1
|
Storer JM, Walker JA, Rewerts LC, Brown MA, Beckstrom TO, Herke SW, Roos C, Batzer MA. Owl Monkey Alu Insertion Polymorphisms and Aotus Phylogenetics. Genes (Basel) 2022; 13:2069. [PMID: 36360306 PMCID: PMC9691001 DOI: 10.3390/genes13112069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Owl monkeys (genus Aotus), or "night monkeys" are platyrrhine primates in the Aotidae family. Early taxonomy only recognized one species, Aotus trivirgatus, until 1983, when Hershkovitz proposed nine unique species designations, classified into red-necked and gray-necked species groups based predominately on pelage coloration. Recent studies questioned this conventional separation of the genus and proposed designations based on the geographical location of wild populations. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. A scaffold-level genome assembly for one Aotus species, Aotus nancymaae [Anan_2.0], facilitated large-scale ascertainment of nearly 2000 young lineage-specific Alu insertions. This study provides candidate oligonucleotides for locus-specific PCR assays for over 1350 of these elements. For 314 Alu elements across four taxa with multiple specimens, PCR analyses identified 159 insertion polymorphisms, including 21 grouping A. nancymaae and Aotus azarae (red-necked species) as sister taxa, with Aotus vociferans and A. trivirgatus (gray-necked) being more basal. DNA sequencing identified five novel Alu elements from three different taxa. The Alu datasets reported in this study will assist in species identification and provide a valuable resource for Aotus phylogenetics, population genetics and conservation strategies when applied to wild populations.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Lydia C. Rewerts
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Morgan A. Brown
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Thomas O. Beckstrom
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Department of Oral and Maxillofacial Surgery, University of Washington, 1959 NE Pacific Street, Health Sciences Building B-241, Seattle, WA 98195, USA
| | - Scott W. Herke
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Storer JM, Walker JA, Brown MA, Batzer MA. Cebidae Alu Element Alignments and a Complex Non-Human Primate Radiation. Life (Basel) 2022; 12:1655. [PMID: 36295090 PMCID: PMC9605045 DOI: 10.3390/life12101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Phylogenetic relationships among Cebidae species of platyrrhine primates are presently under debate. Studies prior to whole genome sequence (WGS) availability utilizing unidirectional Alu repeats linked Callithrix and Saguinus as sister taxa, based on a limited number of genetic markers and specimens, while the relative positions of Cebus, Saimiri and Aotus remained controversial. Multiple WGS allowed computational detection of Alu-genome junctions, however random mutation and evolutionary decay of these short-read segments prevented phylogenetic resolution. In this study, WGS for four Cebidae genomes of marmoset, squirrel monkey, owl monkey and capuchin were analyzed for full-length Alu elements and each locus was compared to the other three genomes in all possible combinations using orthologous region sequence alignments. Over 2000 candidates were aligned and subjected to visual inspection. Approximately 34% passed inspection and were considered shared in their respective category, 48% failed due to the target being present in all four genomes, having N's in the sequence or other sequence quality anomalies, and 18% were determined to represent near parallel insertions (NP). Wet bench locus specific PCR confirmed the presence of shared Alu insertions in all phylogenetically informative categories, providing evidence of extensive incomplete lineage sorting (ILS) and an abundance of Alu proliferation during the complex radiation of Cebidae taxa.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Morgan A. Brown
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Recently Integrated Alu Elements in Capuchin Monkeys: A Resource for Cebus/ Sapajus Genomics. Genes (Basel) 2022; 13:genes13040572. [PMID: 35456378 PMCID: PMC9030454 DOI: 10.3390/genes13040572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Capuchins are platyrrhines (monkeys found in the Americas) within the Cebidae family. For most of their taxonomic history, the two main morphological types of capuchins, gracile (untufted) and robust (tufted), were assigned to a single genus, Cebus. Further, all tufted capuchins were assigned to a single species, Cebus apella, despite broad geographic ranges spanning Central and northern South America. In 2012, tufted capuchins were assigned to their genus, Sapajus, with eight currently recognized species and five Cebus species, although these numbers are still under debate. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. However, Alu elements have rarely been used to study capuchins. Recent genome-level assemblies for capuchins (Cebus imitator; [Cebus_imitator_1.0] and Sapajus apella [GSC_monkey_1.0]) facilitated large scale ascertainment of young lineage-specific Alu insertions. Reported here are 1607 capuchin specific and 678 Sapajus specific Alu insertions along with candidate oligonucleotides for locus-specific PCR assays for many elements. PCR analyses identified 104 genus level and 51 species level Alu insertion polymorphisms. The Alu datasets reported in this study provide a valuable resource that will assist in the classification of archival samples lacking phenotypic data and for the study of capuchin phylogenetic relationships.
Collapse
|
4
|
Maruyama SR, Rogerio LA, Freitas PD, Teixeira MMG, Ribeiro JMC. Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes. Sci Rep 2021; 11:3791. [PMID: 33589693 PMCID: PMC7884790 DOI: 10.1038/s41598-021-81926-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
The increasing number of available genomic data allowed the development of phylogenomic analytical tools. Current methods compile information from single gene phylogenies, whether based on topologies or multiple sequence alignments. Generally, phylogenomic analyses elect gene families or genomic regions to construct phylogenomic trees. Here, we presented an alternative approach for Phylogenomics, named TOMM (Total Ortholog Median Matrix), to construct a representative phylogram composed by amino acid distance measures of all pairwise ortholog protein sequence pairs from desired species inside a group of organisms. The procedure is divided two main steps, (1) ortholog detection and (2) creation of a matrix with the median amino acid distance measures of all pairwise orthologous sequences. We tested this approach within three different group of organisms: Kinetoplastida protozoa, hematophagous Diptera vectors and Primates. Our approach was robust and efficacious to reconstruct the phylogenetic relationships for the three groups. Moreover, novel branch topologies could be achieved, providing insights about some phylogenetic relationships between some taxa.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Patricia Domingues Freitas
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | | | - José Marcos Chaves Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway rm 2E32, Rockville, MD, 20852, USA.
| |
Collapse
|
5
|
Mantovani V, Hauzman E, Corredor VH, Goulart PRK, Galvão O, Talebi M, Pessoa DMA, Soares JGM, Fiorani M, Gattass R, Fix Ventura D, Bonci DMO. Genetic variability of the sws1 cone opsin gene among New World monkeys. Am J Primatol 2020; 82:e23199. [PMID: 32990997 DOI: 10.1002/ajp.23199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.
Collapse
Affiliation(s)
- Viviani Mantovani
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Vitor H Corredor
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paulo R K Goulart
- Núcleo de Teoria de Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Olavo Galvão
- Núcleo de Teoria de Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Mauricio Talebi
- Departamento de Ciências Ambientais, Universidade Federal de São Paulo, Campus Diadema, São Paulo, São Paulo, Brazil
| | - Daniel M A Pessoa
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Juliana G M Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Fiorani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Gattass
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Daniela M O Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Carneiro J, Sampaio I, Lima T, Silva-Júnior JDS, Farias I, Hrbek T, Valsecchi J, Boubli J, Schneider H. Phylogenetic relationships in the genus Cheracebus (Callicebinae, Pitheciidae). Am J Primatol 2020; 82:e23167. [PMID: 32652664 DOI: 10.1002/ajp.23167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 11/08/2022]
Abstract
Cheracebus is a new genus of New World primate of the family Pitheciidae, subfamily Callicebinae. Until recently, Cheracebus was classified as the torquatus species group of the genus Callicebus. The genus Cheracebus has six species: C. lucifer, C. lugens, C. regulus, C. medemi, C. torquatus, and C. purinus, which are all endemic to the Amazon biome. Before the present study, there had been no conclusive interpretation of the phylogenetic relationships among most of the Cheracebus species. The present study tests the monophyly of the genus and investigates the relationships among the different Cheracebus species, based on DNA sequencing of 16 mitochondrial and nuclear markers. The phylogenetic analyses were based on Maximum Likelihood, Bayesian Inference, and multispecies coalescent approaches. The divergence times and genetic distances between the Cheracebus taxa were also estimated. The analyses confirmed the monophyly of the genus and a well-supported topology, with the following arrangement: ((C. torquatus, C. lugens), (C. lucifer (C. purinus, C. regulus))). A well-differentiated clade was also identified within part of the geographic range of C. lugens, which warrants further investigation to confirm its taxonomic status.
