1
|
Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, Liu ZJ, Xin HP, Gong YB, Liu Y, Wang WC, Chen LY, Yang Y, Kelly LJ, Yang J, Huang JL, Li Z, Liu P, Zhang L, Liu HM, Wang H, Deng SH, Liu M, Li J, Ma L, Liu Y, Lei Y, Xu W, Wu LQ, Liu F, Ma Q, Yu XR, Jiang Z, Zhang GQ, Li SH, Li RQ, Zhang SZ, Wang QF, Van de Peer Y, Zhang JB, Wang XM. A genome for gnetophytes and early evolution of seed plants. NATURE PLANTS 2018; 4:82-89. [PMID: 29379155 DOI: 10.1038/s41477-017-0097-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/27/2017] [Indexed: 05/07/2023]
Abstract
Gnetophytes are an enigmatic gymnosperm lineage comprising three genera, Gnetum, Welwitschia and Ephedra, which are morphologically distinct from all other seed plants. Their distinctiveness has triggered much debate as to their origin, evolution and phylogenetic placement among seed plants. To increase our understanding of the evolution of gnetophytes, and their relation to other seed plants, we report here a high-quality draft genome sequence for Gnetum montanum, the first for any gnetophyte. By using a novel genome assembly strategy to deal with high levels of heterozygosity, we assembled >4 Gb of sequence encoding 27,491 protein-coding genes. Comparative analysis of the G. montanum genome with other gymnosperm genomes unveiled some remarkable and distinctive genomic features, such as a diverse assemblage of retrotransposons with evidence for elevated frequencies of elimination rather than accumulation, considerable differences in intron architecture, including both length distribution and proportions of (retro) transposon elements, and distinctive patterns of proliferation of functional protein domains. Furthermore, a few gene families showed Gnetum-specific copy number expansions (for example, cellulose synthase) or contractions (for example, Late Embryogenesis Abundant protein), which could be connected with Gnetum's distinctive morphological innovations associated with their adaptation to warm, mesic environments. Overall, the G. montanum genome enables a better resolution of ancestral genomic features within seed plants, and the identification of genomic characters that distinguish Gnetum from other gymnosperms.
Collapse
Affiliation(s)
- Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Wuhan, China
| | - Zhi-Ming Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Ling-Fei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Centre of China and Orchid Conservation and Research Centre, Shenzhen, China
| | - Hai-Ping Xin
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Wuhan, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yan-Bing Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Wen-Cai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ling-Yun Chen
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Wuhan, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ji Yang
- Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Jin-Ling Huang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ping Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Li Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Hong-Mei Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Hui Wang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Shu-Han Deng
- Novogene Bioinformatics Institute, Beijing, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Ji Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Yan Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yang Lei
- Novogene Bioinformatics Institute, Beijing, China
| | - Wei Xu
- Novogene Bioinformatics Institute, Beijing, China
| | - Ling-Qing Wu
- Novogene Bioinformatics Institute, Beijing, China
| | - Fan Liu
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Wuhan, China
| | - Qian Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin-Ran Yu
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Centre of China and Orchid Conservation and Research Centre, Shenzhen, China
| | - Shao-Hua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui-Qiang Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Shou-Zhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
| | - Qing-Feng Wang
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Wuhan, China.
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Centre for Plant Systems Biology, VIB, Ghent, Belgium.
- Genomics Research Institute, University of Pretoria, Pretoria, South Africa.
| | - Jin-Bo Zhang
- Novogene Bioinformatics Institute, Beijing, China.
