1
|
Belokobylskij SA, Ku D, Chen XX. Review of the genus Paradelius De Saeger, 1942 of East Asia (Hymenoptera, Braconidae, Cheloninae, Adeliini) with the description of a new species from South Korea. Zookeys 2024; 1204:261-299. [PMID: 38882562 PMCID: PMC11179094 DOI: 10.3897/zookeys.1204.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024] Open
Abstract
The East Palaearctic species of the adeliine genus Paradelius De Saeger, 1942 are reviewed. The genus Sculptomyriola Belokobylskij, 1988 is synonymised with Paradelius and treated as its subgenus. The following species are transferred to subgenus Paradelius (Sculptomyriola): P. (Sc.) extremiorientalis (Belokobylskij, 1988), comb. nov.; P. (Sc.) ghilarovi (Belokobylskij, 1988), comb. nov.; P. (Sc.) neotropicalis Shimbori & Shaw, 2019; P. (Sc.) nigrus Whitfield, 1988; P. (Sc.) rubrus Whitfield, 1988; P. (Sc.) sinevi (Belokobylskij, 1998), comb. nov. A new species Paradelius (Sculptomyriola) koreanussp. nov. from Korean Peninsula is described. The genus Sinadelius He & Chen, 2000 is synonymised with Paradelius De Saeger and also treated as its subgenus. The species Sinadeliusguangxiensis He & Chen, 2000 and S.nigricans He & Chen, 2000 are transferred to Paradelius (Sinadelius) (comb. nov.). A key for determination of the World known Paradelius species from three its subgenera, Paradelius s.str., Sculptomyriola Belokobylskij and Sinadelius He & Chen, and illustrated redescriptions of the type of genus and its Asian species are provided.
Collapse
Affiliation(s)
- Sergey A Belokobylskij
- Zoological Institute, Russian Academy of Sciences, St Petersburg 199034, Russia Zoological Institute, Russian Academy of Sciences St Petersburg Russia
| | - Deokseo Ku
- The Science Museum of Natural Enemies, Geochang 50147, Republic of Korea The Science Museum of Natural Enemies Geochang Republic of Korea
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China Zhejiang University Hangzhou China
| |
Collapse
|
2
|
Xu S, Li W, Liu Q, Wang Y, Li X, Duan X, He J, Song F. The mitochondrial genome of Binodoxys acalephae (Hymenoptera: Braconidae) with unique gene rearrangement and phylogenetic implications. Mol Biol Rep 2023; 50:2641-2649. [PMID: 36639523 PMCID: PMC10011326 DOI: 10.1007/s11033-022-08232-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Species in the subfamily Aphidiinae from the Braconidae of Hymenoptera are endoparasitic wasps that exclusively utilize aphids as hosts. Some Aphidiinae species are widely used as biological agents. However, there were only one species with determined complete mitochondrial genome from this subfamily. METHODS AND RESULTS In this study, we sequenced and annotated the mitochondrial genome (mitogenome) of Binodoxys acalephae, which was 15,116 bp in size and contained 37 genes. The start codon of 13 protein-coding genes was ATN, and the complete stop codon TAA and TAG was widely assigned to 11 protein-coding genes. The lrRNA contains 43 stem-loop structures, and srRNA contains 25 stem-loop structures. Translocation and inversion of tRNA genes was found to be dominant in B. acalephae. In contrast to Aphidius gifuensis from the same subfamily Aphidiinae, inverted tRNALeu1 was translocated to the gene cluster between tRNALeu2 and COX2, and the control region between tRNAIle and tRNAMet was deleted in the mitogenome of B. acalephae. Within Braconidae, gene clusters tRNATrp-tRNACys-tRNATyr and CR-tRNAIle-tRNAGln-tRNAMet were hotspots for gene rearrangement. Phylogenetic analysis showed that both Bayesian and maximum-likelihood methods recovered the monophyly of Aphidiinae and suggested that Aphidiinae formed sister clades with the remaining subfamilies. The phylogenetic analyses of nine subfamilies supported the monophyly of Cyclostomes and Noncyclostomes in Braconidae. CONCLUSION The arrangement of mitochondrial genes and the phylogenetic relationships among nine Braconidae subfamilies were constructed better to understand the diversity and evolution of Aphidiinae mitogenomes.