Collapse
Affiliation(s)
- Jeferson Carneiro
- Genomics and Systems Biology Center, Universidade Federal do Para, Belem, Brazil.,Instituto de Estudos Costeiros, Universidade Federal do Para, Campus Universitario de Bragança, Bragança, Para, Brazil
| | - Iracilda Sampaio
- Genomics and Systems Biology Center, Universidade Federal do Para, Belem, Brazil.,Instituto de Estudos Costeiros, Universidade Federal do Para, Campus Universitario de Bragança, Bragança, Para, Brazil
| | - Thaynara Lima
- Instituto de Estudos Costeiros, Universidade Federal do Para, Campus Universitario de Bragança, Bragança, Para, Brazil
| | | | - Izeni Farias
- Laboratory of Evolution and Animal Genetics, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Tomas Hrbek
- Laboratory of Evolution and Animal Genetics, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - João Valsecchi
- Instituto de Desenvolvimento Sustentável Mamirauá, Mamiraua Sustainable Development Reserve, Amazonas, Brazil
| | - Jean Boubli
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Horacio Schneider
- Genomics and Systems Biology Center, Universidade Federal do Para, Belem, Brazil.,Instituto de Estudos Costeiros, Universidade Federal do Para, Campus Universitario de Bragança, Bragança, Para, Brazil
| |
Collapse
|
7
|
Fordham G, Shanee S, Peck M. Effect of river size on Amazonian primate community structure: A biogeographic analysis using updated taxonomic assessments. Am J Primatol 2020; 82:e23136. [PMID: 32323350 DOI: 10.1002/ajp.23136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/05/2022]
Abstract
The mechanisms that underlie the diversification of Neotropical primates remain contested. One mechanism that has found support is the riverine barrier hypothesis (RBH), which postulates that large rivers impede gene flow between populations on opposite riverbanks and promote allopatric speciation. Ayres and Clutton-Brock (1992) demonstrated that larger Amazonian rivers acted as barriers, delineating the distribution limits of primate species. However, profound changes in taxonomy and species concepts have led to the proliferation of Neotropical primate taxa, which may have reduced support for their results. Using the most recent taxonomic assessments and distribution maps, we tested the effect of increasing river size on the similarity of opposite riverbank primate communities in the Amazon. First, we conducted a literature review of primate taxonomy and developed a comprehensive spatial database, then applied geographical information system to query mapped primate ranges against the riverine geography of the Amazon watershed to produce a similarity index for opposite riverbank communities. Finally, we ran models to test how measures of river size predicted levels of similarity. We found that, almost without exception, similarity scores were lower than scores from Ayres and Clutton-Brock (1992) for the same rivers. Our model showed a significant negative relationship between streamflow and similarity in all tests, and found river width significant for the segmented Amazon, but not for multiple Amazon watershed rivers. Our results support the RBH insofar as they provide evidence for the prediction that rivers with higher streamflow act as more substantial barriers to dispersal, and accordingly exhibit greater variation in community composition between riverbanks.
Collapse
Affiliation(s)
- Gail Fordham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Sam Shanee
- Neotropical Primate Conservation, Torpoint, Cornwall, UK
| | - Mika Peck
- School of Life Sciences, University of Sussex, Brighton, UK.,Neotropical Primate Conservation, Torpoint, Cornwall, UK
| |
Collapse
|
8
|
Storer JM, Walker JA, Jordan VE, Batzer MA. Sensitivity of the polyDetect computational pipeline for phylogenetic analyses. Anal Biochem 2020; 593:113516. [PMID: 31794702 DOI: 10.1016/j.ab.2019.113516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Alu elements are powerful phylogenetic markers. The combination of a recently-developed computational pipeline, polyDetect, with high copy number Alu insertions has previously been utilized to help resolve the Papio baboon phylogeny with high statistical support. Here, the polyDetect method was applied to the highly contentious Cebidae phylogeny within New World monkeys (NWM). The polyDetect method relies on conserved homology/identity of short read sequence data among the species being compared to accurately map predicted shared Alu insertions to each unique flanking sequence. The results of this comprehensive assessment indicate that there were insufficient sequence homology/identity stretches in non-repeated DNA sequences among the four Cebidae genera analyzed in this study to make this strategy phylogenetically viable. The ~20 million years of evolutionary divergence of the Cebidae genera has resulted in random sequence decay within the short read data, obscuring potentially orthologous elements in the species tested. These analyses suggest that the polyDetect pipeline is best suited to resolving phylogenies of more recently diverged lineages when high-quality assembled genomes are not available for the taxa of interest.
Collapse
Affiliation(s)
- Jessica M Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Vallmer E Jordan
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Storer JM, Mierl JR, Brantley SA, Threeton B, Sukharutski Y, Rewerts LC, St Romain CP, Foreman MM, Baker JN, Walker JA, Orkin JD, Melin AD, Phillips KA, Konkel MK, Batzer MA. Amplification Dynamics of Platy-1 Retrotransposons in the Cebidae Platyrrhine Lineage. Genome Biol Evol 2019; 11:1105-1116. [PMID: 30888417 PMCID: PMC6464705 DOI: 10.1093/gbe/evz062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2019] [Indexed: 12/11/2022] Open
Abstract
Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date, only the marmoset genome has been analyzed for Platy-1 repeat content. Here, we report full-length Platy-1 insertions in other New World monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilies were discovered in the marmoset genome. All of the lineage-specific insertions found in the squirrel and capuchin monkeys were fixed present. However, ∼15% of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in the marmoset genome is an exception among NWM analyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes.