| | - Xiao-Ming Wang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
2
|
Puebla GG, Iglesias A, Gómez MA, Prámparo MB. Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina. JOURNAL OF PLANT RESEARCH 2017; 130:975-988. [PMID: 28528483 DOI: 10.1007/s10265-017-0953-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Fossil plants from the Lower Cretaceous (upper Aptian) of the La Cantera Formation, Argentina, are described. The fossils studied represent a leafy shooting system with several orders of articulated and striated axes and attached leaves with unequivocal ephedroid affinity. We also found associated remains of ovulate cones with four whorls of sterile bracts, which contain two female reproductive units (FRU). Ovulate cone characters fit well within the genus Ephedra. Special characters in the ovulate cones including an outer seed envelope with two types of trichomes, allowed us to consider our remains as a new Ephedra species. Abundant dispersed ephedroid pollen obtained from the macrofossil-bearing strata also confirms the abundance of Ephedraceae in the basin. The co-occurrence of abundant fossil of Ephedra (adapted to dry habitats) associated with thermophilic cheirolepideacean conifer pollen (Classopollis) in the unit would suggest marked seasonality at the locality during the Early Cretaceous. Furthermore, the floristic association is linked to dry sensitive rocks in the entire section. The macro- and microflora from San Luis Basin are similar in composition to several Early Cretaceous floras from the Northern Gondwana floristic province, but it may represent one of the southernmost records of an arid biome in South America.
Collapse
Affiliation(s)
- Gabriela G Puebla
- Unidad de Paleopalinología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales Centro Científico Tecnológico, UNCuyo-CONICET, Av. Adrián Ruiz Leal s/n-C.C.131, 5500, Mendoza, Argentina.
| | - Ari Iglesias
- Instituto de Investigaciones en Biodiversidad y Medioambiente UNCO-CONICET, Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - María A Gómez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis CONICET, Chacabuco 913, 5700, San Luis, Argentina
| | - Mercedes B Prámparo
- Unidad de Paleopalinología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales Centro Científico Tecnológico, UNCuyo-CONICET, Av. Adrián Ruiz Leal s/n-C.C.131, 5500, Mendoza, Argentina
| |
Collapse
|
3
|
Qu XJ, Jin JJ, Chaw SM, Li DZ, Yi TS. Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Sci Rep 2017; 7:41005. [PMID: 28120880 PMCID: PMC5264392 DOI: 10.1038/srep41005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Long-branch attraction (LBA) is a major obstacle in phylogenetic reconstruction. The phylogenetic relationships among Juniperus (J), Cupressus (C) and the Hesperocyparis-Callitropsis-Xanthocyparis (HCX) subclades of Cupressoideae are controversial. Our initial analyses of plastid protein-coding gene matrix revealed both J and C with much longer stem branches than those of HCX, so their sister relationships may be attributed to LBA. We used multiple measures including data filtering and modifying, evolutionary model selection and coalescent phylogenetic reconstruction to alleviate the LBA artifact. Data filtering by strictly removing unreliable aligned regions and removing substitution saturation genes and rapidly evolving sites could significantly reduce branch lengths of subclades J and C and recovered a relationship of J (C, HCX). In addition, using coalescent phylogenetic reconstruction could elucidate the LBA artifact and recovered J (C, HCX). However, some valid methods for other taxa were inefficient in alleviating the LBA artifact in J-C-HCX. Different strategies should be carefully considered and justified to reduce LBA in phylogenetic reconstruction of different groups. Three subclades of J-C-HCX were estimated to have experienced ancient rapid divergence within a short period, which could be another major obstacle in resolving relationships. Furthermore, our plastid phylogenomic analyses fully resolved the intergeneric relationships of Cupressoideae.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
4
|
Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 2014; 9:e107679. [PMID: 25222863 PMCID: PMC4164646 DOI: 10.1371/journal.pone.0107679] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.
Collapse
Affiliation(s)
- Ying Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dong-Mei Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zu-Yu Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 2014; 75:24-40. [DOI: 10.1016/j.ympev.2014.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
|
6
|
Xi Z, Rest JS, Davis CC. Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS One 2013; 8:e80870. [PMID: 24278335 PMCID: PMC3836751 DOI: 10.1371/journal.pone.0080870] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
The extant seed plants include more than 260,000 species that belong to five main lineages: angiosperms, conifers, cycads, Ginkgo, and gnetophytes. Despite tremendous effort using molecular data, phylogenetic relationships among these five lineages remain uncertain. Here, we provide the first broad coalescent-based species tree estimation of seed plants using genome-scale nuclear and plastid data By incorporating 305 nuclear genes and 47 plastid genes from 14 species, we identify that i) extant gymnosperms (i.e., conifers, cycads, Ginkgo, and gnetophytes) are monophyletic, ii) gnetophytes exhibit discordant placements within conifers between their nuclear and plastid genomes, and iii) cycads plus Ginkgo form a clade that is sister to all remaining extant gymnosperms. We additionally observe that the placement of Ginkgo inferred from coalescent analyses is congruent across different nucleotide rate partitions. In contrast, the standard concatenation method produces strongly supported, but incongruent placements of Ginkgo between slow- and fast-evolving sites. Specifically, fast-evolving sites yield relationships in conflict with coalescent analyses. We hypothesize that this incongruence may be related to the way in which concatenation methods treat sites with elevated nucleotide substitution rates. More empirical and simulation investigations are needed to understand this potential weakness of concatenation methods.