Collapse
Affiliation(s)
- Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Weiwei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
- Yunnan Agricultural University, 650201 Kunming, China
| | - Qiannan Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Yunming Wang
- Yuxi Branch, Yunnan Tobacco Company, 653100 Yuxi, China
| | - Xiaoling Li
- Yuxi Branch, Yunnan Tobacco Company, 653100 Yuxi, China
| | - Xiaoqian Duan
- Yuxi Branch, Yunnan Tobacco Company, 653100 Yuxi, China
| | - Jia He
- Institute of Plant Protection, Academy of Ningxia Agriculture and Forestry Science, 750002 Yinchuan, China
- Ningxia Key Laboratory of Plant Disease and Pest Control, 750002 Yinchuan, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
3
|
Jasso-Martínez JM, Santos BF, Zaldívar-Riverón A, Fernandez-Triana J, Sharanowski BJ, Richter R, Dettman JR, Blaimer BB, Brady SG, Kula RR. Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. Mol Phylogenet Evol 2022; 173:107452. [DOI: 10.1016/j.ympev.2022.107452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
|
4
|
Powell C, Caleca V, Rhode C, Teixeira da Costa L, van Asch B. New Mitochondrial Gene Rearrangement in Psyttalia concolor, P. humilis and P. lounsburyi (Hymenoptera: Braconidae), Three Parasitoid Species of Economic Interest. INSECTS 2020; 11:E854. [PMID: 33276418 PMCID: PMC7761351 DOI: 10.3390/insects11120854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/02/2022]
Abstract
The family Braconidae consists mostly of specialized parasitoids, some of which hold potential in biocontrol of agricultural pests. Psyttalia concolor, Psyttalia humilis and Psyttalia lounsburyi are parasitoids associated with Bactrocera oleae, a major pest of cultivated olives. The native range of Psyttalia concolor is the Mediterranean, and P. humilis and P. lounsburyi are native to sub-Saharan Africa. This study reports the mitochondrial genomes of the three species, thus laying the foundation for mitogenomic analyses in the genus Psyttalia. Comparative mitogenomics within Braconidae showed a novel gene arrangement in Psyttalia in involving translocation and inversion of transfer RNA genes. The placement of Psyttalia in the subfamily Opiinae was well-supported, and the divergence between Psyttalia and its closest relative (Diachasmimorpha longicaudata) was at ~55 MYA [95% highest posterior density (HPD): 34-83 MYA]. Psyttalia lounsburyi occupied the most basal position among the three Psyttalia, having diverged from the other two species ~11 MYA (95% HPD: 6-17 MYA). Psyttalia concolor and P. humilis were recovered as sister species diverged at ~2 MYA (95% HPD: 1.1-3.6 MYA). This phylogeny combining new sequences and a set of 31 other cyclostomes and non-cyclostomes highlights the importance of a comprehensive taxonomic coverage of Braconidae mitogenomes to overcome the lack of robustness in the placement of several subfamilies.
Collapse
Affiliation(s)
- Chanté Powell
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (C.P.); (C.R.)
| | - Virgilio Caleca
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze, Edificio 5, 90128 Palermo, Italy;
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (C.P.); (C.R.)
| | - Luis Teixeira da Costa
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Postboks 4956 Nydalen, 0424 Oslo, Norway
- Norsk Entomologisk Forening, Naturhistorisk Museum, Universitetet i Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (C.P.); (C.R.)
| |
Collapse
|
5
|
Chen XX, van Achterberg C. Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 Years of Progress. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:335-358. [PMID: 30332295 DOI: 10.1146/annurev-ento-011118-111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The parasitoid wasp family Braconidae is likely the second-most species-rich family in the animal kingdom. Braconid wasps are widely distributed and often encountered. They constitute one of the principal groups of natural enemies of phytophagous insects, of which many are serious pest species. The enormous biological diversification of braconid wasps has led to many homoplasies, which contributed widely to instabilities in historical classifications. Recent studies using combinations of genetic markers or total mitochondrial genomes allow for better founded groupings and will ultimately lead to a stable classification. We present the current status of the phylogenetics of the Braconidae in a historical perspective and our understanding of the effects on higher classification.