Collapse
Affiliation(s)
| | - Jackson R Mierl
- Department of Biological Sciences, Louisiana State University
| | | | | | | | - Lydia C Rewerts
- Department of Biological Sciences, Louisiana State University
| | | | | | - Jasmine N Baker
- Department of Biological Sciences, Louisiana State University
| | | | - Joseph D Orkin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, N.W. Calgary, Alberta, Canada
| | - Kimberley A Phillips
- Department of Psychology, Trinity University.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Miriam K Konkel
- Department of Biological Sciences, Louisiana State University.,Department of Genetics & Biochemistry, Clemson University
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University
| |
Collapse
|
10
|
Schrago CG, Seuánez HN. Large ancestral effective population size explains the difficult phylogenetic placement of owl monkeys. Am J Primatol 2019; 81:e22955. [PMID: 30779198 DOI: 10.1002/ajp.22955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 11/07/2022]
Abstract
The phylogenetic position of owl monkeys, grouped in the genus Aotus, has been a controversial issue for understanding Neotropical primate evolution. Explanations of the difficult phylogenetic assignment of owl monkeys have been elusive, frequently relying on insufficient data (stochastic error) or scenarios of rapid speciation (adaptive radiation) events. Using a coalescent-based approach, we explored the population-level mechanisms likely explaining these topological discrepancies. We examined the topological variance of 2,192 orthologous genes shared between representatives of the three major Cebidae lineages and the outgroup. By employing a methodological framework that allows for reticulated tree topologies, our analysis explicitly tested for non-dichotomous evolutionary processes impacting the finding of the position of owl monkeys in the cebid phylogeny. Our findings indicated that Aotus is a sister lineage of the callitrichines. Most gene trees (>50%) failed to recover the species tree topology, although the distribution of gene trees mismatching the true species topology followed the standard expectation of the multispecies coalescent without reticulation. We showed that the large effective population size of the common ancestor of Aotus and callitrichines was the most likely factor responsible for generating phylogenetic uncertainty. On the other hand, fast speciation scenarios or introgression played minor roles. We propose that the difficult phylogenetic placement of Aotus is explained by population-level processes associated with the large ancestral effective size. These results shed light on the biogeography of the early cebid diversification in the Miocene, highlighting the relevance of evaluating phylogenetic relationships employing population-aware approaches.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hector N Seuánez
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Genetics, National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Wang X, Lim BK, Ting N, Hu J, Liang Y, Roos C, Yu L. Reconstructing the phylogeny of new world monkeys ( platyrrhini): evidence from multiple non-coding loci. Curr Zool 2018; 65:579-588. [PMID: 31616489 PMCID: PMC6784508 DOI: 10.1093/cz/zoy072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/12/2018] [Indexed: 11/27/2022] Open
Abstract
Among mammalian phylogenies, those characterized by rapid radiations are particularly problematic. The New World monkeys (NWMs, Platyrrhini) comprise 3 families and 7 subfamilies, which radiated within a relatively short time period. Accordingly, their phylogenetic relationships are still largely disputed. In the present study, 56 nuclear non-coding loci, including 33 introns (INs) and 23 intergenic regions (IGs), from 20 NWM individuals representing 18 species were used to investigate phylogenetic relationships among families and subfamilies. Of the 56 loci, 43 have not been used in previous NWM phylogenetics. We applied concatenation and coalescence tree-inference methods, and a recently proposed question-specific approach to address NWM phylogeny. Our results indicate incongruence between concatenation and coalescence methods for the IN and IG datasets. However, a consensus was reached with a single tree topology from all analyses of combined INs and IGs as well as all analyses of question-specific loci using both concatenation and coalescence methods, albeit with varying degrees of statistical support. In detail, our results indicated the sister-group relationships between the families Atelidae and Pitheciidae, and between the subfamilies Aotinae and Callithrichinae among Cebidae. Our study provides insights into the disputed phylogenetic relationships among NWM families and subfamilies from the perspective of multiple non-coding loci and various tree-inference approaches. However, the present phylogenetic framework needs further evaluation by adding more independent sequence data and a deeper taxonomic sampling. Overall, our work has important implications for phylogenetic studies dealing with rapid radiations.
Collapse
Affiliation(s)
- Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Nelson Ting
- Department of Anthropology and Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yunpeng Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg, Göttingen, Germany
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
12
|
DNA Polymerase Sequences of New World Monkey Cytomegaloviruses: Another Molecular Marker with Which To Infer Platyrrhini Systematics. J Virol 2018; 92:JVI.00980-18. [PMID: 29976674 DOI: 10.1128/jvi.00980-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023] Open
Abstract
Over the past few decades, a large number of studies have identified herpesvirus sequences from many mammalian species around the world. Among the different nonhuman primate species tested so far for cytomegaloviruses (CMVs), only a few were from the New World. Seeking to identify CMV homologues in New World monkeys (NWMs), we carried out molecular screening of 244 blood DNA samples from 20 NWM species from Central and South America. Our aim was to reach a better understanding of their evolutionary processes within the Platyrrhini parvorder. Using PCR amplification with degenerate consensus primers targeting highly conserved amino acid motifs encoded by the herpesvirus DNA polymerase gene, we characterized novel viral sequences from 12 species belonging to seven genera representative of the three NWM families. BLAST searches, pairwise nucleotide and amino acid sequence comparisons, and phylogenetic analyses confirmed that they all belonged to the Cytomegalovirus genus. Previously determined host taxa allowed us to demonstrate a good correlation between the distinct monophyletic clades of viruses and those of the infected primates at the genus level. In addition, the evolutionary branching points that separate NWM CMVs were congruent with the divergence dates of their hosts at the genus level. These results significantly expand our knowledge of the host range of this viral genus and strongly support the occurrence of cospeciation between these viruses and their hosts. In this respect, we propose that NWM CMV DNA polymerase gene sequences may serve as reliable molecular markers with which to infer Platyrrhini phylogenetics.IMPORTANCE Investigating evolutionary processes between viruses and nonhuman primates has led to the discovery of a large number of herpesviruses. No study published so far on primate cytomegaloviruses has extensively studied New World monkeys (NWMs) at the subspecies, species, genus, and family levels. The present study sought to identify cytomegalovirus homologues in NWMs and to decipher their evolutionary relationships. This led us to characterize novel viruses from 12 of the 20 primate species tested, which are representative of the three NWM families. The identification of distinct viruses in these primates not only significantly expands our knowledge of the host range of this viral genus but also sheds light on its evolutionary history. Phylogenetic analyses and molecular dating of the sequences obtained support a virus-host coevolution.
Collapse
|
13
|
Valencia LM, Martins A, Ortiz EM, Di Fiore A. A RAD-sequencing approach to genome-wide marker discovery, genotyping, and phylogenetic inference in a diverse radiation of primates. PLoS One 2018; 13:e0201254. [PMID: 30118481 PMCID: PMC6097672 DOI: 10.1371/journal.pone.0201254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023] Open
Abstract
Until recently, most phylogenetic and population genetics studies of nonhuman primates have relied on mitochondrial DNA and/or a small number of nuclear DNA markers, which can limit our understanding of primate evolutionary and population history. Here, we describe a cost-effective reduced representation method (ddRAD-seq) for identifying and genotyping large numbers of SNP loci for taxa from across the New World monkeys, a diverse radiation of primates that shared a common ancestor ~20-26 mya. We also estimate, for the first time, the phylogenetic relationships among 15 of the 22 currently-recognized genera of New World monkeys using ddRAD-seq SNP data using both maximum likelihood and quartet-based coalescent methods. Our phylogenetic analyses robustly reconstructed three monophyletic clades corresponding to the three families of extant platyrrhines (Atelidae, Pitheciidae and Cebidae), with Pitheciidae as basal within the radiation. At the genus level, our results conformed well with previous phylogenetic studies and provide additional information relevant to the problematic position of the owl monkey (Aotus) within the family Cebidae, suggesting a need for further exploration of incomplete lineage sorting and other explanations for phylogenetic discordance, including introgression. Our study additionally provides one of the first applications of next-generation sequencing methods to the inference of phylogenetic history across an old, diverse radiation of mammals and highlights the broad promise and utility of ddRAD-seq data for molecular primatology.
