process in GD, shedding light on its various manifestations during infancy and childhood, and offer insights into the diagnostic journey, the challenges faced in the clinical management, and current and investigative therapeutic approaches for GD's neurological variants.
Collapse
Affiliation(s)
- Ozlem Goker-Alpan
- Lysosomal and Rare Disorder Research and Treatment Center, Fairfax, Virginia, USA
| | - Margarita M Ivanova
- Lysosomal and Rare Disorder Research and Treatment Center, Fairfax, Virginia, USA
| |
Collapse
|
2
|
Feng S, Rcheulishvili N, Jiang X, Zhu P, Pan X, Wei M, Wang PG, Ji Y, Papukashvili D. A review on Gaucher disease: therapeutic potential of β-glucocerebrosidase-targeted mRNA/saRNA approach. Int J Biol Sci 2024; 20:2111-2129. [PMID: 38617529 PMCID: PMC11008270 DOI: 10.7150/ijbs.87741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme β-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.
Collapse
Affiliation(s)
- Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Pan Zhu
- Cheerland Biomedicine, Shenzhen, China
| | - Xuehua Pan
- Shenzhen Pengbo Biotech Co. Ltd, Shenzhen, China
| | - Meilan Wei
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Ji
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Zhang TB, Wen XL, Zhang XL, Yan JR, Hao GP, Yang LH, Zhang RJ. [Genetic characteristics and clinical analysis of 20 patients with Gaucher's disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:82-85. [PMID: 38527843 PMCID: PMC10951122 DOI: 10.3760/cma.j.cn121090-20230506-00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 03/27/2024]
Abstract
Gaucher Disease (GD) is an autosomal recessive lysosomal storage disorder characterized by high heterogeneity. This study aimed to further understand the correlation between clinical phenotypes and genotypes in GD patients through a retrospective analysis of 20 cases in Shanxi Bethune Hospital, including their clinical manifestations, laboratory tests, enzyme studies, and genetic results. Among the 20 GD patients, 16 were classified as Type Ⅰ GD with a median age of diagnosis of 24 years, and 4 were classified as Type Ⅲ GD with a median age of diagnosis of 19 years. All patients exhibited splenomegaly and thrombocytopenia, with 16 patients showing skeletal imaging changes, and 5 of them presenting with bone pain symptoms. Genetic analysis revealed 15 distinct mutations, predominantly missense mutations, with L483P being the most prevalent (35.7%), followed by V414L, L303I, and F252I. Mutation sites were predominantly located in exon 7. Noteworthy findings included the first report of the S310G mutation by our research group and the first occurrence of the K196R mutation in the Chinese population. Additionally, the N227S mutation was implicated in a potential association with neuropathy. Despite advancements, Uncertainties still exist in the correlation between clinical phenotypes and genotypes in GD patients.
Collapse
Affiliation(s)
- T B Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - X L Wen
- Department of Hematology, the First People's Hospital of Yibin, Yibin 644000, China
| | - X L Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - J R Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - G P Hao
- Department of Hematology, Shanxi Provincial Children's Hospital, Taiyuan 030013, China
| | - L H Yang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - R J Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
4
|
Liu Q, Shen Z, Pan H, Ma S, Xiong F, He F. The molecular mechanism of Gaucher disease caused by compound heterozygous mutations in GBA1 gene. Front Pediatr 2023; 11:1092645. [PMID: 36776904 PMCID: PMC9909548 DOI: 10.3389/fped.2023.1092645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Gaucher disease (GD, ORPHA355) is a rare autosomal recessive genetic disease caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). Here, we report a patient with GD who carried the heterozygous c.1240G > C (p.Val414Leu) mutation and the heterozygous pathogenic c.1342G > C (p.Asp448His) mutation in GBA1. Bioinformatics analysis suggested that the two mutations are pathogenic. Functional studies showed that GBA1 mRNA and GCase protein levels of mutant types were significantly less than the wild-type. In the cell lysates, the two mutations of GBA1 c.1240G > C and c.1342G > C caused a decreased GCase concentration, while the two mutations did not change the distribution in the cell. The pathogenicity of the compound heterozygous mutations was verified. Early diagnosis and treatment can improve the quality of life and prevent unnecessary procedures in patients with GD.