Collapse
Affiliation(s)
- Xue-Xin Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Cornelis van Achterberg
- Department of Terrestrial Zoology, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands;
| |
Collapse
|
6
|
Whitfield JB, Austin AD, Fernandez-Triana JL. Systematics, Biology, and Evolution of Microgastrine Parasitoid Wasps. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:389-406. [PMID: 29058979 DOI: 10.1146/annurev-ento-020117-043405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The braconid parasitoid wasp subfamily Microgastrinae is perhaps the most species-rich subfamily of animals on Earth. Despite their small size, they are familiar to agriculturalists and field ecologists alike as one of the principal groups of natural enemies of caterpillars feeding on plants. Their abundance and nearly ubiquitous terrestrial distribution, their intricate interactions with host insects, and their historical association with mutualistic polydnaviruses have all contributed to Microgastrinae becoming a key group of organisms for studying parasitism, parasitoid genomics, and mating biology. However, these rich sources of data have not yet led to a robust genus-level classification of the group, and some taxonomic confusion persists as a result. We present the current status of understanding of the general biology, taxonomic history, diversity, geographical patterns, host relationships, and phylogeny of Microgastrinae as a stimulus and foundation for further study. Current progress in elucidating the biology and taxonomy of this important group is rapid and promises a revolution in the classification of these wasps in the near future.
Collapse
Affiliation(s)
- James B Whitfield
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia;
| | | |
Collapse
|
7
|
Li Q, Wei SJ, Tang P, Wu Q, Shi M, Sharkey MJ, Chen XX. Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae. Genome Biol Evol 2016; 8:2651-62. [PMID: 27503293 PMCID: PMC5630901 DOI: 10.1093/gbe/evw184] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/30/2022] Open
Abstract
The rapid increase in the number of mitochondrial genomes in public databases provides opportunities for insect phylogenetic studies; but it also provides challenges because of gene rearrangements and variable substitution rates among both lineages and sites. Typically, phylogenetic studies use mitochondrial sequence data but exclude other features of the mitochondrial genome from analyses. Here, we undertook large-scale sequencing of mitochondrial genomes from a worldwide collection of specimens belonging to Braconidae, one of the largest families of Metazoa. The strand-asymmetry of base composition in the mitochondrial genomes of braconids is reversed, providing evidence for monophyly of the Braconidae. We have reconstructed a backbone phylogeny of the major lineages of Braconidae from gene order of the mitochondrial genomes. Standard phylogenetic analyses of DNA sequences provided strong support for both Cyclostomes and Noncyclostomes. Four subfamily complexes, that is, helconoid, euphoroid, sigalphoid, and microgastroid, within the Noncyclostomes were reconstructed robustly, the first three of which formed a monophyletic group sister to the last one. Aphidiinae was recovered as a lineage sister to other groups of Cyclostomes, while the Ichneutinae was recovered as paraphyletic. Separate analyses of the subdivided groups showed congruent relationships, employing different matrices and methods, for the internal nodes of the Cyclostomes and the microgastroid complex of subfamilies. This research, using multiple lines of evidence from mitochondrial genomes, illustrates multiple uses of mitochondrial genomes for phylogenetic inference in Braconidae.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Jun Wei
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Pu Tang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Xue-Xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Kittel RN, Austin AD, Klopfstein S. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations. Mol Phylogenet Evol 2016; 101:224-241. [PMID: 27179700 DOI: 10.1016/j.ympev.2016.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov.), variously treated by previous authors, is proposed as a junior synonym of Chelonus Jurine; the following subgenera of Microchelonus - Baculonus Braet & van Achterberg (syn. nov.), Carinichelonus Tobias (syn. nov.) and Scabrichelonus He, Chen & van Achterberg (syn. nov.), are proposed as junior synonyms of Chelonus; a number of new species names are proposed due to homonyms resulting from the above changes and these are listed in the paper.