Collapse
Affiliation(s)
- Lina M. Valencia
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, Austin, United States of America
| | - Amely Martins
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, Austin, United States of America
- Centro Nacional de Pesquisa de Conservação de Primatas Brasileiros, ICMBio/MMA, Brazil, Brazil
| | - Edgardo M. Ortiz
- Department of Integrative Biology, University of Texas at Austin, Austin, United States of America
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, Austin, United States of America
| |
Collapse
|
14
|
Koga A, Tanabe H, Hirai Y, Imai H, Imamura M, Oishi T, Stanyon R, Hirai H. Co-Opted Megasatellite DNA Drives Evolution of Secondary Night Vision in Azara's Owl Monkey. Genome Biol Evol 2017; 9:1963-1970. [PMID: 28810713 PMCID: PMC5553404 DOI: 10.1093/gbe/evx142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 11/12/2022] Open
Abstract
Owl monkeys (genus Aotus) are the only taxon in simian primates that consists of nocturnal or otherwise cathemeral species. Their night vision is superior to that of other monkeys, apes, and humans but not as good as that of typical nocturnal mammals. This incomplete night vision has been used to conclude that these monkeys only secondarily adapted to a nocturnal lifestyle, or to their cathemeral lifestyle that involves high night-time activity. It is known that the rod cells of many nocturnal mammals possess a unique nuclear architecture in which heterochromatin is centrally located. This "inverted nuclear architecture", in contrast with "conventional nuclear architecture", provides elevated night vision by passing light efficiently to the outer segments of photoreceptors. Owl monkey rod cells exhibit an intermediate chromatin distribution, which may provide them with less efficient night vision than other nocturnal mammals. Recently, we identified three megasatellite DNAs in the genome of Azara's owl monkey (Aotus azarae). In the present study, we show that one of the three megasatellite DNAs, OwlRep, serves as the primary component of the heterochromatin block located in the central space of the rod nucleus in A. azarae. This satellite DNA is likely to have emerged in the Aotus lineage after its divergence from those of other platyrrhini taxa and underwent a rapid expansion in the genome. Our results indicate that the heterochromatin core in the A. azarae rod nucleus was newly formed in A. azarae or its recent ancestor, and supports the hypothesis that A. azarae, and with all probability other Aotus species, secondarily acquired night vision.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Takao Oishi
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
15
|
Garbino GST, Martins-Junior AMG. Phenotypic evolution in marmoset and tamarin monkeys (Cebidae, Callitrichinae) and a revised genus-level classification. Mol Phylogenet Evol 2017; 118:156-171. [PMID: 28989098 DOI: 10.1016/j.ympev.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
Abstract
Marmosets and tamarins (Cebidae, Callitrichinae) constitute the most species-rich subfamily of New World monkeys and one of the most diverse phenotypically. Despite the profusion of molecular phylogenies of the group, the evolution of phenotypic characters under the rapidly-emerging consensual phylogeny of the subfamily has been little studied, resulting in taxonomic proposals that have limited support from other datasets. We examined the evolution of 18 phenotypic traits (5 continuous and 13 discrete), including pelage, skull, dentition, postcrania, life-history and vocalization variables in a robust molecular phylogeny of marmoset and tamarin monkeys, quantifying their phylogenetic signal and correlations among some of the traits. At the family level, our resulting topology supports owl monkeys (Aotinae) as sister group of Callitrichinae. The topology of the callitrichine tree was congruent with previous studies except for the position of the midas group of Saguinus tamarins, which placement as sister of the bicolor group did not receive significant statistical support in both Maximum Parsimony and Bayesian Inference analyses. Our results showed that the highest value of phylogenetic signal among continuous traits was displayed by the long call character and the lowest was exhibited in the home range, intermediate values were found in characters related to osteology and skull size. Among discrete traits, pelage and osteology had similar phylogenetic signal. Based on genetic, osteological, pelage and vocalization data, we present an updated genus-level taxonomy of Callitrichinae, which recognizes six genera in the subfamily: Callimico, Callithrix, Cebuella, Mico, Leontopithecus and Saguinus. To reflect their phenotypic distinctiveness and to avoid the use of the informal "species group", we subdivided Saguinus in the subgenera Leontocebus, Saguinus and Tamarinus (revalidated here).
Collapse
Affiliation(s)
- Guilherme S T Garbino
- PPG-Zoologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Antonio M G Martins-Junior
- Laboratório de Genética e Evolução, Instituto Federal do Pará, Campus de Tucuruí, Brazil; Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
16
|
Baker JN, Walker JA, Vanchiere JA, Phillippe KR, St. Romain CP, Gonzalez-Quiroga P, Denham MW, Mierl JR, Konkel MK, Batzer MA. Evolution of Alu Subfamily Structure in the Saimiri Lineage of New World Monkeys. Genome Biol Evol 2017; 9:2365-2376. [PMID: 28957461 PMCID: PMC5622375 DOI: 10.1093/gbe/evx172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
Squirrel monkeys, Saimiri, are commonly found in zoological parks and used in biomedical research. S. boliviensis is the most common species for research; however, there is little information about genome evolution within this primate lineage. Here, we reconstruct the Alu element sequence amplification and evolution in the genus Saimiri at the time of divergence within the family Cebidae lineage. Alu elements are the most successful SINE (Short Interspersed Element) in primates. Here, we report 46 Saimiri lineage specific Alu subfamilies. Retrotransposition activity involved subfamilies related to AluS, AluTa10, and AluTa15. Many subfamilies are simultaneously active within the Saimiri lineage, a finding which supports the stealth model of Alu amplification. We also report a high resolution analysis of Alu subfamilies within the S. boliviensis genome [saiBol1].
Collapse
Affiliation(s)
- Jasmine N. Baker
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - John A. Vanchiere
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport
| | - Kacie R. Phillippe
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | | | | | - Michael W. Denham
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Jackson R. Mierl
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Miriam K. Konkel
- Department of Biological Sciences, Louisiana State University, Baton Rouge
- Department of Biological Sciences, Clemson University, South Carolina
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
17
|
Interspecific Chromosome Painting Provides Clues to the Ancestral Karyotype of the New World Monkey Genus Aotus. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9403-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Dumas F, Mazzoleni S. Neotropical primate evolution and phylogenetic reconstruction using chromosomal data. EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/11250003.2016.1260655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- F. Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche”, University of Palermo, Italy
| | - S. Mazzoleni
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche”, University of Palermo, Italy
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Nova Delgado M, Galbany J, Pérez-Pérez A. Molar shape variability in platyrrhine primates. J Hum Evol 2016; 99:79-92. [PMID: 27650581 DOI: 10.1016/j.jhevol.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
Recent phylogenetic analyses suggest that platyrrhines constitute a monophyletic group represented by three families: Cebidae, Atelidae, and Pitheciidae. Morphological variability between and within these three families, however, is widely discussed and debated. The aim of this study was to assess molar shape variability in platyrrhines, to explore patterns of interspecific variation among extant species, and to evaluate how molar shape can be used as a taxonomic indicator. The analyses were conducted using standard multivariate analyses of geometric morphometric data from 802 platyrrhine lower molars. The results indicated that the interspecific variation exhibited a highly homoplastic pattern related to functional adaptation of some taxa. However, phylogeny was also an important factor in shaping molar morphological traits, given that some phenotypic similarities were consistent with current phylogenetic positions. Our results show that the phylogenetic and functional signals of lower molar shape vary depending on the taxa and the tooth considered. Based on molar shape, Aotus showed closer similarities to Callicebus, as well as to some Cebidae and Ateles-Lagothrix, due to convergent evolutionary trends caused by similar dietary habits, or due to fast-evolving branches in the Aotus lineage, somewhat similar to the shape of Callicebus and Cebidae.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Jordi Galbany
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, 800 22nd Street NW, Ste 6000, Washington, D.C. 20052, USA
| | - Alejandro Pérez-Pérez
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Nova Delgado M, Galbany J, Pérez-Pérez A. Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines. PeerJ 2016; 4:e1967. [PMID: 27190704 PMCID: PMC4867715 DOI: 10.7717/peerj.1967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/25/2022] Open
Abstract
The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines' first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus-like and Saguinus-like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta-like and Pitheciinae-like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Zoology and Physical Anthropology Section, Universitat de Barcelona , Barcelona , Spain
| | - Jordi Galbany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Zoology and Physical Anthropology Section, Universitat de Barcelona, Barcelona, Spain; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington DC, United States of America
| | - Alejandro Pérez-Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Zoology and Physical Anthropology Section, Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
21
|
The phylogenetic system of primates—character evolution in the light of a consolidated tree. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0279-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Konkel MK, Ullmer B, Arceneaux EL, Sanampudi S, Brantley SA, Hubley R, Smit AFA, Batzer MA. Discovery of a new repeat family in the Callithrix jacchus genome. Genome Res 2016; 26:649-59. [PMID: 26916108 PMCID: PMC4864456 DOI: 10.1101/gr.199075.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
Abstract
We identified a novel repeat family, termed Platy-1, in the Callithrix jacchus (common marmoset) genome that arose around the time of the divergence of platyrrhines and catarrhines and established itself as a repeat family in New World monkeys (NWMs). A full-length Platy-1 element is ∼100 bp in length, making it the shortest known short interspersed element (SINE) in primates, and harbors features characteristic of non-LTR retrotransposons. We identified 2268 full-length Platy-1 elements across 62 subfamilies in the common marmoset genome. Our subfamily reconstruction and phylogenetic analyses support Platy-1 propagation throughout the evolution of NWMs in the lineage leading to C. jacchus Platy-1 appears to have reached its amplification peak in the common ancestor of current day marmosets and has since moderately declined. However, identification of more than 200 Platy-1 elements identical to their respective consensus sequence, and the presence of polymorphic elements within common marmoset populations, suggests ongoing retrotransposition activity. Platy-1, a SINE, appears to have originated from an Alu element, and hence is likely derived from 7SL RNA. Our analyses illustrate the birth of a new repeat family and its propagation dynamics in the lineage leading to the common marmoset over the last 40 million years.