Collapse
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Joshua S. Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yang Y, Lin L, Wang Q. Chengia laxispicata gen. et sp. nov., a new ephedroid plant from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China: evolutionary, taxonomic, and biogeographic implications. BMC Evol Biol 2013; 13:72. [PMID: 23530702 PMCID: PMC3626868 DOI: 10.1186/1471-2148-13-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background The extant Gnetales include three monotypic families, namely, Ephedraceae (Ephedra), Gnetaceae (Gnetum), and Welwitschiaceae (Welwitschia), all of which possess compound female cones that comprise a main axis and 1 to multiple pairs/whorls of bracts subtending a female reproductive unit or having lower pairs/whorls of bracts sterile. However, the evolutionary origin of such a reproductive architecture in Gnetales is controversial in the light of the competing anthophyte versus gnetifer hypotheses of seed plant relationships. Hence, macrofossils demonstrating the structure of compound female cones of the Gnetales should be important to decipher the early evolution of the order. Results A new ephedroid plant Chengia laxispicata gen. et sp. nov. is described from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China. The fossil represents a part of a leafy shooting system with reproductive organs attached. The main shoot bears internodes and swollen nodes, from which lateral branches arise oppositely. Reproductive organs consist of female spikes terminal to twigs or axillary to linear leaves. Spikes are loosely arranged, having prominent nodes and internodes. Bracts of the spikes are decussately opposite and comprise 4—8 pairs of bracts. Each bract subtends an ellipsoid seed. Seeds are sessile, with a thin outer envelope and a distal micropylar tube. Conclusions Chengia laxispicata gen. et sp. nov. provides a missing link between archetypal fertile organs in the crown lineage of the Gnetales and compound female cones of the extant Ephedraceae. Combined with a wealth of Ephedra and ephedroid macrofossils from the Early Cretaceous, we propose a reduction and sterilization hypothesis that the female cone of the extant Ephedraceae may have stemmed from archetypal fertile organs in the crown lineage of the Gnetales. These have undergone sequentially intermediate links similar to female cones of Cretaceous Siphonospermum, Chengia, and Liaoxia by reduction and sterilization of the lower fertile bracts, shortenings of internodes and peduncles as well as loss of reproductive units in all inferior bracts. The basal family Ephedraceae including Ephedra of the extant Gnetales was demonstrated to have considerable diversity by the Early Cretaceous, so an emended familial diagnosis is given here. The Jehol Biota in Northeast China and adjacent areas contains a plethora of well-preserved macrofossils of Ephedra and ephedroids that show different evolutionary stages including primitive and derived characters of Ephedraceae, so Northeast China and adjacent areas may represent either the centre of origination or one of the centres for early diversification of the family.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | | | | |
Collapse
|
8
|
Wu CS, Chaw SM, Huang YY. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads. Genome Biol Evol 2013; 5:243-54. [PMID: 23315384 PMCID: PMC3595029 DOI: 10.1093/gbe/evt001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 12/23/2022] Open
Abstract
Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo-cycad sister-group hypothesis.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Yi Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Three genome-based phylogeny of Cupressaceae s.l.: Further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Mol Phylogenet Evol 2012; 64:452-70. [DOI: 10.1016/j.ympev.2012.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 12/17/2022]
|
10
|
Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM. Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol 2011; 3:1284-95. [PMID: 21933779 PMCID: PMC3219958 DOI: 10.1093/gbe/evr095] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 12/13/2022] Open
Abstract
The relationships among the extant five gymnosperm groups--gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads--remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the "gnepines" hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Nan Wang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Chi-Yao Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Ping Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Regina TMR, Quagliariello C. Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:646-54. [PMID: 20605476 DOI: 10.1016/j.plaphy.2010.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 04/26/2010] [Accepted: 05/04/2010] [Indexed: 05/04/2023]