Collapse
Affiliation(s)
- Rebecca N Kittel
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Seraina Klopfstein
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Naturhistorisches Museum der Burgergemeinde Bern, Bernastr. 15, CH-3005 Bern, Switzerland
| |
Collapse
|
9
|
Sucena É, Vanderberghe K, Zhurov V, Grbić M. Reversion of developmental mode in insects: evolution from long germband to short germband in the polyembrionic wasp Macrocentrus cingulum Brischke. Evol Dev 2014; 16:233-46. [PMID: 24981069 DOI: 10.1111/ede.12086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Germband size in insects has played a central role in our understanding of insect patterning mechanisms and their evolution. The polarity of evolutionary change in insect patterning has been viewed so far as the unidirectional shift from the ancestral short germband patterning of basal hemimetabolous insects to the long germband patterning observed in most modern Holometabola. However, some orders of holometabolic insects display both short and long germband development, though the absence of a clear phylogenetic context does not permit definite conclusions on the polarity of change. Derived hymenoptera, that is, bees and wasps, represent a classical textbook example of long germband development. Yet, in some wasps putative short germband development has been described correlating with lifestyle changes, namely with evolution of endoparasitism and polyembryony. To address the potential reversion from long to short germband, we focused on the family Braconidae, which displays ancestral long germband development, and examined the derived polyembryonic braconid Macrocentrus cingulum. Using SEM analysis of M. cingulum embryogenesis coupled with analyses of embryonic patterning markers, we show that this wasp evolved short germband embryogenesis secondarily, in a way that is reminiscent of embryogenesis in the beetle Tribolium castaneum. This work shows that the evolution of germband size in insects is a reversible process that may correlate with other life-history traits and suggests broader implications on the mechanisms and evolvability of insect development.
Collapse
Affiliation(s)
- Élio Sucena
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901, Oeiras, Portugal; Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, edifício C2, Campo Grande, 1749-016, Lisboa, Portugal
| | | | | | | |
Collapse
|
10
|
Li XY, van Achterberg C, Tan JC. Revision of the subfamily Opiinae (Hymenoptera, Braconidae) from Hunan (China), including thirty-six new species and two new genera. Zookeys 2013; 268:1-186. [PMID: 23653521 PMCID: PMC3592199 DOI: 10.3897/zookeys.268.4071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022] Open
Abstract
The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealisLi & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n., Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae (Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n., Rhogadopsis tabidula(Weng & Chen, 2005) comb. n., Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n., Xynobius multiarculatus (Chen & Weng, 2005) comb. n. THE FOLLOWING (SUB)GENERA ARE SYNONYMISED: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862.
Collapse
Affiliation(s)
- Xi-Ying Li
- College of Bio-Safety Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Cornelis van Achterberg
- Department of Terrestrial Zoology, Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
| | - Ji-Cai Tan
- College of Bio-Safety Science and Technology, Hunan Agriculture University, Changsha 410128, China
| |
Collapse
|
11
|
Karlsson D, Ronquist F. Skeletal morphology of Opius dissitus and Biosteres carbonarius (Hymenoptera: Braconidae), with a discussion of terminology. PLoS One 2012; 7:e32573. [PMID: 22558068 PMCID: PMC3340384 DOI: 10.1371/journal.pone.0032573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/27/2012] [Indexed: 11/19/2022] Open
Abstract
The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study.
Collapse
Affiliation(s)
- Dave Karlsson
- Department of Entomology, Swedish Museum of Natural History, Stockholm, Sweden.
| | | |
Collapse
|
12
|
Quicke DLJ, Smith MA, Janzen DH, Hallwachs W, Fernandez-Triana J, Laurenne NM, Zaldívar-Riverón A, Shaw MR, Broad GR, Klopfstein S, Shaw SR, Hrcek J, Hebert PDN, Miller SE, Rodriguez JJ, Whitfield JB, Sharkey MJ, Sharanowski BJ, Jussila R, Gauld ID, Chesters D, Vogler AP. Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera: Ichneumonoidea): data release and new measure of taxonomic congruence. Mol Ecol Resour 2012; 12:676-85. [PMID: 22487608 DOI: 10.1111/j.1755-0998.2012.03143.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The enormous cytochrome oxidase subunit I (COI) sequence database being assembled from the various DNA barcoding projects as well as from independent phylogenetic studies constitutes an almost unprecedented amount of data for molecular systematics, in addition to its role in species identification and discovery. As part of a study of the potential of this gene fragment to improve the accuracy of phylogenetic reconstructions, and in particular, exploring the effects of dense taxon sampling, we have assembled a data set for the hyperdiverse, cosmopolitan parasitic wasp superfamily Ichneumonoidea, including the release of 1793 unpublished sequences. Of approximately 84 currently recognized Ichneumonoidea subfamilies, 2500 genera and 41,000 described species, barcoding 5'-COI data were assembled for 4168 putative species-level terminals (many undescribed), representing 671 genera and all but ten of the currently recognized subfamilies. After the removal of identical and near-identical sequences, the 4174 initial sequences were reduced to 3278. We show that when subjected to phylogenetic analysis using both maximum likelihood and parsimony, there is a broad correlation between taxonomic congruence and number of included sequences. We additionally present a new measure of taxonomic congruence based upon the Simpson diversity index, the Simpson dominance index, which gives greater weight to morphologically recognized taxonomic groups (subfamilies) recovered with most representatives in one or a few contiguous groups or subclusters.