Collapse
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Brygg Ullmer
- School of Electrical Engineering and Computer Science, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Erika L Arceneaux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Sreeja Sanampudi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Sarah A Brantley
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert Hubley
- Institute for Systems Biology, Seattle, Washington 98109-5263, USA
| | - Arian F A Smit
- Institute for Systems Biology, Seattle, Washington 98109-5263, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
23
|
Rylands AB, Heymann EW, Lynch Alfaro J, Buckner JC, Roos C, Matauschek C, Boubli JP, Sampaio R, Mittermeier RA. Taxonomic review of the New World tamarins (Primates: Callitrichidae). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12386] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Eckhard W. Heymann
- Department of Behavioral Ecology and Sociobiology; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Jessica Lynch Alfaro
- Institute for Society and Genetics and Department of Anthropology; University of California; Los Angeles CA USA
| | - Janet C. Buckner
- Department of Ecology and Evolutionary Biology; University of California; Los Angeles CA USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Christian Matauschek
- Department of Behavioral Ecology and Sociobiology; German Primate Center; Leibniz Institute for Primate Research; Göttingen Germany
| | - Jean P. Boubli
- School of Environment and Life Sciences; University of Salford; Manchester UK
| | - Ricardo Sampaio
- National Research Center for Carnivore Conservation (CENAP/ICMBio); Atibaia SP Brazil
| | | |
Collapse
|
24
|
|
25
|
The 14/15 association as a paradigmatic example of tracing karyotype evolution in New World monkeys. Chromosoma 2015; 125:747-56. [DOI: 10.1007/s00412-015-0565-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
26
|
Ren D, Lu G, Moriyama H, Mustoe AC, Harrison EB, French JA. Genetic diversity in oxytocin ligands and receptors in New World monkeys. PLoS One 2015; 10:e0125775. [PMID: 25938568 PMCID: PMC4418824 DOI: 10.1371/journal.pone.0125775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/25/2015] [Indexed: 11/23/2022] Open
Abstract
Oxytocin (OXT) is an important neurohypophyseal hormone that influences wide spectrum of reproductive and social processes. Eutherian mammals possess a highly conserved sequence of OXT (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly). However, in this study, we sequenced the coding region for OXT in 22 species covering all New World monkeys (NWM) genera and clades, and characterize five OXT variants, including consensus mammalian Leu8-OXT, major variant Pro8-OXT, and three previously unreported variants: Ala8-OXT, Thr8-OXT, and Phe2-OXT. Pro8-OXT shows clear structural and physicochemical differences from Leu8-OXT. We report multiple predicted amino acid substitutions in the G protein-coupled OXT receptor (OXTR), especially in the critical N-terminus, which is crucial for OXT recognition and binding. Genera with same Pro8-OXT tend to cluster together on a phylogenetic tree based on OXTR sequence, and we demonstrate significant coevolution between OXT and OXTR. NWM species are characterized by high incidence of social monogamy, and we document an association between OXTR phylogeny and social monogamy. Our results demonstrate remarkable genetic diversity in the NWM OXT/OXTR system, which can provide a foundation for molecular, pharmacological, and behavioral studies of the role of OXT signaling in regulating complex social phenotypes.
Collapse
Affiliation(s)
- Dongren Ren
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- Key Laboratory for Animal Biotechnology of Jiangxi Province and Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- * E-mail:
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, United States of America
| | - Aaryn C. Mustoe
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| | - Emily B. Harrison
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| | - Jeffrey A. French
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| |
Collapse
|
27
|
Martins AMG, Amorim N, Carneiro JC, de Mello Affonso PRA, Sampaio I, Schneider H. Alu elements and the phylogeny of capuchin (Cebus and Sapajus) monkeys. Am J Primatol 2014; 77:368-75. [PMID: 25387886 DOI: 10.1002/ajp.22352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 09/28/2014] [Accepted: 10/05/2014] [Indexed: 11/11/2022]
Abstract
Three families of New World monkeys, the Pitheciidae, Atelidae, and Cebidae, are currently recognized. The monophyly of the Cebidae is supported unequivocally by the presence of ten unique Alu elements, which are absent from the other two families. In this paper, the five genomic regions containing these Alu elements were sequenced in specimens representing nine capuchin (Cebus, Sapajus) species in order to identify mutations that may help elucidate the taxonomy and phylogenetic relationships of the cebids. The results confirmed the presence of previously described Alu elements in the capuchins. An Alu insertion present in the Cebidae2 genomic region belonging to the AluSc subfamily was amplified and sequenced only in Sapajus. No amplified or unspecific product was obtained for all other species studied here. An AluSc insertion present in the CeSa1 region was found only in Cebus, Sapajus, and Saimiri. Cebidae4 was characterized by two insertions, an AluSz6 shared by all cebids, and a complete SINE (AluSx3) found only in the capuchins (Cebus and Sapajus). The genomic region Cebidae5 revealed two insertion events, one of the AluSx subfamily, which was shared by all cebids, and another (AluSc8), that was unique to Cebus, offering a straightforward criterion for the differentiation of the two genera, Cebus and Sapajus. The Cebidae6 region showed four distinct insertion events: a 52-bp simple repeat ((TATG) n), two very ancient repeats (MIRc) and a TcMar-Tigger shared by all New World monkeys studied so far, and an Alu insertion of the AluSx subfamily present exclusively in the cebids. The phylogenetic tree confirmed the division of the capuchins into two genera, Cebus and Sapajus, and suggested the southern species Sapajus nigritus robustus and S. cay as the earliest and second earliest offshoots in this genus, respectively. This supports a southern origin for the Sapajus radiation.