Collapse
Affiliation(s)
- Qi Liu
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Zongrui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hong Pan
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Shunfei Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Dardis A, Michelakakis H, Rozenfeld P, Fumic K, Wagner J, Pavan E, Fuller M, Revel-Vilk S, Hughes D, Cox T, Aerts J. Patient centered guidelines for the laboratory diagnosis of Gaucher disease type 1. Orphanet J Rare Dis 2022; 17:442. [PMID: 36544230 PMCID: PMC9768924 DOI: 10.1186/s13023-022-02573-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder due to the deficient activity of the acid beta-glucosidase (GCase) enzyme, resulting in the progressive lysosomal accumulation of glucosylceramide (GlcCer) and its deacylated derivate, glucosylsphingosine (GlcSph). GCase is encoded by the GBA1 gene, located on chromosome 1q21 16 kb upstream from a highly homologous pseudogene. To date, more than 400 GBA1 pathogenic variants have been reported, many of them derived from recombination events between the gene and the pseudogene. In the last years, the increased access to new technologies has led to an exponential growth in the number of diagnostic laboratories offering GD testing. However, both biochemical and genetic diagnosis of GD are challenging and to date no specific evidence-based guidelines for the laboratory diagnosis of GD have been published. The objective of the guidelines presented here is to provide evidence-based recommendations for the technical implementation and interpretation of biochemical and genetic testing for the diagnosis of GD to ensure a timely and accurate diagnosis for patients with GD worldwide. The guidelines have been developed by members of the Diagnostic Working group of the International Working Group of Gaucher Disease (IWGGD), a non-profit network established to promote clinical and basic research into GD for the ultimate purpose of improving the lives of patients with this disease. One of the goals of the IWGGD is to support equitable access to diagnosis of GD and to standardize procedures to ensure an accurate diagnosis. Therefore, a guideline development group consisting of biochemists and geneticists working in the field of GD diagnosis was established and a list of topics to be discussed was selected. In these guidelines, twenty recommendations are provided based on information gathered through a systematic review of the literature and two different diagnostic algorithms are presented, considering the geographical differences in the access to diagnostic services. Besides, several gaps in the current diagnostic workflow were identified and actions to fulfill them were taken within the IWGGD. We believe that the implementation of recommendations provided in these guidelines will promote an equitable, timely and accurate diagnosis for patients with GD worldwide.
Collapse
Affiliation(s)
- A Dardis
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy.
| | - H Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - P Rozenfeld
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos Y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - K Fumic
- Department for Laboratory Diagnostics, University Hospital Centre Zagreb and School of Medicine, Zagreb, Croatia
| | - J Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
- International Gaucher Alliance, Dursley, UK
| | - E Pavan
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy
| | - M Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - S Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - D Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust and University College London, London, UK
| | - T Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
6
|
Ridova N, Trajkova S, Chonevska B, Stojanoski Z, Ivanovski M, Popova-Labachevska M, Stojanovska-Jakimovska S, Filipche V, Sofijanova A, Panovska-Stavridis I. Gaucher disease in North Macedonia: Unexpected prevalence of the N370S GBA1 allele with attenuated disease expression. Mol Genet Metab Rep 2022; 32:100895. [PMID: 35845720 PMCID: PMC9283653 DOI: 10.1016/j.ymgmr.2022.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
The majority of Gaucher Disease (GD) cases result from pathologic mutations in the GBA1 gene. A rich mutational spectrum of about 500 identified variants has been recognized. The disease is characterized by phenotypic diversity. Data regarding the genotype-phenotype correlation are scanty and inconclusive. Here, we summarize the genetic and phenotypic “portraits” of 14 patients with GD type 1 in the Republic of North Macedonia, 4 of Macedonian and 10 of Albanian origin. Altogether, 6 variants were detected, compounding 6 different genotypes. All genotypes contained the N370S variant, which was detected with an overall prevalence of 60.7%. Other frequent variants included the 1263del55 deletion and the double mutant allele D409H;H255Q, each with a prevalence of 14.2%. We detected two rare mutations: W92* - a pathogenic nonsense mutation and D399N – a single nucleotide variant of uncertain pathogenicity. The most common genotypes were N370S/1263del55 and H255Q;D409H/N370S, both present in 4/14 patients, followed by N370S homozygosity (3/14). Splenomegaly was the most common clinical manifestation, identified in all patients. Hepatomegaly was less frequent and was present in 50% of cases. Thrombocytopenia was present in 9/14, while half of the patients had anemia. Bone pathology was demonstrated in 8 patients. Patients with different genotypes displayed a high degree of phenotypic heterogeneity, suggesting that the other allele determines the onset and severity of the disease in patients with the N370S mutation. Longer follow-up, bigger cohorts of patients and multicentric studies should be conducted to further define the association between the genotypic and phenotypic expression in GD.