Collapse
|
13
|
Derocles SAP, LE Ralec A, Plantegenest M, Chaubet B, Cruaud C, Cruaud A, Rasplus JY. Identification of molecular markers for DNA barcoding in the Aphidiinae (Hym. Braconidae). Mol Ecol Resour 2011; 12:197-208. [PMID: 22004100 DOI: 10.1111/j.1755-0998.2011.03083.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reliable identification of Aphidiinae species (Braconidae) is a prerequisite for conducting studies on aphid-parasitoid interactions at the community level. However, morphological identification of Aphidiinae species remains problematic even for specialists and is almost impossible with larval stages. Here, we compared the efficiency of two molecular markers [mitochondrial cytochrome c oxydase I (COI) and nuclear long wavelength rhodopsin (LWRh)] that could be used to accurately identify about 50 species of Aphidiinae that commonly occur in aphid-parasitoid networks in northwestern Europe. We first identified species on a morphological basis and then assessed the consistency of genetic and morphological data. Probably because of mitochondrial introgression, Aphidius ervi and A. microlophii were indistinguishable on the basis of their COI sequences, whereas LWRh sequences discriminated these species. Conversely, because of its lower variability, LWRh failed to discriminate two pairs of species (Aphidius aquilus, Aphidius salicis, Lysiphlebus confusus and Lysiphlebus fabarum). Our study showed that no unique locus but a combination of two genes should be used to accurately identify members of Aphidiinae.
Collapse
Affiliation(s)
- Stephane A P Derocles
- INRA, Agrocampus-Ouest, Université de Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations Applied to Plant Protection), 65 Rue de Saint-Brieuc, CS 84215, 35042 Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
JERVIS MARK, FERNS PETER. Towards a general perspective on life-history evolution and diversification in parasitoid wasps. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Wei SJ, Shi M, Sharkey MJ, van Achterberg C, Chen XX. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genomics 2010; 11:371. [PMID: 20537196 PMCID: PMC2890569 DOI: 10.1186/1471-2164-11-371] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 06/11/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. RESULTS Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses. CONCLUSIONS Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods.
Collapse
Affiliation(s)
- Shu-jun Wei
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Shi
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Michael J Sharkey
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - Cornelis van Achterberg
- Department of Entomology, Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Xue-xin Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
16
|
Klopfstein S, Kropf C, Quicke DLJ. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of diplazontinae (Hymenoptera, Ichneumonidae). Syst Biol 2010; 59:226-41. [PMID: 20525632 DOI: 10.1093/sysbio/syp105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
How to quantify the phylogenetic information content of a data set is a longstanding question in phylogenetics, influencing both the assessment of data quality in completed studies and the planning of future phylogenetic projects. Recently, a method has been developed that profiles the phylogenetic informativeness (PI) of a data set through time by linking its site-specific rates of change to its power to resolve relationships at different timescales. Here, we evaluate the performance of this method in the case of 2 standard genetic markers for phylogenetic reconstruction, 28S ribosomal RNA and cytochrome oxidase subunit 1 (CO1) mitochondrial DNA, with maximum parsimony, maximum likelihood, and Bayesian analyses of relationships within a group of parasitoid wasps (Hymenoptera: Ichneumonidae, Diplazontinae). Retrieving PI profiles of the 2 genes from our own and from 3 additional data sets, we find that the method repeatedly overestimates the performance of the more quickly evolving CO1 compared with 28S. We explore possible reasons for this bias, including phylogenetic uncertainty, violation of the molecular clock assumption, model misspecification, and nonstationary nucleotide composition. As none of these provides a sufficient explanation of the observed discrepancy, we use simulated data sets, based on an idealized setting, to show that the optimum evolutionary rate decreases with increasing number of taxa. We suggest that this relationship could explain why the formula derived from the 4-taxon case overrates the performance of higher versus lower rates of evolution in our case and that caution should be taken when the method is applied to data sets including more than 4 taxa.