Collapse
Affiliation(s)
- Antonio M G Martins
- Institute for Coastal Studies, Universidade Federal do Pará, Bragança, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Perez SI, Rosenberger AL. The status of platyrrhine phylogeny: A meta-analysis and quantitative appraisal of topological hypotheses. J Hum Evol 2014; 76:177-87. [DOI: 10.1016/j.jhevol.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 08/16/2014] [Accepted: 08/17/2014] [Indexed: 11/27/2022]
|
29
|
Oldest known cranium of a juvenile New World monkey (Early Miocene, Patagonia, Argentina): implications for the taxonomy and the molar eruption pattern of early platyrrhines. J Hum Evol 2014; 74:67-81. [PMID: 25081638 DOI: 10.1016/j.jhevol.2014.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 01/23/2014] [Accepted: 03/21/2014] [Indexed: 11/21/2022]
Abstract
A juvenile cranium of Homunculus patagonicus Ameghino, 1891a from the late Early Miocene of Santa Cruz Province (Argentina) provides the first evidence of developing cranial anatomy for any fossil platyrrhine. The specimen preserves the rostral part of the cranium with deciduous and permanent alveoli and teeth. The dental eruption sequence in the new specimen and a reassessment of eruption patterns in living and fossil platyrrhines suggest that the ancestral platyrrhine pattern of tooth replacement was for the permanent incisors to erupt before M(1), not an accelerated molar eruption (before the incisors) as recently proposed. Two genera and species of Santacrucian monkeys are now generally recognized: H. patagonicus Ameghino, 1891a and Killikaike blakei Tejedor et al., 2006. Taxonomic allocation of Santacrucian monkeys to these species encounters two obstacles: 1) the (now lost) holotype and a recently proposed neotype of H. patagonicus are mandibles from different localities and different geologic members of the Santa Cruz Formation, separated by approximately 0.7 million years, whereas the holotype of K. blakei is a rostral part of a cranium without a mandible; 2) no Santacrucian monkey with associated cranium and mandible has ever been found. Bearing in mind these uncertainties, our examination of the new specimen as well as other cranial specimens of Santacrucian monkeys establishes the overall dental and cranial similarity between the holotype of Killikaike blakei, adult cranial material previously referred to H. patagonicus, and the new juvenile specimen. This leads us to conclude that Killikaike blakei is a junior subjective synonym of H. patagonicus.
Collapse
|
30
|
Di Fiore A, Chaves PB, Cornejo FM, Schmitt CA, Shanee S, Cortés-Ortiz L, Fagundes V, Roos C, Pacheco V. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol Phylogenet Evol 2014; 82 Pt B:495-510. [PMID: 24751996 DOI: 10.1016/j.ympev.2014.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022]
Abstract
Using complete mitochondrial genome sequences, we provide the first molecular analysis of the phylogenetic position of the yellow-tailed woolly monkey, Lagothrix flavicauda (a.k.a. Oreonax flavicauda), a critically endangered neotropical primate endemic to northern Perú. The taxonomic status and phylogenetic position of yellow-tailed woolly monkeys have been debated for many years, but in this study both Bayesian and maximum likelihood phylogenetic reconstructions unequivocally support a monophyletic woolly monkey clade that includes L. flavicauda as the basal taxon within the radiation. Bayesian dating analyses using several alternative calibrations suggest that the divergence of yellow-tailed woolly monkeys from other Lagothrix occurred in the Pleistocene, ∼2.1Ma, roughly 6.5 my after the divergence of woolly monkeys from their sister genus, Brachyteles. Additionally, comparative analysis of the cytochrome oxidase subunit 2 (COX2) gene shows that genetic distances between yellow-tailed woolly monkeys and other Lagothrix from across the genus' geographic distribution fall well within the range of between-species divergences seen in a large number of other platyrrhine primate genera at the same locus and outside the range of between-genus divergences. Our results thus confirm a position within Lagothrix for the yellow-tailed woolly monkey and strongly suggest that the name Oreonax be formally considered a synonym for this genus. This revision in taxonomic status does not change the dire conservation threats facing the yellow-tailed woolly monkey in Perú, where the remaining wild population is estimated at only ∼10,000 individuals living in a highly fragmented landscape.
Collapse
Affiliation(s)
- Anthony Di Fiore
- Department of Anthropology, New York University, USA; Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, USA.
| | - Paulo B Chaves
- Department of Anthropology, New York University, USA; Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, USA; New York Consortium in Evolutionary Primatology (NYCEP), USA
| | - Fanny M Cornejo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, USA; Fundación Yunkawasi, Perú
| | - Christopher A Schmitt
- Department of Anthropology, New York University, USA; Center for Neurobehavioral Genetics, University of California, Los Angeles, USA; Department of Anthropology, University of Southern California, USA
| | | | | | - Valéria Fagundes
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Brazil
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Víctor Pacheco
- Museo de Historia Natural, Departamento de Mastozoologia, Universidad Nacional Mayor de San Marcos, Perú
| |
Collapse
|
31
|
Kay RF. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? Mol Phylogenet Evol 2013; 82 Pt B:358-74. [PMID: 24333920 DOI: 10.1016/j.ympev.2013.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.
Collapse
Affiliation(s)
- Richard F Kay
- Department of Evolutionary Anthropology & Division of Earth and Ocean Sciences, Duke University, Box 90383, Durham, NC 27708, United States.
| |
Collapse
|
32
|
Schneider H, Sampaio I. The systematics and evolution of New World primates - A review. Mol Phylogenet Evol 2013; 82 Pt B:348-57. [PMID: 24201058 DOI: 10.1016/j.ympev.2013.10.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/22/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
Abstract
This paper provides an overview of the taxonomy of New World primates from proposals of the 1980's based on morphology to the great number of studies based on molecular data aiming for the elucidation of the phylogeny of New World monkeys. The innovations of the first molecular phylogeny presented by Schneider et al. (1993) positioned Callimico as a sister group of Callithrix and Cebuella; Callicebus as a member of the pitheciids; Brachyteles as sister to Lagothrix; and the night monkeys (Aotus), capuchins (Cebus) and squirrel monkeys (Saimiri) in the same clade with the small callitrichines. These results were subsequently confirmed by dozens of subsequent studies using data from DNA sequences. Some issues difficult to resolve with the phylogenetic analyses of DNA sequences, such as the diversification of the oldest lineages (pitheciids, atelids and cebids), and the confirmation of Aotus as a member of the Cebinae clade (together with Cebus/Saimiri), were clarified with new molecular approaches based on the presence or absence of Alu insertions as well as through the use of phylogenomics. At this time, all relationships at the intergeneric level had been deciphered, with the exception of the definition of the sister group of callitrichines (whether Aotus or Cebus/Saimiri are sister to callitrichines, or if Aotus, Saimiri and Cebus form a clade together). Future studies should prioritize the alpha taxonomy of most Neotropical primate groups, and the use of phylogenetic and geographic data, combined with reliable estimates of divergence times, to clarify the taxonomic status at species and genus level, as well as to help understand the evolutionary history of this remarkable and highly diversified group.
Collapse
Affiliation(s)
- Horacio Schneider
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro s/n, Bragança, Pará, CEP 68600-000, Brazil.
| | - Iracilda Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro s/n, Bragança, Pará, CEP 68600-000, Brazil.
| |
Collapse
|
33
|
Rodas-Martínez AZ, Canales D, Brousset DM, Swanson WF, Romano MC. Assessment of adrenocortical and gonadal hormones in male spider monkeys (Ateles geoffroyi) following capture, restraint and anesthesia. Zoo Biol 2013; 32:641-7. [DOI: 10.1002/zoo.21101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Alba Zulema Rodas-Martínez
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del I. P. N.; Mexico D.F. México
- Departamento de Etología; Fauna Silvestre y Animales de Laboratorio de la Facultad de Medicina Veterinaria y Zootecnia de la UNAM; Mexico D.F. México
| | | | - Dulce María Brousset
- Departamento de Etología; Fauna Silvestre y Animales de Laboratorio de la Facultad de Medicina Veterinaria y Zootecnia de la UNAM; Mexico D.F. México
| | - William F. Swanson
- Center or Conservation and Research of Endangered Wildlife; Cincinnati Zoo and Botanical Garden; Cincinnati Ohio USA
| | - Marta C. Romano
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del I. P. N.; Mexico D.F. México
| |
Collapse
|
34
|
Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C. A mitogenomic phylogeny of living primates. PLoS One 2013; 8:e69504. [PMID: 23874967 PMCID: PMC3713065 DOI: 10.1371/journal.pone.0069504] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022] Open
Abstract
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.