Abstract
According to PCR assays and sequencing, we now report the shared presence of two rps3 introns, namely the rps3i74 and the rps3i249, in the mitochondria of all the classes representing the surviving lineages of gymnosperms, and unveil several lineages experiencing intron loss. Interestingly, the rps3 intron gains and losses within the four groups of gymnosperms let us sort out the Pinaceae and the non-Pinaceae into intron (+)- and intron (-)-lineages, respectively. Worthy of mention is also the finding that only Gnetum within the Gnetales harbours both the rps3 introns. This intron distribution pattern is consistent with the hypothesis that the two rps3 introns were likely present in the common ancestor of the seed plants and, then, independently lost in the non-Pinaceae during gymnosperm evolution. The derived secondary structural model of the novel group IIA intron improves our understanding of the significance and origin of the extraordinary length polymorphisms observed among rps3i249 orthologs. Despite the remarkable structural plasticity to adopt and reject introns, the rps3 mRNAs undergo accurate processing by splicing and extensive editing in gymnosperm mitochondria. This study provides additional insights into the evolutionarily high dynamics of mitochondrial introns which may come and go in closely related plant species. The turnover of the mitochondrial rps3 group II introns seen among lineages of seed plants further suggests that these introns might be an additional signature to discriminate between particularly cryptical taxonomic groups for which there is a need of a further evaluation of their evolutionary affiliation.
Collapse
Affiliation(s)
- Teresa M R Regina
- Dipartimento di Biologia Cellulare, Università degli Studi della Calabria, Ponte P. Bucci, 87030 Arcavacata di Rende, Italy
| | | |
Collapse
|
12
|
Zhong B, Yonezawa T, Zhong Y, Hasegawa M. The position of gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol Biol Evol 2010; 27:2855-63. [PMID: 20601411 DOI: 10.1093/molbev/msq170] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The phylogenetic position of Gnetales is one of the most contentious issues in the seed plant systematics. To elucidate the Gnetales position, an improved amino acid substitution matrix was estimated based on 64 chloroplast (cp) genomes and was applied to cp genome data including all three lineages of Gnetales in maximum likelihood analyses of proteins. Although the initial analysis strongly supported the sister relation of Gnetales with Cryptomeria (Cupressophyta or non-Pinaceae conifers) (the "Gnecup" hypothesis), the support seems to be caused by a long-branch attraction (LBA) artifact. Indeed, by removing fastest evolving proteins that are most likely associated with the LBA, the support drastically declined. Furthermore, another analysis of partial genome data with dense taxon sampling of conifers showed that, in psbC, rpl2, and rps7 proteins, there are many parallel amino acid substitutions between the lineages leading to Gnetales and to Cryptomeria, and by further excluding these three genes, the sister relation of Gnetales with Pinaceae (the "Gnepine" hypothesis) became supported. Overall, our analyses indicate that the LBA and parallel substitutions cause a seriously biased inference of phylogenetic position of Gnetales with the cp genome data.
Collapse
Affiliation(s)
- Bojian Zhong
- School of Life Sciences, Fudan University, Shanghai, China.
| | | | | | | |
Collapse
|
13
|
Abstract
The evolution of the seed represents a remarkable life-history transition for photosynthetic organisms. Here, we review the recent literature and historical understanding of how and why seeds evolved. Answering the 'how' question involves a detailed understanding of the developmental morphology and anatomy of seeds, as well as the genetic programs that determine seed size. We complement this with a special emphasis on the evolution of dormancy, the characteristic of seeds that allows for long 'distance' time travel. Answering the 'why' question involves proposed hypotheses of how natural selection has operated to favor the seed life-history phenomenon. The recent flurry of research describing the comparative biology of seeds is discussed. The review will be divided into sections dealing with: (1) the development and anatomy of seeds; (2) the endosperm; (3) dormancy; (4) early seed-like structures and the transition to seeds; and (5) the evolution of seed size (mass). In many cases, a special distinction is made between angiosperm and gymnosperm seeds. Finally, we make some recommendations for future research in seed biology.