Collapse
Affiliation(s)
- Seraina Klopfstein
- Department of Invertebrates, Natural History Museum, Bernastrasse 15, CH-3005 Bern, Switzerland.
| | | | | |
Collapse
|
17
|
Perrichot V, Nel A, Quicke DLJ. New braconid wasps from French Cretaceous amber (Hymenoptera, Braconidae): synonymization with Eoichneumonidae and implications for the phylogeny of Ichneumonoidea. ZOOL SCR 2009. [DOI: 10.1111/j.1463-6409.2008.00358.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Pitz KM, Dowling APG, Sharanowski BJ, Boring CA, Seltmann KC, Sharkey MJ. Phylogenetic relationships among the Braconidae (Hymenoptera: Ichneumonoidea): A reassessment of Shi et al. (2005). Mol Phylogenet Evol 2007; 43:338-43. [PMID: 17208016 DOI: 10.1016/j.ympev.2006.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 11/17/2022]
Affiliation(s)
- Kevin M Pitz
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Thanwisai A, Kuvangkadilok C, Baimai V. Molecular phylogeny of black flies (Diptera: Simuliidae) from Thailand, using ITS2 rDNA. Genetica 2007; 128:177-204. [PMID: 17028950 DOI: 10.1007/s10709-005-5702-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 12/02/2005] [Indexed: 11/26/2022]
Abstract
The sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 40 black fly species from Thailand, belonging to 4 subgenera of the genus Simulium, namely Gomphostilbia (12 species), Nevermannia (5 species), Montisimulium (1 species), Simulium sensu stricto (21 species), and an unknown subgenus with one species (Simulium baimaii). The length of the ITS2 ranged from 247 to 308 bp. All black fly species had high AT content, ranging from 71 to 83.8%. Intraindividual variation (clonal variation) occurred in 13 species, ranging from 0.3 to 1.1%. Large intrapopulation and interpopulation heterogeneities exist in S. feuerboni from the same and different locations in Doi Inthanon National Park, northern Thailand. Phylogenetic relationships among 40 black fly species were examined using PAUP (version 4.0b10) and MrBAYS (version 3.0B4). The topology of the trees revealed two major monophyletic clades. The subgenus Simulium and Simulium baimaii were placed in the first monophyletic clade, whereas the subgenera Nevermannia + Montisimulium were placed as the sister group to the subgenus Gomphostilbia in the second monophyletic clade. Our results suggest that S. baimaii belongs to the malyschevi-group or variegatum-group in the subgenus Simulium. The molecular phylogeny generally agrees with existing morphology-based phylogenies.
Collapse
Affiliation(s)
- Aunchalee Thanwisai
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | | | | |
Collapse
|
20
|
Banks JC, Whitfield JB. Dissecting the ancient rapid radiation of microgastrine wasp genera using additional nuclear genes. Mol Phylogenet Evol 2006; 41:690-703. [PMID: 16854601 PMCID: PMC7129091 DOI: 10.1016/j.ympev.2006.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/30/2006] [Accepted: 06/01/2006] [Indexed: 11/16/2022]
Abstract
Previous estimates of a generic level phylogeny for the ubiquitous parasitoid wasp subfamily Microgastrinae (Hymenoptera) have been problematic due to short internal branches deep in the phylogeny. These short branches might be attributed to a rapid radiation among the taxa, the use of genes that are unsuitable for the levels of divergence being examined, or insufficient quantity of data. We added over 1200 nucleotides from four nuclear genes to a dataset derived from three genes to produce a dataset of over 3000 nucleotides per taxon. While the number of well-supported short branches in the phylogeny increased, we still did not obtain strong bootstrap support for every node. Parametric and nonparametric bootstrap simulations projected that an enormous, and likely unobtainable, amount of data would be required to get bootstrap support greater than 50% for every node. However, a marked increase in the number of well-supported nodes was seen when we conducted a Bayesian analysis of a combined dataset generated from morphological characters added to the seven gene dataset. Our results suggest that, in some cases, combining morphological and genetic characters may be the most practical way to increase support for short branches deep in a phylogeny.
Collapse
Affiliation(s)
- Jonathan C Banks
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|