Collapse
Affiliation(s)
- Knut Finstermeier
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Matthias Meyer
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eva Kreuz
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Hofreiter
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail:
| |
Collapse
|
35
|
Rosenberger AL, Klukkert ZS, Cooke SB, Rímoli R. RethinkingAntillothrix: The Mandible and Its Implications. Am J Primatol 2013; 75:825-36. [DOI: 10.1002/ajp.22144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/12/2022]
|
36
|
A scalable and flexible approach for investigating the genomic landscapes of phylogenetic incongruence. Mol Phylogenet Evol 2013; 66:1067-74. [DOI: 10.1016/j.ympev.2012.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 11/19/2022]
|
37
|
de Oliveira EHC, Neusser M, Müller S. Chromosome evolution in new world monkeys (Platyrrhini). Cytogenet Genome Res 2012; 137:259-72. [PMID: 22699158 DOI: 10.1159/000339296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the last decades, New World monkey (NWM, Platyrrhini, Anthropoideae) comparative cytogenetics has shed light on many fundamental aspects of genome organisation and evolution in this fascinating, but also highly endangered group of neotropical primates. In this review, we first provide an overview about the evolutionary origin of the inferred ancestral NWM karyotype of 2n = 54 chromosomes and about the lineage-specific chromosome rearrangements resulting in the highly divergent karyotypes of extant NWM species, ranging from 2n = 16 in a titi monkey to 2n = 62 in a woolly monkey. Next, we discuss the available data on the chromosome phylogeny of NWM in the context of recent molecular phylogenetic analyses. In the last part, we highlight some recent research on the molecular mechanisms responsible for the large-scale evolutionary genomic changes in platyrrhine monkeys.
Collapse
Affiliation(s)
- E H C de Oliveira
- Laboratório de Cultura de Tecidos, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | | |
Collapse
|
38
|
Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM, Mootnick AR, de Jong PJ, Roos C, Carbone L, Batzer MA. An Alu-based phylogeny of gibbons (hylobatidae). Mol Biol Evol 2012; 29:3441-50. [PMID: 22683814 DOI: 10.1093/molbev/mss149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gibbons (Hylobatidae) are small, arboreal apes indigenous to Southeast Asia that diverged from other apes ∼15-18 Ma. Extant lineages radiated rapidly 6-10 Ma and are organized into four genera (Hylobates, Hoolock, Symphalangus, and Nomascus) consisting of 12-19 species. The use of short interspersed elements (SINEs) as phylogenetic markers has seen recent popularity due to several desirable characteristics: the ancestral state of a locus is known to be the absence of an element, rare potentially homoplasious events are relatively easy to resolve, and samples can be quickly and inexpensively genotyped. During radiation of primates, one particular family of SINEs, the Alu family, has proliferated in primate genomes. Nomascus leucogenys (northern white-cheeked gibbon) sequences were analyzed for repetitive content with RepeatMasker using a custom library. The sequences containing Alu elements identified as members of a gibbon-specific subfamily were then compared with orthologous positions in other primate genomes. A primate phylogenetic panel consisting of 18 primate species, including 13 gibbon species representing all four extant genera, was assayed for all loci, and a total of 125 gibbon-specific Alu insertions were identified. The resulting amplification patterns were used to generate a phylogenetic tree. We demonstrate significant support for Symphalangus as the most basal lineage within the family. Our findings also place Nomascus as a derived lineage, sister to Hoolock, with the Nomascus-Hoolock clade sister to Hylobates. Further, our analysis groups N. leucogenys and Nomascus siki as sister taxa to the exclusion of the other Nomascus species assayed. This study represents the first use of SINEs to determine the genus level phylogenetic relationships within the family Hylobatidae. These relationships have been resolved with robust support at most internal nodes, demonstrating the utility of SINE-based phylogenetic analysis. We postulate that hybridization and rapid radiation may have contributed to the complex and contradictory findings of the previous studies. Our findings will aid in the conservation of these threatened primates and inform future studies of the biogeographical history and distribution of modern gibbon species.
Collapse
Affiliation(s)
- Thomas J Meyer
- Department of Biological Sciences, Louisiana State University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rosenberger AL. Evolutionary morphology, platyrrhine evolution, and systematics. Anat Rec (Hoboken) 2011; 294:1955-74. [PMID: 22042518 DOI: 10.1002/ar.21511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/08/2022]
Abstract
This special volume of the Anatomical Record focuses on the evolutionary morphology of New World monkeys. The studies range from three-dimensional surface geometry of teeth to enamel ultrastructure; from cranioskeletal adaptations for eating leaves and seeds to the histology of taste bud proxies; from the architecture of its bones to the mechanoreceptors of the tail's skin; from the physical properties of wild foods to the feeding biomechanics of jaws and skull; from the shapes of claws and fingertips, and of elbows, to the diversity and morphology of positional behavior; from the vomeronasal organ and its biological roles to links between brains, guts, sociality, and feeding; from the gum-eating adaptations of the smallest platyrrhines to the methods used to infer how big the largest fossil platyrrhines were. They demonstrate the power of combining functional morphology, behavior, and phylogenetic thinking as an approach toward reconstructing the evolutionary history of platyrrhine primates. While contributing new findings pertaining to all the major clades and ecological guilds, these articles reinforce the view that platyrrhines are a coherent ecophylogenetic array that differentiated along niche dimensions definable principally by body size, positional behavior, and feeding strategies. In underlining the value of character analysis and derived morphological and behavioral patterns as tools for deciphering phylogenetic and adaptational history, doubts are raised about a competing small-bore morphological method, parsimony-based cladistic studies. Intentionally designed not to enlist the rich reservoir of platyrrhine evolutionary morphology, an empirical assessment of the costs incurred by this research stratagem reveals inconsistent, nonrepeatable, and often conflicting results.
Collapse
Affiliation(s)
- Alfred L Rosenberger
- Department of Anthropology and Archaeology, Brooklyn College, The City University of New York, Brooklyn, USA.
| |
Collapse
|
40
|
Hogg RT, Walker RS. Life-History Correlates of Enamel Microstructure in Cebidae (Platyrrhini, Primates). Anat Rec (Hoboken) 2011; 294:2193-206. [DOI: 10.1002/ar.21503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/08/2022]
|
41
|
Roos C, Zinner D, Kubatko LS, Schwarz C, Yang M, Meyer D, Nash SD, Xing J, Batzer MA, Brameier M, Leendertz FH, Ziegler T, Perwitasari-Farajallah D, Nadler T, Walter L, Osterholz M. Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 2011; 11:77. [PMID: 21435245 PMCID: PMC3068967 DOI: 10.1186/1471-2148-11-77] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera. RESULTS Gene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing Piliocolobus/Procolobus and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from Piliocolobus/Procolobus into Colobus. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, Semnopithecus diverged first, indicating langur paraphyly. However, unidirectional gene flow from Semnopithecus into Trachypithecus via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene. CONCLUSIONS Overall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.