Collapse
Affiliation(s)
- Nevenka Ridova
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| | - Sanja Trajkova
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| | - Biljana Chonevska
- Acibadem Sistina Hospital - Skopje, Department of pediatric Hematology/Oncology, Skupi 5A, 1000 Skopje, Macedonia
| | - Zlate Stojanoski
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| | - Martin Ivanovski
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| | - Marija Popova-Labachevska
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| | - Simona Stojanovska-Jakimovska
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| | - Venko Filipche
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Neurosurgery, 1000 Skopje, Republic of North Macedonia
| | - Aspazija Sofijanova
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Pediatric Diseases, 1000 Skopje, Republic of North Macedonia
| | - Irina Panovska-Stavridis
- Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, University Clinic for Hematology, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
7
|
Long-term eliglustat treatment of Gaucher patients over up to 10 years in Vienna. Wien Klin Wochenschr 2022; 134:471-477. [PMID: 35412052 DOI: 10.1007/s00508-022-02021-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
Abstract
Gaucher disease has been the first lysosomal storage disorder for which an enzyme replacement therapy has been approved in the 1990s and was the first to receive approval for a first-line substrate reduction therapy in 2015. Eliglustat treatment has been started in Austria in patients recruited to a clinical trial, followed by its long-term extension and prescription treatment overall covering up to 10 years. In this case series the experience of treating Gaucher patients with eliglustat in Vienna is summarized. Patients were either switched from enzyme replacement therapy or were therapy naïve. Significant improvements were shown in hematological (thrombocytes, hemoglobin) and visceral (spleen volume) manifestations as well as in biomarkers (chitotriosidase, glucosylsphingosine [lyso-GL1], angiotensin converting enzyme) in a routine setting in a therapy-naïve patient. Stability was found in switch patients with slight improvement in bone density. Eliglustat was generally very well tolerated. Patient selection and regular monitoring is required to ensure effective and safe use.
Collapse
|
8
|
Lim JL, Lohmann K, Tan AH, Tay YW, Ibrahim KA, Abdul Aziz Z, Mawardi AS, Puvanarajah SD, Lim TT, Looi I, Ooi JCE, Chia YK, Muthusamy KA, Bauer P, Rolfs A, Klein C, Ahmad-Annuar A, Lim SY. Glucocerebrosidase (GBA) gene variants in a multi-ethnic Asian cohort with Parkinson's disease: mutational spectrum and clinical features. J Neural Transm (Vienna) 2021; 129:37-48. [PMID: 34779914 DOI: 10.1007/s00702-021-02421-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
GBA variants are associated with increased risk and earlier onset of Parkinson's disease (PD), and more rapid disease progression especially with "severe" variants typified by p.L483P. GBA mutation screening studies from South-East Asia, with > 650 million inhabitants of diverse ancestries, are very limited. We investigated the spectrum of GBA variants, and associated clinico-demographic features, in a multi-ethnic PD cohort in Malaysia. Patients (n = 496) were recruited from seven centres, primarily of Chinese (45%), Malay (37%), and Indian (13%) ethnicities. All GBA coding exons were screened using a next-generation sequencing-based PD gene panel and verified with Sanger sequencing. We identified 14 heterozygous GBA alleles consisting of altogether 17 missense variants (8 classified as pathogenic or likely pathogenic for PD) in 25 (5.0%) patients, with a substantially higher yield among early (< 50 years) vs. late-onset patients across all three ethnicities (9.1-13.2% vs. 1.0-3.2%). The most common variant was p.L483P (including RecNciI, n = 11, 2.2%), detected in all three ethnicities. Three novel variants/recombinant alleles of uncertain significance were found; p.P71L, p.L411P, and p.L15S(;)S16G(;)I20V. The common European risk variants, p.E365K, p.T408M, and p.N409S, were not detected. A severe disease course was noted in the majority of GBA-variant carriers, across a range of detected variants. We report a potentially novel observation of spine posture abnormalities in GBA-variant carriers. This represents the largest study on GBA variation from South-East Asia, and highlights that these populations, especially those with EOPD, would be relevant for studies including clinical trials targeting GBA pathways.
Collapse
Affiliation(s)
- Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Ai Huey Tan
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia.,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | | | | | - Thien Thien Lim
- Island Hospital, Penang, Malaysia.,Penang General Hospital, Penang, Malaysia
| | - Irene Looi
- Department of Medicine and Clinical Research Centre, Hospital Seberang Jaya, Penang, Malaysia
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Bauer
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia. .,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Daykin EC, Ryan E, Sidransky E. Diagnosing neuronopathic Gaucher disease: New considerations and challenges in assigning Gaucher phenotypes. Mol Genet Metab 2021; 132:49-58. [PMID: 33483255 PMCID: PMC7884077 DOI: 10.1016/j.ymgme.2021.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Gaucher disease (GD), resulting from biallelic mutations in the gene GBA1, is a monogenic recessively inherited Mendelian disorder with a wide range of phenotypic presentations. The more severe forms of the disease, acute neuronopathic GD (GD2) and chronic neuronopathic GD (GD3), also have a continuum of disease severity with an overlap in manifestations and limited genotype-phenotype correlation. In very young patients, assigning a definitive diagnosis can sometimes be challenging. Several recent studies highlight specific features of neuronopathic GD that may provide diagnostic clues. Distinguishing between the different GD types has important therapeutic implications. Currently there are limited treatment options specifically for neuronopathic GD due to the difficulty in delivering therapies across the blood-brain barrier. In this work, we present both classic and newly appreciated aspects of the Gaucher phenotype that can aid in discriminating between acute and chronic neuronopathic GD, and highlight the continuing therapeutic challenges.
Collapse
Affiliation(s)
- Emily C Daykin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Emory Ryan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA.
| |
Collapse
|