Collapse
Affiliation(s)
- Ada Linkies
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany (http://www.seedbiology.de)
| | - Kai Graeber
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany (http://www.seedbiology.de)
| | - Charles Knight
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Gerhard Leubner-Metzger
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany (http://www.seedbiology.de)
| |
Collapse
|
14
|
Mathews S, Clements MD, Beilstein MA. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philos Trans R Soc Lond B Biol Sci 2010; 365:383-95. [PMID: 20047866 PMCID: PMC2838261 DOI: 10.1098/rstb.2009.0233] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
15
|
Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SCH, Newmaster SG, Hajibabaei M, Husband BC. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Resour 2009; 9 Suppl s1:130-9. [PMID: 21564972 DOI: 10.1111/j.1755-0998.2009.02652.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aron J Fazekas
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol 2009; 52:115-24. [PMID: 19166950 DOI: 10.1016/j.ympev.2008.12.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/22/2022]
Abstract
The cpDNA of Welwitschia mirabilis (the only species of Welwitschiales) was recently reported to be the most reduced and compact among photosynthetic land plants. However, cpDNAs of the other two gnetophyte lineages (viz. Ephedrales and Gnetales) have not yet been studied. It remains unclear what underlining mechanisms have downsized the cpDNA. To pin down major factors for cpDNA reduction and compaction in gnetophytes, we have determined 4 complete cpDNAs, including one from each of the 3 gnetophyte orders, Ephedra equisetina, Gnetum parvifolium, and W. mirabilis, and one from the non-Pinus Pinaceae, Keteleeria davidiana. We report that the cpDNAs of E. equisetina (109,518bp) and G.parvifolium (114,914bp) are not only smaller but more compact than that of W. mirabilis (118,919bp). The gnetophyte cpDNAs have commonly lost at least 18 genes that are retained in other seed plants. Furthermore, they have significantly biased usages of AT-rich codons and shorter introns and intergenic spaces, which are largely due to more deletions at inter-operon than intra-operon spaces and removal of segment sequences rather than single-nucleotides. We show that the reduced gnetophyte cpDNAs clearly resulted from selection for economy by deletions of genes and non-coding sequences, which then led to the compactness and the accelerated substitution rates. The smallest C-values in gnetophyte nuclear DNAs and the competitive or resource-poor situations encountered by gnetophytes further suggest a critical need for an economic strategy.
Collapse
|
17
|
Williams JH. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. AMERICAN JOURNAL OF BOTANY 2009; 96:144-65. [PMID: 21628181 DOI: 10.3732/ajb.0800070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A remarkable number of the defining features of flowering plants are expressed during the life history stage between pollination and fertilization. Hand pollinations of Amborella trichopoda (Amborellaceae) in New Caledonia show that when the stigma is first receptive, the female gametophyte is near maturity. Pollen germinates within 2 h, and pollen tubes with callose walls and plugs grow entirely within secretions from stigma to stylar canal and ovarian cavity. Pollen tubes enter the micropyle within 14 h, and double fertilization occurs within 24 h. Hundreds of pollen tubes grow to the base of the stigma, but few enter the open stylar canal. New data from Amborella, combined with a review of fertilization biology of other early-divergent angiosperms, show that an evolutionary transition from slow reproduction to rapid reproduction occurred early in angiosperm history. I identify increased pollen tube growth rates within novel secretory carpel tissues as the primary mechanism for such a shift. The opportunity for prezygotic selection through interactions with the stigma is also an important innovation. Pollen tube wall construction and substantial modifications of the ovule and its associated structures greatly facilitated a new kind of reproductive biology.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| |
Collapse
|
18
|
Mathews S. Phylogenetic relationships among seed plants: Persistent questions and the limits of molecular data. AMERICAN JOURNAL OF BOTANY 2009; 96:228-236. [PMID: 21628186 DOI: 10.3732/ajb.0800178] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Trees inferred from DNA sequence data provide only limited insight into the phylogeny of seed plants because the living lineages (cycads, Ginkgo, conifers, gnetophytes, and angiosperms) represent fewer than half of the major lineages that have been detected in the fossil record. Nevertheless, phylogenetic trees of living seed plants inferred from sequence data can provide a test of relationships inferred in analyses that include fossils. So far, however, significant uncertainty persists because nucleotide data support several conflicting hypotheses. It is likely that improved sampling of gymnosperm diversity in nucleotide data sets will help alleviate some of the analytical issues encountered in the estimation of seed plant phylogeny, providing a more definitive test of morphological trees. Still, rigorous morphological analyses will be required to answer certain fundamental questions, such as the identity of the angiosperm sister group and the rooting of crown seed plants. Moreover, it will be important to identify approaches for incorporating insights from data that may be accurate but less likely than sequence data to generate results supported by high bootstrap values. How best to weigh evidence and distinguish among hypotheses when some types of data give high support values and others do not remains an important problem.