Collapse
Affiliation(s)
- Christian Roos
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O'Brien SJ, Pecon-Slattery J. A molecular phylogeny of living primates. PLoS Genet 2011; 7:e1001342. [PMID: 21436896 PMCID: PMC3060065 DOI: 10.1371/journal.pgen.1001342] [Citation(s) in RCA: 880] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/16/2011] [Indexed: 12/13/2022] Open
Abstract
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. Advances in human biomedicine, including those focused on changes in genes triggered or disrupted in development, resistance/susceptibility to infectious disease, cancers, mechanisms of recombination, and genome plasticity, cannot be adequately interpreted in the absence of a precise evolutionary context or hierarchy. However, little is known about the genomes of other primate species, a situation exacerbated by a paucity of nuclear molecular sequence data necessary to resolve the complexities of primate divergence over time. We overcome this deficiency by sequencing 54 nuclear gene regions from DNA samples representing ∼90% of the diversity present in living primates. We conduct a phylogenetic analysis to determine the origin, evolution, patterns of speciation, and unique features in genome divergence among primate lineages. The resultant phylogenetic tree is remarkably robust and unambiguously resolves many long-standing issues in primate taxonomy. Our data provide a strong foundation for illuminating those genomic differences that are uniquely human and provide new insights on the breadth and richness of gene evolution across all primate lineages.
Collapse
Affiliation(s)
- Polina Perelman
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Warren E. Johnson
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Hector N. Seuánez
- Division of Genetics, Instituto Nacional de Câncer and Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julie E. Horvath
- Department of Evolutionary Anthropology and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Miguel A. M. Moreira
- Division of Genetics, Instituto Nacional de Câncer and Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bailey Kessing
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Joan Pontius
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Melody Roelke
- SAIC–Frederick, Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Yves Rumpler
- Physiopathologie et Médecine Translationnelle, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
| | | | | | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
| | - Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute–Frederick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
44
|
Matauschek C, Roos C, Heymann EW. Mitochondrial phylogeny of tamarins (Saguinus, Hoffmannsegg 1807) with taxonomic and biogeographic implications for the S. nigricollis species group. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 144:564-74. [DOI: 10.1002/ajpa.21445] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/27/2010] [Indexed: 11/07/2022]
|
45
|
Li J, Han K, Xing J, Kim HS, Rogers J, Ryder OA, Disotell T, Yue B, Batzer MA. Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene 2009; 448:242-9. [PMID: 19497354 PMCID: PMC2783879 DOI: 10.1016/j.gene.2009.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Genus Macaca (Cercopithecidae: Papionini) is one of the most successful primate radiations. Despite previous studies on morphology and mitochondrial DNA analysis, a number of issues regarding the details of macaque evolution remain unsolved. Alu elements are a class of non-autonomous retroposons belonging to short interspersed elements that are specific to the primate lineage. Because retroposon insertions show very little homoplasy, and because the ancestral state (absence of the SINE) is known, Alu elements are useful genetic markers and have been utilized for analyzing primate phylogenentic relationships and human population genetic relationships. Using PCR display methodology, 298 new Alu insertions have been identified from ten species of macaques. Together with 60 loci reported previously, a total of 358 loci are used to infer the phylogenetic relationships of genus Macaca. With regard to earlier unresolved issues on the macaque evolution, the topology of our tree suggests that: 1) genus Macaca contains four monophyletic species groups; 2) within the Asian macaques, the silenus group diverged first, and members of the sinica and fascicularis groups share a common ancestor; 3) Macaca arctoides are classified in the sinica group. Our results provide a robust molecular phylogeny for genus Macaca with stronger statistical support than previous studies. The present study also illustrates that SINE-based approaches are a powerful tool in primate phylogenetic studies and can be used to successfully resolve evolutionary relationships between taxa at scales from the ordinal level to closely related species within one genus.
Collapse
Affiliation(s)
- Jing Li
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kyudong Han
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Jinchuan Xing
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Oliver A. Ryder
- San Diego Zoo's Institute for Conservation Research, San Diego, California 92112, USA
| | - Todd Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York 10003, USA
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
46
|
Fabre PH, Rodrigues A, Douzery EJP. Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 2009; 53:808-25. [PMID: 19682589 DOI: 10.1016/j.ympev.2009.08.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/08/2009] [Accepted: 08/03/2009] [Indexed: 11/18/2022]
Abstract
Here, we present a new primate phylogeny inferred from molecular supermatrix analyses of size 42 kb containing 70% of missing data, and representing 75% of primate species diversity. The supermatrix was analysed using a gene-partitioned maximum likelihood approach to obtain an exhaustive molecular phylogenetic framework. All clades recovered from recent molecular works were upheld in our analyses demonstrating that the presence of missing data did not bias our supermatrix inference. The resulting phylogenetic tree was subsequently dated with a molecular dating method to provide a timescale for speciation events. Results obtained from our relaxed molecular clock analyses concurred with previous works based on the same fossil constraints. The resulting dated tree allowed to infer of macroevolutionary processes among the primates. Shifts in diversification rate and speciation rates were determined using the SymmeTREE method and a birthdeath process. No significant asymmetry was detected for the primate clade, but significant shifts in diversification rate were identified for seven clades: Anthropoidea, Lemuriformes, Lemuridae, Galagidae, Callithrix genus, the Cercopithecinae and Asian Macaca. Comparisons with previous primate supertree results reveal that (i) there was a diversification event at the root of the Lemuriformes, (ii) a higher diversification rate is detected for Cercopithecidae and Anthropoidea and (iii) a shift in diversification is always recovered for Macaca genus. Macroevolutionary inferences and primate divergence dates show that major primate diversification events occurred after the Paleogene, suggesting the extinction of ancient primate lineages.
Collapse
Affiliation(s)
- P-H Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS), Université Montpellier II, Place E. Bataillon, CC 064, 34095 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
47
|
Wildman DE, Jameson NM, Opazo JC, Yi SV. A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Mol Phylogenet Evol 2009; 53:694-702. [PMID: 19632342 DOI: 10.1016/j.ympev.2009.07.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/01/2022]
Abstract
There are more than 125 species of extant New World monkeys (Primates: Platyrrhini) found in approximately 15 genera. The phylogenetic relationships of these neotropical primates have been extensively studied from a molecular perspective. While these studies have been successful at inferring many of the relationships within the platyrrhines, key questions remain. The current study provides a framework for using non-genic, non-coding markers in comparative primate phylogenomic studies in species whose genomes are not yet scheduled for complete sequencing. A random genomic shotgun library was generated from the nocturnal Owl monkey Aotus lemurinus. Eleven unlinked, non-coding, non-genic, non-repetitive, nuclear DNA markers derived from this library were sequenced in at least one representative species of every platyrrhine genus. The combined sequence from these markers yielded a 7.7 kb multiple sequence alignment of 22 taxa. We analyzed these markers independently and combined with a 10 kb dataset consisting of "traditional," previously published markers located within or directly adjacent to genes. Parsimony, maximum likelihood, and Bayesian analysis converged on a single topology for the platyrrhine generic relationships. Notably, we confidently inferred that Pitheciidae is the sister taxon to the other two platyrrhine families (Cebidae, Atelidae). This relationship is supported by high values of branch support as well as topology tests. Additionally, Aotus formed a sister taxon to a clade comprising Cebus and Saimiri. With a fully resolved platyrrhine phylogeny in place it is now possible to design and test hypotheses regarding the evolution and diversification of platyrrhine phenotypes and life histories.
Collapse
Affiliation(s)
- Derek E Wildman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|