Collapse
Affiliation(s)
- Sarah Mathews
- The Arnold Arboretum of Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
19
|
Drouin G, Daoud H, Xia J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 2008; 49:827-31. [PMID: 18838124 DOI: 10.1016/j.ympev.2008.09.009] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/19/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Previous studies have estimated that, in angiosperms, the synonymous substitution rate of chloroplast genes is three times higher than that of mitochondrial genes and that of nuclear genes is twelve times higher than that of mitochondrial genes. Here we used 12 genes in 27 seed plant species to investigate whether these relative rates of substitutions are common to diverse seed plant groups. We find that the overall relative rate of synonymous substitutions of mitochondrial, chloroplast and nuclear genes of all seed plants is 1:3:10, that these ratios are 1:2:4 in gymnosperms but 1:3:16 in angiosperms and that they go up to 1:3:20 in basal angiosperms. Our results show that the mitochondrial, chloroplast and nuclear genomes of seed plant groups have different synonymous substitutions rates, that these rates are different in different seed plant groups and that gymnosperms have smaller ratios than angiosperms.
Collapse
Affiliation(s)
- Guy Drouin
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
20
|
Duvall MR, Robinson JW, Mattson JG, Moore A. Phylogenetic analyses of two mitochondrial metabolic genes sampled in parallel from angiosperms find fundamental interlocus incongruence. AMERICAN JOURNAL OF BOTANY 2008; 95:871-884. [PMID: 21632411 DOI: 10.3732/ajb.2007310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant molecular phylogeneticists have supported an analytical approach of combining loci from different genomes, but the combination of mitochondrial sequences with chloroplast and nuclear sequences is potentially problematic. Low substitution rates in mitochondrial genes should decrease saturation, which is especially useful for the study of deep divergences. However, individual mitochondrial loci are insufficiently informative, so that combining congruent loci is necessary. For this study atp1 and cox1 were selected, which are of similar lengths, encode components of the respiratory pathway, and generally lack introns. Thus, these genes might be expected to have similar functional constraints, selection pressures, and evolutionary histories. Strictly parallel sampling of 52 species was achieved as well as six additional composite terminals with representatives from the major angiosperm clades. However, analyses of the separate loci produced strongly incongruent topologies. The source of the incongruence was investigated by validating sequences with questionable affinities, excluding RNA-edited nucleotides, deleting taxa with unexpected phylogenetic associations, and comparing different phylogenetic methods. However, even after potential artifacts were addressed and sites and taxa putatively associated with conflict were excluded, the resulting gene trees for the two mitochondrial loci were still substantially incongruent by all measures examined. Therefore, combining these loci in phylogenetic analysis may be counterproductive to the goal of fully resolving the angiosperm phylogeny.
Collapse
Affiliation(s)
- Melvin R Duvall
- Biological Sciences, Northern Illinois University, DeKalb, Illinois USA 60115-2861
| | | | | | | |
Collapse
|
21
|
Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, Gastinel L, Riou-Khamlichi C. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1003-1010. [PMID: 18160178 DOI: 10.1016/j.jplph.2007.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 05/25/2023]
Abstract
Two APETALA2 domain transcription factors were characterized first in angiosperms, and, recently, in several gymnosperms. These proteins are involved in several processes, from flowering to embryogenesis in Arabidopsis thaliana. We extrapolated this result to hybrid larch (Larixxmarschlinsii Coaz) resulting from a cross between European (Larix decidua) and Japanese (Larix kaempferi) larches. Somatic embryogenesis is well described and controlled for this Pinaceae. We characterized two-AP2 domain genes: LmAP2L1 and LmAP2L2. Phylogenetic analysis confirmed that LmAP2L1 and LmAP2L2 were orthologous to Norway spruce PaAP2L1 and PaAP2L2 and that L1 forms appeared to be specific to Pinaceae. RT-PCR analysis showed that larch APETALA2 was differentially expressed during late somatic embryogenesis and during the first steps of germination. Whereas LmAP2L2 was constitutively expressed during this process, LmAP2L1 expression appeared only during late somatic embryogenesis, when embryos were able to germinate. Further, LmAP2L1 appeared to be the preferentially expressed form during embryo germination. Thus, LmAP2L1 seems to be a valuable molecular marker for hybrid larch late somatic embryogenesis and could play a role during post-embryonic development.
Collapse
Affiliation(s)
- Damien Guillaumot
- Glycobiologie Végétale et Biotechnologie (EA3176), Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
McCoy SR, Kuehl JV, Boore JL, Raubeson LA. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 2008; 8:130. [PMID: 18452621 PMCID: PMC2386820 DOI: 10.1186/1471-2148-8-130] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 05/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR). Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its compactness, gene content and high nucleotide divergence rates are atypical. The current lack of additional conifer plastome sequences precludes any discrimination between the gnetifer and gnepine hypotheses of seed plant relationships. However, both phylogenetic analyses and shared genome features identified here are consistent with either of the hypotheses that link gnetophytes with conifers, but are inconsistent with the anthophyte hypothesis.
Collapse
Affiliation(s)
- Skip R McCoy
- Biological Sciences, Central Washington University, Ellensburg, WA 98926-7537, USA.
| | | | | | | |
Collapse
|
23
|
Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 2007; 7:135. [PMID: 17688696 PMCID: PMC1973135 DOI: 10.1186/1471-2148-7-135] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022] Open
Abstract
Background It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants. Results A broad survey was undertaken to evaluate synonymous substitution rates in mitochondrial genes of angiosperms and gymnosperms. Although most taxa conform to the generality that plant mitochondrial sequences evolve slowly, additional cases of highly accelerated rates were found. We explore in detail one of these new cases, within the genus Silene. A roughly 100-fold increase in synonymous substitution rate is estimated to have taken place within the last 5 million years and involves only one of ten species of Silene sampled in this study. Examples of unusually slow sequence evolution were also identified. Comparison of the fastest and slowest lineages shows that synonymous substitution rates vary by four orders of magnitude across seed plants. In other words, some plant mitochondrial lineages accumulate more synonymous change in 10,000 years than do others in 100 million years. Several perplexing cases of gene-to-gene variation in sequence divergence within a plant were uncovered. Some of these probably reflect interesting biological phenomena, such as horizontal gene transfer, mitochondrial-to-nucleus transfer, and intragenomic variation in mitochondrial substitution rates, whereas others are likely the result of various kinds of errors. Conclusion The extremes of synonymous substitution rates measured here constitute by far the largest known range of rate variation for any group of organisms. These results highlight the utility of examining absolute substitution rates in a phylogenetic context rather than by traditional pairwise methods. Why substitution rates are generally so low in plant mitochondrial genomes yet occasionally increase dramatically remains mysterious.
Collapse
|
24
|
Geuten K, Massingham T, Darius P, Smets E, Goldman N. Experimental Design Criteria in Phylogenetics: Where to Add Taxa. Syst Biol 2007; 56:609-22. [PMID: 17654365 DOI: 10.1080/10635150701499563] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Accurate phylogenetic inference is a topic of intensive research and debate and has been studied in response to many different factors: for example, differences in the method of reconstruction, the shape of the underlying tree, the substitution model, and varying quantities and types of data. Investigating whether the conditions used might lead to inaccurate inference has been attempted through elaborate data exploration but less attention has been given to creating a unified methodology to enable experimental designs in phylogenetic analysis to be improved and so avoid suboptimal conditions. Experimental design has been part of the field of statistics since the seminal work of Fisher in the early 20th century and a large body of literature exists on how to design optimum experiments. Here we investigate the use of the Fisher information matrix to decide between candidate positions for adding a taxon to a fixed topology, and introduce a parameter transformation that permits comparison of these different designs. This extension to Goldman (1998. Proc. R. Soc. Lond. B. 265: 1779-1786) thus allows investigation of "where to add taxa" in a phylogeny. We compare three different measures of the total information for selecting the position to add a taxon to a tree. Our methods are illustrated by investigating the behavior of the three criteria when adding a branch to model trees, and by applying the different criteria to two biological examples: a simplified taxon-sampling problem in the balsaminoid Ericales and the phylogeny of seed plants.
Collapse
Affiliation(s)
- Koen Geuten
- Laboratory of Plant Systematics, KU Leuven, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Wu CS, Wang YN, Liu SM, Chaw SM. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 2007; 24:1366-79. [PMID: 17383970 DOI: 10.1093/molbev/msm059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic relationships among the 5 groups of extant seed plants are presently unsettled. To reexamine this long-standing debate, we determine the complete chloroplast genome (cpDNA) of Cycas taitungensis and 56 protein-coding genes encoded in the cpDNA of Gnetum parvifolium. The cpDNA of Cycas is a circular molecule of 163,403 bp with 2 typical large inverted repeats (IRs) of 25,074 bp each. We inferred phylogenetic relationships among major seed plant lineages using concatenated 56 protein-coding genes in 37 land plants. Phylogenies, generated by the use of 3 independent methods, provide concordant and robust support for the monophylies of extant seed plants, gymnosperms, and angiosperms. Within the modern gymnosperms are 2 highly supported sister clades: Cycas-Ginkgo and Gnetum-Pinus. This result agrees with both the "gnetifer" and "gnepines" hypotheses. The sister relationships in Cycas-Ginkgo and Gnetum-Pinus clades are further reinforced by cpDNA structural evidence. Branch lengths of Cycas-Ginkgo and Gnetum were consistently the shortest and the longest, respectively, in all separate analyses. However, the Gnetum relative rate test revealed this tendency only for the 3rd codon positions and the transversional sites of the first 2 codon positions. A PsitufA located between psbE and petL genes is here first detected in Anthoceros (a hornwort), cycads, and Ginkgo. We demonstrate that the PsitufA is a footprint descended from the chloroplast tufA of green algae. The duplication of ycf2 genes and their shift into IRs should have taken place at least in the common ancestor of seed plants more than 300 MYA, and the tRNAPro-GGG gene was lost from the angiosperm lineage at least 150 MYA. Additionally, from cpDNA structural comparison, we propose an alternative model for the loss of large IR regions in black pine. More cpDNA data from non-Pinaceae conifers are necessary to justify whether the gnetifer or gnepines hypothesis is valid and to generate solid structural evidence for the monophyly of extant gymnosperms.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Research Center for Biodiversity, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
26
|
Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 2007; 23:167-72. [PMID: 17316886 DOI: 10.1016/j.tig.2007.02.001] [Citation(s) in RCA: 539] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 01/08/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
DNA barcoding aims to provide an efficient method for species-level identifications and, as such, will contribute powerfully to taxonomic and biodiversity research. As the number of DNA barcode sequences accumulates, however, these data will also provide a unique 'horizontal' genomics perspective with broad implications. For example, here we compare the goals and methods of DNA barcoding with those of molecular phylogenetics and population genetics, and suggest that DNA barcoding can complement current research in these areas by providing background information that will be helpful in the selection of taxa for further analyses.
Collapse
Affiliation(s)
- Mehrdad Hajibabaei
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | |
Collapse
|